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Good morning and welcome to lesson 12 of this course on PID controls. So, as usual 

before starting the course we will review the instructional objectives. 
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And these are. Firstly, that we will be related we will be, we will learn how to define the 

related parameters of PID control in an industrial context. Secondly, we will describe and 

explain in detail about a phenomenon, which may times occurred with PID control 

known as integrator windup, and the ways of reducing that we will describe various ways 

of implementing. The derivative control part we will also describe the one technique of 

you know bump less auto manual transfer that is when the control is transferred from 

auto to manual or manual to auto, how? 

So, that it can happen without any short to the process, and finally, we will describe 

digital implementations of PID control. So, in other words we are going to look at 

various practical aspects of PID control today. So, let us begin with the PID equation. 
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This is the PID equation, which we have seen in the last lesson also, where K p is the 

proportional gain or sometimes we this is not proportional band as written, but it is, it is 

proportional gain. But we will, but a very similar parameter called proportional band is 

also used in the context of PID controllers, we will see soon how it is related to the 

proportional gain. 
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Next, is the parameter T i the parameter, T i here, which is called the reset time and 

expressed in a peculiar sounding unit called minutes per repeat. Next is the derivative 

time. So, derivative time here note the, note the time units of minutes. These are rather 



 

unusual it may seem rather unusual, but remember that typical chemical processes have 

time constant of the order of the minutes. So, these times are often expressed in minutes. 

This is as very well known control scientist Karl Johan Astrom says also called text book 

version of the PID control equation. As we will see in this, in this lesson that there are 

various modifications that you have to do to this equation before it can be implemented. 

So, let us first go about defining the various terms. So, we first define proportional gain 

or proportional band. 
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Proportional gain is well known it is K p, which is delta u by delta e or u by e, while 

proportional band this term is new, and it is defined in just inverse way. So, proportional 

band is defined as it is the band of error, which in a 100, which causes, which causes a 

100 percent variation in the controller output and generally expressed as a percentage of 

the range of the measurement. So, that is the definition. So, it is in an inverse way where 

gain is u by e, here we are defining P B as the band of error, which causes a 100 percent 

variation in the controller output or the manipulated input to the plant right. So, in that 

sense it is a, it is a inverse of K p. 
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So, look at this diagram will clarify matters further. So, here look at the controller input 

and suppose this is the set point currently the set point is set here. So, if the measurement 

or the output is the measurement or the output could be anywhere in this zone. So, it will 

cause various kinds of error, and if we use a proportional band. Then as the error will 

increase the output will increase in this case the proportional controller actually has a 50 

percent bias, which means that when the error is 0 there is still a 50 percent output of the 

controller, sorry this line is getting. 

So, this is typically set at 50 percent. So, there is a. So, the controller output equation is 

actually given as U is equal to K p into e plus a constant term. So, plus a constant term c 

and this constant terms is actually 50 percent. So, when the e is 0 still you get 50 percent 

output will otherwise there will always be a steady state error as we have seen in the last 

lesson. So, what happens is that as the error changes to this side or to this side the  output 

decreases or increases, and if the error changes from here, from here to here the input to 

the plan increases from 0 percent to 100 percent. So, this is the band of error, which 

causes the, causes an output a variation in the controller output from 0 percent to 100 

percent, and this is the proportional band right. So, look at let us look at an example. 
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So, while K p is delta u by delta e proportional band is defined as 100 percent by K. So, 

you can easily find out that this gives the error in percentage, which will cause a 100 

percent input change. Obviously, a narrow K p means low value of K p implies a high 

value of K p. A narrow P B or a low value of the proportional band implies a high 

proportional gain right. 

So, let us look an example suppose, the we are, we are, we are talking about a 

temperature control loop, where the full scale measurement is 50 degree centigrade right. 

Suppose, an error of 2 degree centigrade, which is 4 percent of 50 degree centigrade 

causes an input change by 100 percent. So, maybe there is a heater, who whose output 

will change from 0 watt to 5000 watt or 1000 watt or whatever. 

So, if the error changes by 2 degree centigrade, then the heater output will change from 0 

percent to 100 percent. So, in such a case 4 percent change in error causes a 100 percent 

change in input. So, the proportional band in this case is 4 percent. So, this is the 

meaning of the proportional band. 
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Now, let us look at the integral gain, which is again expressed in terms of the integral 

time and the proportional band. Now, here I would you might think that why is it, why is 

it that rather than expressing the integral gain rather than expressing the integral gain as 

K I, why I am expressing it as K p into T I, why the derivative gain, which I could call K 

b. I am, I am expressing as K p into T d, what is the, what is the reason? 

The reason is that the reason is actually embedded in history turns out that in the older. 

You know hydraulic and pneumatic PID controllers, the construction of the controller 

was such that one part of the device used to control K p, another part of the device used 

to control T i another part of the part of the device is used to control T d. So, there are 

certain distinct parts of the controller, which used to realize these terms K p T i and Td. 

So, that an average. So, that an overall integral gain of K p by T i and an overall 

derivative gain of K p into Td is realized. So, it is for from that principle that the integral 

time and the derivative time terms are continuing, but if you have a if you, if you have a 

microprocessor based controller then all these terms need not be considered. Then, you 

could equivalently work with you know K i and K d, but still let us since I mean, since 

the terminology continues. So, let us see the meaning, because K i and K d we 

understand very well they are just simply the gain terms. 

So, let us see, what is the integral time? So, integral time is the time taken to repeat the 

proportional control effort or action for a step error signal. So, what happens is that let us 

this probably not. So, clear. So, let us look at the, let us look at the scenario. So, now 



 

suppose take this as a, this is a P I controller right. This is the P I control controller. 

Suppose, we are giving a step error signal to each. 

So, here we have a I am sorry. So, here we have a step input, if you give a step input like 

this, like this to the controller then how will the u output vary. The u output will vary like 

this. So, immediately the K p part will rise. So, this will be K p into e, and then the 

integral term will start integrating the error. So, it will go up right and after some time 

after sometime this integral part of the input will equal the proportional part of the input 

So, the, so  it turns out then after exactly after T i amount of time the input will become, 

if the proportional control input is K p because I have taken the error as unity. Then, after 

T i amount of time the total input will become 2 K p or the integral part will repeat the 

proportional part. So, in that sense this definition is now explained that is time take this 

time taken to repeat the proportional control effort action for a step error signal. 

It is given as we all know it is given as K p by T i the proportional, the integral gain is 

expressed as K p by T i. Now, so from this definition perhaps it is now clear why it is 

expressed as minutes per repeat. So, for if the, if this continues then every T i minutes 

the integral terms will produce another K p times input right. So, the proportional control 

it will continuously repeat every T i minutes in that sense the unit is minutes per beat. So, 

that is the that explains the integral term. Now, we go the derivative term again. 
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We have a derivative gain and we have a derivative time. So, again now the derivative 

time is the time taken for the proportional term to equal the derivative term for a ramp 



 

error signal. So, again a similar thing. So, let us look at the diagram here. So, here now 

we have a P D controller right. So, in the P D controller, if you fit with a ramp signal, 

now let us say a ramp signal of some of some slope e dot some slope e dot then 

immediately what will be the, what will be the. Now, the now, the now the derivative 

term will jump because there is a constant e dot. So, there will be immediately a K D into 

e dot term, and the K p term will now start going up because e is going up. 

So, after T D time this is going to be K p e dot into T D. So, if K p e dot into T D has to 

equal K D into e dot, which is the derivative term output then K D equal to K p into T D. 

So, this is the time, this is the time or this is the derivative time after which the 

proportional action will repeat the derivative action. So, that explains, what is the 

meaning of the term derivative time.  
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Now, we come to the implementation of the PID controller, and we basically we are 

trying to see that what are the problems that might occur if you just simply implement 

the term as a proportional as an plus integral plus derivative. So, first we look at the 

integral term in detail, and see what happens when there is actuator saturation. Now, you 

see actuator saturation is actually very common in the sense that only in certain cases see 

the set point keeps on varying. 

 So, suppose the, suppose the set point stays suppose the set point stays 80 percent of the 

time. It stays in about 60 percent of its maximum value and probably a 5 percent of the 

time it reaches something like it reaches 100 percent. Now, if you have to make an 



 

actuator, which can really deliver full output even for a 100 percent control input 

completely proportional. Then the, then the actuator has to be very large and the, and the 

actuator setting has to be I mean the actuator power rating has to be very large. 

So, often it is it is very common that we will we will chose an actuator which can deliver 

input proportional to the control input for about 75 percent then it will saturate. So, the 

case is where you will, you will get you are going to give very rare cases sometimes very 

exceptional cases may be you will give more than 75 or 80 percent and that time there 

will be some error, and you are willing to tolerate. 

So, this happens in many cases now. So, we want to see what happens to the PID 

controller in such cases of actuator saturation. So, let us look at this case very carefully. 

So, you see that suppose the maximum possible output that the actuator can produce is 

this. So, here it saturates it cannot produce any further output, but a set point is given, 

which is higher than that. So, the actuator naturally cannot give enough input 

corresponding to this set point. 

So, what will happen is that the output will rise and then here it will saturate, it cannot. 

So, the output cannot increase beyond this point and this amount of error this amount of 

error will in, will exist this is the steady state error, which will exist. One cannot do 

anything about it simply because whatever control you apply the actuator will not be able 

to give input. So, the plan to input will not increase beyond this that is fine. 

Now, suppose the set point is reduced here, it is you have realized that it cannot reach 

that set point. So, it is reduced. So, immediately now this output level, this output level is 

very much reachable by the actuator. So, what is desirable is that the actuator will 

immediately because by control action the output will come down will reach at 0 steady 

state error point as is common under integral control, but exactly that does not happen, 

why it does not happen? 

Now, suppose that you have held this error you have not immediately reduced it, but you 

have continued with it for some time. So, now what is happening here during this time 

the error is constant, the error is constant. So, the proportional term. So, the proportional 

part of the control input remains constant, but the integral term of the control input goes 

on increasing. So, the integral in the PID controller goes on integrating the error. 



 

However, it cannot produce a control input because the that input is given. So, the as if 

the PID controller, output is the controller, output is continuously increasing, it is also 

coming the actuator input, but the actuator is not able to give that output because it is 

already saturated. 

Now, suppose that after some time the control input is now reduced. Now, what is going 

to be happen, what will be observed is that the while, the while it would have been 

desirable. That the control input immediately falls down and reaches the desire steady 

state point. It does not do that rather it continues at the same level ignoring that the, that 

the, that the set point has now been reduced, and after some time, only after some time 

does the actuator, does the control start respond to the set, to the set point, and this 

phenomenon is called integrator windup. 

Basically what has happened is that the integrator has become bloated floated. So, it has 

not realized that the plant cannot reach this output. So, the error is will persist. So, it is 

unnecessarily trying to give more and more control input and getting blown up right. So, 

that is integrator windup.  
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And it happens essentially because of the fact that see during the time when the error is 

persisting say, from this point the error is persisting. So, the proportional input is 

remaining constant, but the, but the integral input is growing. So, suppose at this time it 

has reached this value now the set point is reduced. So, it is at this point then the set 



 

point is reduced. Now, what is going to happen and this is the saturated output. So, the 

integral is way beyond the saturated level. 

So, now that it is the set point is reduced now the error has become negative. So, the 

integral value is now reducing, but still it is positive see at this point, at this point the 

control input is still greater than the saturated level. So, what is actually this level and 

therefore, the output persists. So, only at this time after so much time does it come to the 

below the saturated input level and then it goes further below. 

So, the so  from this point onward the output will start with this. So, this is what happens. 

So, this is. So, the whole idea is that the integral should not be allowed to blow up and 

continuously blow up with time, if the, if the, sorry if the error persists due to a 

phenomenon like actuator saturation. So, that is precisely that can be done in many ways. 
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And here is, here is one here is a scheme one scheme one of many possible schemes, 

which will realize that. So, how do we do that? So, look at this controller simple 

controller we have, we have the usual P D that the derivative term, which you can ignore 

for the time, for the time being it is not concerned. 

So, we have a proportional term, which is coming you also have a derivative term, which 

is coming, which we need not consider at the in this slide. So, what is happening here 

that here actually it is here, suppose this is the actuator right. So, the actuator has a 

saturation characteristic. So, even if this is the controller output and this is the plant input 

in between.  



 

So, what you are doing is you are actually sensing the physical plant input you could 

either do that or you could have an have a model of the actuator in the controller itself 

and check before giving the input check whether this is really going to cross the actuator 

limit. So, you can either do it in software or you can use the sensor to again see what 

input is going. 

Now, when V becomes larger than U then you are, and then this actuation error becomes 

negative. Now, what you want to do is now you take this actuation error and you feed it. 

So, here a negative term is coming, and here error is positive. So, through the PID 

integral term a positive term is coming. So, you have to define this gain in a suitable 

manner such that whenever V this becomes negative, this signal becomes 0, this signal 

becomes 0. So, when this signal becomes 0 this integrator does not build up. So, this 

integrator output remains at constant value. 

So, you see that whenever you are giving an input, which is going to cause an actuator 

saturation the this special path, which we have added to the PID controller will now 

prevent, will now prevent the integral term from blowing up so that when the set point is 

reduced the plant output will follow very smoothly right. So, this is the scheme, this is 

one of the schemes, which can be used for anti-reset windup; sometimes integral windup 

is called also called reset windup. So, coming to the next one, now as I was telling that 

PID controllers were historically many of them were made using hydraulic and 

pneumatic devices. So, they use to have you know certain realization structures. 
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So, this is a typical structure here where you know as I, as I said that you know one part, 

one part of the controller used to be realize, use to realize the gain typically you know 

devices like flapper nozzles, which we will see. There are, there are various kinds you 

know bellows or orifices constrictions, which are used to realize this time constant. So, 

the controller structure look at this structure. 

So, if you realize this for the time being let us forget about this, one assume that it is it 

goes directly it is the one. So, if you take this structures then you will find that, you will 

find that what is the if you compute the transfer function between U and V. You compute 

the transfer function between U and V, first of all note that there is that is K i is realizes 

K p by T i. 

So, there is interaction, this is called an interactive mode because if you change the 

proportional gain K p, then the integral gain K i also changes. So, whenever you change 

K p, if you want to keep the integral gain constant you have to also change T i. So, the 

various parameters cannot be varied in a non interactive mode, but they must, they will 

be interactive, and the transfer function between V and U ignoring the limiter. This is the 

limiter that is if the value goes beyond the certain value, it will limited, if it goes below a 

certain value it is also limited. If, we ignore the limiter for the time being and you will 

find that the transfer function between U and V is given as 1 plus 1 by S T i. So, when 

you multiply it by K p, you get the transfer function of a P I controller. 

So, you can also see. So, basically what you have realized is the same transfer function 

that is K p into 1 plus 1 by S T i, but you have realized it in this way. Now, if you now 

let us look at the role of the limiter, which is also used in this structure to avoid integral 

windup. So, you see that if there is, if there is, if there is if U goes to high this is actually 

going to the actuator. This is the controller output, which is going to the actuator. 

So, if this U goes to goes very high, then what is going to happen is that this limiter, 

which is inside the controller itself is going to, is going to limit this. So, this U will 

become constant. So, when this U becomes constant you can see these are, these are 

simple first order transfer function at that point of time this input will also be constant 

So, now what is happening is that the error is the error is constant. So, therefore, this V is 

constant, and because this U has gone to high level. So, even at some level depending on 

the where you have set the limiter this is also constant. So, therefore, U becomes 



 

constant. So, the output of the P I controller does not build up indefinitely, but gets 

limited 

So, this is another way by which an anti reset windup scheme can be implemented 

typically in hydraulic and pneumatic controllers. Now, we will look at a phenomenon 

another problem with occurs typically with integral control and that happens when you 

have you know auto manual transfer.  

Now, let me first explain this term. There are, there are, there are many most processes 

will also allow the operated to give input that is if he, if he wants in then certain 

situations you can bypass the automatic controller. And rather using some, using some 

input device like a, like a, like a potentiometer or a knob or a switch you can given 

manual input to the plant and you can slowly build it up. Then, at may be some purpose 

right or and then  but then finally, you do not want to run the run the plant manually all 

the time. So, want to switch over to the automatic control.  
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Now, during this switch over problems can occur as we will see here. So, here is a case 

where so  you see that this is a process, this is the actuator and the input to the actuator 

can come either from the automated PID controller. So, this is automatic control 

automatic controller and this is manual. So, the operator is actually giving some input 

here, and here is a switch, here is the switch, which you can flick. So, that the actuator 

gets its, gets its input either from the PID controller or from the manual controller. 



 

Now, imagine now the main question is that when I am transferring, how do I know? For 

example, suppose here the input was let us say one volt, now how do I know that when I 

flick this switch to auto I shall, I shall also here the input existing may be 10 volts. So, 

now what will happen that previously the actuator was in, was in 1 volt was getting an 

input of 1 volt. Now, from one volts suddenly a 10 volt output will suddenly a 10 volt 

will go to the actuator. 

So, the actuator if it is a motor or if it is a valve, it will it might get a shock. Similarly, 

the process also will get a very will tend the get very high input. So, this shock that is we 

normally try to operate the processes. Then, we if we want to increase the input. So, will 

wrap it up gradually you do not give an input 1 volt. Now, 10 volt then again minus 2 

volts so  such inputs are sometimes detrimental to the equipment either in the process or 

to the, or to the actuator equipment. 

So, the question is, question is how to ensure that the PID output is close to the manual 

during transfer. In fact it often it is not because of the fact that the PID control remember 

that its output is not going to the actuator, but is all the time getting both the set point and 

the measurement. 

So, it is all the time computing the error computing its integral everything it is doing. So, 

it is quite likely that the PID control output is actually saturated during the time that you 

are manipulating the process with manual control. It is quite possible that the PID output 

has got saturated. It is start either at its negative maximum or at its positive maximum. 

So, now if you, if you suddenly flick the switch over you are likely to give the plant a 

shock and we want to avoid that. So, how to avoid that, so for avoiding that for avoiding 

that we rather than giving the input U, we would like to give the input delta U.  
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So, you see that this is a clever scheme, which avoids that avoid that process. So, if 

suppose you are in manual process. So, you are every time you are actually giving delta 

e. So, you are maybe there is a plus minus switch, and you are flicking the switch to plus. 

So, the input is going up every time you are giving positive delta e. If, you are flicking 

the switch to minus you are giving negative delta e, and these this delta U are getting 

integrated here by some device may be in the actuator. 

Now, and the PID controller is also does not give you U, but does give you incremental 

input delta e every time it computes delta e, how it computes delta U we will see very 

soon. But suppose the PID control is implemented in a form, which is known as the 

incremental PID form and its gives you delta U right. 

So, now what is going to happen? Now, suppose up to U k minus 1, U were in manual 

now suddenly in U k just between U k minus 1 to q between the time instances k minus 1 

to k. You have flicked the switch to on so  what will happen is that now a U k minus 1 

plus delta U k will term will be added to the actuator. This is will come from what this 

will come from the auto, but you see that this actually a delta term. So, it is an increment. 

So, it cannot be very large.  

So, the process will get the old manual input plus a little change, which is due to auto. 

So, it will not get up and will slowly take the process from one input to another input. So, 

the transfer from auto to manual mode is going to be bump less that is the terminology, 

which is used. So, these are a shock. So, gradually these delta U k will build some 



 

problems, which you need to you know, you know I mean take care of when you are 

trying to implement especially when you trying to implement integral term. Now, let us 

come to the derivative term. So, let us look at the first problem with derivatives that is 

that that derivatives. 
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I am sorry that derivatives typically tend to blow up high frequency noise, and where 

does high frequency noise come from high frequency noise comes from sensors amongst 

one thing. For example, typically let us consider some you know a flow sensor you know 

flow sensor flow is always turbulent. 

So, you know for the fluid actually flows in random fashion whenever you have a slope 

beyond a certain velocity flow is turbulent. So, whatever sensor you now the turbulence 

induces frequency, which are much higher than the average volumetric flow rate. So, 

while the average volumetric flow rate may be varying like this the signal that you will 

get from the sensor may induce very high frequency components. 

So, the signal these signals are actually due to, due to the turbulence. So, this is, this 

gives a noise right. Now, the point is that if you take this signal and if you suppose, if 

you consider the case that consider the case that you have a this point needs to be 

understood. 
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Suppose, you have a signal, which goes like this and you on this you have a noise, I am 

drawing actually noise will be much more higher frequency. Now, if you take derivative 

of this signal, what will happen? The derivative of the derivative of the low frequency 

original signal will remain will remain positive up to this point will slowly fall and then 

will become negative here. The derivative around this is going to be positive then it will 

fall to 0 and then become negative, what happens to the derivative of the other signal. 

See the derivative of the other signal is going to start from positive with within this short 

time it will reach a negative maximum, and then it will again. So, it will be, it will be 

widely varying. So, you see that while these signals are more or less close to each their 

derivative terms are completely different. 

So, if you calculate a derivative exact pure derivative then even a small amount of high 

frequency noise is going to give you a lot of difference in the control input. So, therefore, 

you need to use a derivative, which will act like a derivative up to a certain frequency, 

but beyond a certain frequency its gain will not be, will not blow up right. So, we need to 

limit the gain for high frequency noise. 

So, to do that we simply the transfer function of a derivative is S, if we now consider the 

transfer function of the, of the signal S by 1 plus T s imagine. This side I need to change 

the pen. So, that what is the gain of the. So, varies that is the as the frequency varies S by 

1 plus T s will at low frequencies this term is small compared to 1. 



 

So, it acts, so it acts like, so it acts like yes in this part of the region, while in this part of 

the region where S is large. Then, it acts like this then its T s is, T s is much greater than 

one and therefore, this gain becomes equal to 1 by T. So, this level is 1 by T. So, you see 

that we have in the lower frequency region we are having a derivative, but in the higher 

frequency region we are having a constant gain of 1 by T. So, that is what so  that is how 

you need to you need to realize your derivative. 
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So, the idea is that for low frequency it is S for high frequency, it is 1 by T. Now, this is 

also useful for some kinds of mechanical actuator as I said that if you give a very high 

frequency signal, and then creates derivative. Then, you are going to give it very high 

frequency positive and negative torques, which is not good for a mechanical actuator, 

like control wall that it might damage the wall. As I have given an example that such 

noise may come from various kinds of measurements especially flow measurements, 

which are very common in a, in a industrial process. 
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So, now we come to the now there is, there is, there is a second problem associated with 

the derivative control structure. So, far as we have seen we have implemented, we have 

we have implemented the PID control like this that is the error term, this is the error 

term. A error terms goes here gets multiplied by K p it is multiplied by K i and gets 

multiplied by K D also. 

Now, as we have seen that we want to avoid giving shocks to the process right. So, what 

happens when you in many cases the set point is changed like a step. So, if you change 

the step, what is going to happen to the error, it is also going to change like a step. So, 

then what will happen to the derivative output here. 

It is going to be at this time, it is going to rise very much and then it is going to fall to 0. 

So, you are going to give a shocking input to the plant, if you put the derivative here. So, 

now the question is that how can I avoid such shocks, but if the if r is not changed, if 

when r is constant. If, there is, if y changes due to various other factors like disturbances 

we I need to keep the derivative control. I do not want to sacrifice derivative further want 

to have it except for the instance, where r changes like a step. 

So, clever we are doing that is by realizing that when R is constant d e by r is equal to 

rather e is equal to r minus y. So, d e by d t is equal to when r is constant it is minus of d 

y by d t. So, rather than having d e by d t here I can also take y here, and then change the 

sign and implement the same block here. So, when r is not changing I am going to get 

the same effect as d e by d t, but when r is, r goes as, goes to a step there is, there is 



 

absolutely no effect here. So, during that time it will, it will simply slowly rise and 

corresponding effect. You will get as y rises, you will again getting get the P D effect, 

but the shock will not come. 

So, this is something, which is to remembered when a derivative control is to be 

implemented. Now, we come to the last topic that is the digital realization because now a 

day most controllers are actually implemented using microprocessor. So, how do we 

implement the PID equation in a, in a in microprocessor? So, that is very simple. 
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That is we do at, we do what is known as a discretisation, in other words the integral, we 

simply replace by a sum. So, we say that in a digital controller we can compute inputs at 

certain instance of time. So, if T is that those instance of time are called sampling 

instance. So, at the K th sampling instance where the time value is equal to K of T K into 

T. 

The input is again consists of three terms that is the proportional value at K T, the 

integral value at K T and the derivative value at K T. Now, the question is how do we 

compute this proportional integral, and derivative terms? So, the proportional controller 

is simply P k T is equal to K p into e K T. So, we just sample the equation. The integral 

controller is the integral is actually realized by a what is known as a trapezoidal 

integration right not even not even trapezoidal. This is, this is you know, what is called a 

backward difference integration right. 



 

So, what we are doing is that we simply assume that since e K T is going to be constant 

over that over the time interval K minus 1 to K. So, the integral. So, we want to actually 

what. So, what we are doing is that basically we are doing that simple thing that if this is 

e K T, this is e K minus 1. This is e K then after we get e K, what is going to be the 

integral and this e K plus 1 and the error is decreasing like this. So, between e K and e K 

to e K minus 1 that is between rather K T to K plus 1 T. 

I assume that this error is going to be maintained. So, the integral will rise simply as a, as 

a as rectangle. So, I write, so I multiply this integral, I realize by multiplying e K T by T 

that will be the integral, and then I add it with my previous value of the integral to get the 

present value of integral. 

Similarly, the derivative term we make a simple bring this T here. So, then you get this is 

an, this is a basically an approximation of y dot t. So, basically I construct, I have to 

construct approximations of the derivative of y and integrals of y using samples that is 

what we do. And this implementation from is often called a position form. So, it is called 

a position form because the whole input U is U is calculated. 

Now, as we have seen that in some cases it is, it is rather necessary to generate delta U 

rather than U as we have seen right. So, then and now the question is that how do we 

generate delta e that is called an incremental realization of the PID controller or 

sometimes called a velocity form. 
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So, what happens in the velocity form we need to compute delta u k T. So, delta u k T is 

very simply computed delta u k T is nothing but u k T minus u k minus ` T. So, we 

simply substitute the previous formulae of u k T and u k minus 1 and then subtract. So, 

what will happen is that see the what happens is the proportional term subtraction gives 

this K p into e k T minus e k minus 1 T. 

Similarly, the integral term is basically, I k T minus I k minus 1 T. So, it will give that 

additional term which I obtained. So, this is the integral part of delta u, and the derivative 

part of delta u is this which is basically the difference between this and the same thing at 

k minus 1. So, you basically by taking a difference of these terms you can generate the 

generate delta u very simply. So, it is not a difficult problem, and then finally, we have to 

give u we cannot give to the plant. Finally, we have to give u, So, we simply add u k 

minus delta u k T, we have computed.  

So, we have to simply add u k minus 1 T with that, and there are also some kinds of 

actuators where let us say like you know step motors where the actuator itself integrates 

the output. So, this summation you need not, you need not give you just give keep on 

giving the delta u, and the, and the actuator will gradually move and will continuously 

add it. 

So, in a let us say in a, in a position control using some using some, let us say stepper 

motor it is, it is very convenient to give the delta u. In fact it is the delta u, which have to 

be given and. So, therefore, the PID control has been implemented in this form.  
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So, as we have seen that there are some disadvantages of this I mean the incremental 

realization because of the, because of the sample realization. And because we in this case 

we are actually making a second order derivative not a first order derivative, because 

there is already a derivative term in U, and we are making another derivative, because we 

want to compute delta e. 

So, because of sampling approximations a high amount of noise may be introduced there 

that needs to be taken care of. So, your sampling intervals should be good small enough, 

and the advantages as we have seen is that is very simply possible to give a bump less 

auto manual transfer and also for some actuators, it is what needs to be given. 

There is an interesting phenomenon that happens is that sometimes generally this mode 

is implemented in this form that is the PID controller when there is an integral mode. 

Basically, because of the fact that if you see the delta u term you will find that one 

component contains e k minus, e k minus 1 that is the proportional component. Now, in 

this component there is no r. There is no that is the there is a reference input does not 

appear because e k is equal r k minus y k. 

Similarly, e k minus 1 is equal to r k minus 1 minus y k minus 1. So, if you subtract and 

if r is remaining constant then these will get constant, and you will simply get y k minus, 

y k minus 1 minus y k. So, and the same thing happens to the D mode. So, the P and in 

the P and D modes r does not appear. So, the reference input. So, even if the in you know 

even if the output drifts slowly even if because r does not appear so  it will. So, the total 



 

value of error does not come is not reflected in the, in the control input, but in the 

integral terms there is an e k term just simply k. 

So, that contains r k, that contains r k, the there r k is not canceled. So, it is of, so it is 

said that generally when you implement digital controllers in incremental form you 

should have an integral mode otherwise the process may slowly drift from set point 

without the controller taking corrective action. So, having said that. So, that brings us to 

the end of our lesson, let us review the lesson once. 
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So, we looked at the P I and D modes and looked at the various terms their definitions 

proportional bands integral time and derivative time. Then, meaning, how they can be 

measured so and so. Then, we saw that the these various controlled modes can give you 

various kinds of transient and steady state performance. For example, we have seen that 

the integral control mode can cause integral windup they can cause integral windups. 

Similarly, we have seen that the derivative control mode can give you a lot of noisy 

performance, if you have sensor noise. So, some effects of these control modes on 

performance are discussed that is these problems with D and I modes we have discussed, 

and finally, we have discussed also a digital realization. Now, next look at some you 

know points to ponder whose answer again just like earlier lessons we will find within 

this presentation itself if you look carefully. 
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So, you might like to write yourself the definition of proportional bands integral 

derivative times. It is you would like to explain the factors that cause integral windup. 

So, integral windup is basically caused by basically caused by 2 factors. So, what are 

those factors and we have discussed in this lecture 2 control architectures, which will 

avoid integral windup. So, how to avoid that and then we have seen that while you are 

implementing derivative control you have to take care of 2 points such that you do not 

add unnecessary disturbances, and shocks to the plant. 

So, what are they and finally, you have seen that a PID controller may be realize in what 

is known as the position form and a velocity form. So, you need to think how to 

distinguish between them when which one is required, and also what is a bump less 

transfer and how it is achieved? So, the answers to these questions are exist in many text 

books and also within the within this lecture.  

Thank you very much today. 
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Good morning. So, today we are going to have lesson 13 of the course, which is on PID 

controller tuning. As we will see that controller tuning is a very important phase of the 

overall controller design, and it very critically determines the performance of the control 

loop, which in turn affects the overall quality of the product effects costs. So, it is a very 

important method to be learnt in the, in the overall context of industrial automation. So, 

before we get into the business proper, let us first see what are the instructional 

objectives of the code of the lessons as is the usual practice. 
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So, as we state in every lesson after learning the lesson the students should be able to 

firstly state guidelines for selection of controller types, when I said PID controller. I 

actually mean a class that is a 3 classes of controller that is P control PI control and PID 

control, which are most often used in the context of industrial automation. So, the student 

should be able to select one of these types.  
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Then, you can say then  even if during this period I have some error and my control 

performance is may be affected depending on whether I have a, if I have an integral error 

criteria. Then, it will be less affected, because this positive error is going to cancel this 

negative error, but even then  I am able to tolerate this much of error because of because 

it is going to die down reasonably fast for me, and then it will stay on for long time right. 

So, in such a case, so  in other words the this interval is actually small, which means that 

the, that the open loop dynamics is actually fast enough. It is fast enough compared to 

what compare to the frequency of set point change. So, that the closed loop transient 

response is actually accepted. Typical example is flow control points to ponder. 
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For you or is that you can try to find out in what situations P, PI, and PID controller are 

to be use all the answers are in this lecture only, and you can try to find out your own 

examples of processes. Then, under what conditions you can find under what conditions 

one can apply a direct synthesis procedure, let say in your application process. You can 

apply or not or if you can apply why you can apply or why you cannot apply all these 

things. 

You can also cite two advantages and disadvantages of open-loop method against the 

closed loop method. And finally, you can, you can find under what situation an auto 

tuning future will be needed, and how is it achieved? How is it, how an auto tuning is 

achieved one procedure is already given in the lecture. So, here we end.  

Thank you very much. 


