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So today, we are going to look at convergence conditions. We have seen convergence condition 

before but we did not see the full condition, so we will today see that. Then we will see, you 

should you know you know I mean, what happens in that; very often you when you are when 

you are trying to identify the system, even at that time the system might be operating close loop. 

So one thing you have found that, we have noted that if the system is operating in close loop then 

what tends to happen is that, the data vector phi get correlated with the noise because the noise 

comes through y; if you are using feedback to determine u from y then the same noise gets into 

the data vector, gets correlated and you might get some bias in the parameter estimate. 

  

And we have also seen that, you get an at least one step that you can take to get around; that is to 

model the system in in greater detail using you know, like extendedly squares and things like 

that. But here we will see a new phenomenon when wish which might happen; if you are doing 

identification in a close look, so that will see and some structurally something changes, if you if 

you have data enclosed. And finally before leaving least squares we will look at some practical 

variants of least square, something you sometimes you know we have to do some tricks here, to 

do to ensure to take care of certain conditions. They are very simple modifications, which are 

intuitively clear as to why they have done, so we will we will look at them.  
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You will perhaps recall, that we had noted that one of the conditions; you know we we we found 

that the that the parameter error theta minus theta naught was given as something like phi 

transpose, phi inverse, phi transpose v where v is the noise, such a condition came. So we so this 

inverse, so we argued that; first of all this has to be small, so for ensuring that this is small v, 

propose several things like you know extendedly squares, instrumental variables which will 

make these things small. And the second condition is that, this even if one thing is that ensuring 

this is small but this cannot always ensure to be to be zero.  

 

So the other thing to ensure is that, this will continuously grow; as m increases let the phi 

transpose, phi inverse these are capital phi’s, matrix will continuously grow insides. Now 

continuously, now what is this? So continuously grow means, if size; means it is it will gradually 

this phi transpose, phi matrix will will continuously grow, if it continuously grows then its 

inverse will continuously grow smaller.  

 

Now what is meant by phi transpose, phi continuously growing? We mean that, if you take any 

vector; it is a same thing, this is supposed to be a positive semi definite matrix, being phi 
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transpose phi. So we are so that if you take any vector and compute phi transpose, phi x then this 

will continuously grow, this value for any x will continuously grow. That is what for me, this 

will be a scalar.  

 

So what is phi transpose, phi? phi transpose, phi is nothing but this sum; here I used small phi’s 

that we have seen in class, that basically I mean phi the capital phi actually consists of small 

phi’s as row, each row is a is a small phi, actually each small phi transpose. So when you take 

phi transpose phi then these rows will get you will get this some because this is your capital phi 

transpose and this is your phi, each one of them are small phi transposes; so you have phi one phi 

one transpose, phi two phi two transpose, phi three phi three transpose and so on.  

 

So what you are requiring, now if this it is it is well known that; for any vector x this this value 

this is the number for any vector x and if you are have any matrix x transpose, any matrix a then 

x transpose a x always lies between lambda mean norm of x square and lambda max norm of x 

square. This value will always lie between lambda mean and lambda max times of the of this x, 

transpose x.  

 

In other words, if you multiply by a matrix I mean a vector by matrix you are what you are 

doing? You are turning it and you are stretching it. So the length of the resulting vector will 

always be between lambda mean and lambda max times, this that is a result. So if if lambda 

mean their minimum, i m value of this become infinite then obviously this matrix for all x, this 

will becoming infinite that that is the idea.  

 

So the minimum i m value should go to infinite, this is a this is a statement. Now this is okay, 

this we have already studied. But now the question is that, how do I ensure? I have to I have to 

ensure this. So how do I ensure this? I have to ensure this by two things, one is that I have to 

ensure this by what does phi contain; phi is a vector, so it contains some input, output values, 

outputs are again generated by inputs. 
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So I have to first ensure this by choosing my inputs because that is an that is an actionable item 

and and I can actually apply the input; if I want if I want this go to infinity then what input 

should I apply? That is the question that is the very concrete question which you are which you 

should know. And the second question is that the the way these elements are arranged that is y k 

minus one u k, whether  there is u k minus one, whether there is u k minus two; that is the 

structure of this vector, that is also important.  

 

So the structure of the vector is important and the values are important. So the structure of the 

vector is actually selected by what? By the model structure; what A and what B you are chosen 

from their comes the comes the structure of phi, right. So so this condition will finally translate 

to a condition on the model structure you are assumed and a and a condition of the input, if you 

ensure these two things then phi transpose phi will grow unbounded. So so how do you ensure 

that, I am stating this without proof; there is a proof which is reasonably complicated even in the 

deterministic case, in the in stochastic case is extremely complicated. So we will not go into the 

proof, but we will remember the result because the results are very important thing for 

identification, very well-known results.  

 

So the first result says, that if you have chosen; let us take a let us take a model structure that is y 

A y is equal to B u plus v, this model structure we are talking about A r x. So the first condition 

is that, this A and B should relatively prime what was it mean? What is meant by relatively 

prime, we will see. The other thing is that is you must choose such a model structure; such that, 

there should not be any any common factor, if you if you take up if you take up system y and u 

which fix in these kind of a description, that is the data is generated in this manner where A is a 

polynomial, B is the polynomial. That is the data itself fix this description and you have taken 

this model structure itself; you have taken this A and this B to estimate your parameters then 

then this A and this B should be relatively prime, that is they should not have any common 

factors, any polynomial can be broken up into factors. 

 

So A and B cannot cannot have common factors, why? We will see, it is very intuitively clear 

reason. This condition is called parsimony of model structure, Actually the word parsimony 
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means something like simplicity; which means that you know if A and B becoming relatively 

prime means what? Means that the transfer function B by A cannot be reduced further; if they 

have common factor then you can cancel it. So if if they have common factor then this B by A 

can be further simplified by cancelling that factor, but if they do not have common factor then it 

means that B by A cannot be simplified further.  

 

So it is in the it is in their most simplified form, that is why it is called a parsimonious structure, 

right. Parsimony means simplicity. The second condition is that, this condition also I mean 

actually it can be stated in time domain also but I have deliberately stated the the equivalent 

frequency domain condition, because that makes more meaning; the time domain condition is 

basically a sum of again, I mean something like this only, something like this only so it will not 

make you will not know how to ensure that condition. So so the frequency domain condition 

says; that the input has a spectral distribution, if you take it spectrum it should be non-zero in at 

least at two n number of points, what does it mean?  

 

If in its two sided spectrum, for example; if you take a sine wave then a sine wave has how many 

non-zero points? Two, if you take a if you take a D C, it has how many non-zero point? Only 

one. If you take two sine waves, it will be non-zero at four points two sided plus minus omega. 

So which so basically this means, that it should at least have n sine waves; if the order of A is n, 

if it is an n dimension of nth order polynomial then the input that you are exciting the system 

with must have at least n sinusoids of sufficient power. So it should be this this is rather 

theoretical some more theoretical looking condition I mean condition; although if it has a 

practice of y, this will this also we will see. And if in such a input is called persistently exciting 

input of order n, right.  

 

So the idea is that, if you are trying to know a system you have to excite it. If you cannot excite it 

properly, if you if you do not excite all its moulds then you cannot identify it. So you should be 

able to excite all the moulds together, in your input, output data all the moulds should be there.  

So to be able to excite all the moulds of a n dimensional system because this order is n, you need 

n science. So if you are so whatever input you give, that must be composeble as a sum of n 
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sinusoids of nontrivial power; only then if you ensure these two condition, there is also a 

condition of stability or bounded-ness of data, that we have not considering because I mean 

practical situation all data are bounded, that is that is somewhat theoretical condition.  

 

Now now let us see little bit as to why these conditions arise, okay. 

 

(Refer Slide Time: 14:59)  

 

 

The first thing is what I have said that, if A q inverse and B q inverse has common factors; 

actually what what are we doing by by by specifying, what what is the identification? 

Identification is says that, it first specifies a structure of A and B, so it said that it is equal to a 

naught plus a 1 2 inverse etcetera. And similarly it specifies a structure of B q inverse and in that 

structure it now looks for parameters. So this, what is the model? See the model is the same 

system can be parameterised in various structures, right. For example, any first order system 

which is 1 minus A q inverse by 1 minus B q inverse, this is a first order system, we say first 

order it can also be written like this.  

 

So it can always be seen in the second order system. See these two if you really break it up then 

the forms will look different, but actually for for arbitrary value of A B C D; this system is the 
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same as this system, right. So a model is the system itself in whatever way it is parameterised. So 

actually these two systems are same but the parameterisations are different. Now if we want to 

find the parameter, then we should take a parameterisation which is unique; which means that if 

two systems are equal, it will imply that they have the same parameters, this conditions will be 

satisfied, otherwise data is generated. Now if we if we have several kinds of parameterisation, all 

of which will make the same system then then from that data what which parameter will be the 

solution, there will be there will be I mean no unique solutions to the identification problem.  

  

So first of all we have to ensure that, there is a unique solution to the identification problem; in 

other words if you have generated the data, data is generated during model, the data if you feed u 

and y to this and if you feed u and y to this, you will get the same u and y. So if data is generated 

from the same model from one model, it will imply that in that model structure, there should not 

exist any other parameter which will give rise to that data. That that parameter should be unique 

but if A and B have have a common factor then that parameterisation is not unique because this 

is the parameter estimation, this is the parameter estimation, what I have done what I have done, 

here have multiplied by 1 minus c q inverse, here are multiplied by 1 minus d q inverse. 

 

So the so in this model structure this parameter and this parameter value are going to be 

different, if you really multiply but they are the same system. So if you feed the data, if you are 

given a pair of input output data; there is no way of determining which one of this parameter is 

the right one because both are light ones, so the parameters are actually is is not unique. 

  

[Conversation between Student and Professor – Not audible ((00:18:11 min))]  

Student<Sir when we get a solution we'll get the value of v and then we come to know that 

which it is a common factor>  

[Conversation between Student and Professor – Not audible ((00:18:32 min))]  

 

Right, but but but the thing is you see; but but how do you know that, let you will even come to a 

come to a unique solution? We are we are trying to find the condition such that there will be a 

unique solution but in this case, there there does not exist any unique solution; which means that 
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there may be input, output pairs for which different different solution, right. So that is a without 

really getting into the proof, we are trying to understand that the the rational behind. So first of 

all this is needed to make the problem no unique and and we will we will see that this thing 

comes again and again even in the case of identification, close loop, again we will encounter the 

situation where this parameterisation will become no unique.  

 

So first of all the parameterisation should be unique, such that there exists only one solution to 

that to that I mean; which feeds the input output data under that structure of the model, that is the 

first thing.  

 

(Refer Slide Time: 19:39)  

 

 

For example, now the second thing, why n should be unknown? Why there should be n 

sinusoids? Basic idea is let us say, consider first order system; how many unknowns, a and b, 

two unknowns. So we must whatever when we excite; suppose we are suppose we are given a 

box and you are told and you are given a sinusoidal signal generated and you are told that this is 

a first order system, so please identify, you are given a C R, no computer nothing. What will you 

do? You will apply a sine wave. So input sine wave you know, output sine waves you know, you 

will first measure the game difference; one volt whether it become half volt or quarter volt and 
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then you will see the phase difference by feeding to double channels C R. So you see how much 

phase shift has occurred from the input. So so you are basically making two measurements, one 

is the amplitude gain and another is the phase.  

 

So you have now you will try to feed it, so you will find a formula in terms of n b of the gain and 

a formula in terms of n b of the phase. So you have two equations and you have two unknowns; 

so you will solve, that is how will you get a n b? So if you excite with one sinusoid a first order 

system, you get enough number of equations such that you can solve it. If you excited with D C, 

will you able to solve it? You will get only one equation and you have two unknowns, so you 

cannot solve it, so this itself shows that; if you have similarly you can you can find, if you have a 

second order system, you require two because you have two poles. 

 

So if you have two poles, you need two sinusoids to excite them, right. So this is also intuitively 

very clear, it can be proved in a very rigorous manner using huge mathematics but the basic idea 

is that; this this also applied to a person if we really want to know I mean, you have to you have 

to interact with it properly, if you really want to know what a sort of person he is, without 

interacting, if we if we always speaking of cricket you cannot know whether he has whether he 

has interested in literature, so it is like that. So this is but remember that, these two are very very 

well-known conditions for for any identification, that the model structure should be simple 

enough, it should not be over parameterised; if if it is over parameterised then you encounter this 

this non-uniqueness of solution probably. 
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On the other hand if it is and you should choose, even you are after all where where from have 

you got that identification data; you must have got it from your  experiment you want to identify 

the models, so you must arrange for some experiment, arrange for collecting some data. So when 

when you are arranging for the experiment, you have to have at least some knowledge and then 

you have to select your inputs properly; so that you have excited all the models of input, if you 

are not excited something, you you you will not get that.  
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Now let us look at identification in closed loop. So this is our closed loop situation, right. For the 

time being let r is equal to 0, there is no referencing; this happens there there are some controls 

loops for which the control is I mean the set point is zero. One one example I know of with 

which I am involved is the lower loop of the of any error specific, there is a set point is always 

zero because you do not want it roll, you might you might want your vehicle to go up, to go 

down, this way, that way but it generally do not want your vehicle to roll. So your roll control set 

point is always zero, you want a zero role all the time, so that is such a loop.   

  

Then there may be other for example, when you are having a linearized control then then you are 

always writing the control loop in terms of incremental variables. So if you are writing it in terms 

of incremental variables, then also your set then also your set point is zero. You want the 

increment from the operating point is zero, so your set point is zero. So it not a very uncommon 

situation; though I mean having a non-zero set point is also common, but if r is equal to zero then 

then something very interesting happens, what is that? If you have this to be zero then it turns out 

that, between u and y their exist actually two relations both of them are correct, y is equal to G u 

and u is equal to H y.  
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So if you identify between u and y which you do in identification, which one will you get? Both 

are both are correct. So so there is a possible potential non uniqueness solution, you are very 

likely to get a situation where this the these solution is going to be non- unique, right.  

 

(Refer Slide Time: 25:14)  

 

 

You will for example, if you take this system, simple first order system; this is u this is my g. So 

simple first order plan e and assume you have taken a simple proportional feedback, u u k equal 

to minus k y k, then obviously u k plus k y k equal to 0.  So this equation, you can always add 

any amount of this term; that that equation is also satisfied, this lambda can be arbitrary because 

u k plus k y k is always 0, so this equation is also true. So if you breakup, you will get so so the 

open loop plan satisfies this equation for arbitrary values of lambda, and not only that worrying 

part is that even if you know k; even if you know the feedback law you cannot solve out because 

lambda is arbitrary, you do not know what lambda is, it can be anything. 

 

So you will never get this is a typical case where there is multiple parameterisation, I mean non 

unique parameterisation in the presence of feedback, right. Now why does it happen; because 

this law is actually simpler than this law, so the data simultaneously satisfies this also but you are 

trying to identify the data using higher order model. You have taken a data which actually 
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satisfies a simpler model but you are trying to identify it using higher order model that is the 

reason. So so what are you going to do?  

 

(Refer Slide Time: 27:12)  

 

 

So you can do several things; for example, if this does not happen, if r is not equal to 0 whether 

if r is not equal to zero then this model structure, if you put suppose you had r then you will have 

a r here and you will have a r here, if you substitute you will get a minus lambda r, correct. So if 

you are now, if you identify using you are identifying what is your identification? Your 

identification is using this model structure, you are trying to feed the data using in in this form 

but when you have a lambda r term; obviously this this does not feed this model structure, so it is 

unique.  

 

This model is this data will satisfy this model structure this model structure, only for lambda 

equal to zero, otherwise no other model; if I mean especially if r is persistently exciting and all 

then this data will the data which actually satisfies these can be identified using this structure, 

only if lambda is equal to zero for no other value. So you will get the right parameters.  
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Similarly you could also do another thing, you could also you could choose a higher order 

feedback; not only minus K y k, also minus L y k minus 1, if you choose that and now if you 

substituted the same thing, then here you would have got a minus lambda L and write y k minus 

1. So now you now you model structure would have been second order, there is a polynomial 

order would have been second.  

 

So so the data really satisfies a second order parameter, if lambda is non-zero but you are trying 

to identify with a first order model; so so so that will be satisfied only lambda is equal to zero, 

not not not otherwise therefore you have you again have unique parameterisation. So this shows 

that, there is potential danger of getting non unique solutions in closed for identification; 

especially when either the reference input is not significant and the control noise is is too simple, 

in such situations you have s potential problem. So the idea is that so what you are practically 

you going to do is that, you probably cannot do much on the control law because it may be 

already existing; but you have to have a you have to have a decent amount of reference input, 

which is significantly varying while you are being the experiment.   
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So how do you identify? If you if you ensure that then there is no problem and then so close loop 

identification has two problems; one problem is that generally the error will get tend to get 

correlated with the data vector, that is one problem that will give you some parameter errors. 

That problem you can encounter you can solve, by either choosing by choosing for you know 

those various mechanisms like; having a longer model structure or highly instrumental variable, 

you have to solve that problem, if the data vector tends to be correlated with the noise.  On the 

other hand, it might lead to some structural problem, in the sense that the parameterisation itself 

may become non unique; if if it if that happens then you have to the most common solution is to 

have a significantly significant and persistently exciting referencing. If you have these two, you 

will get a decent parameter even when the system is operating in close loop.  

 

So you know all systems cannot be operated in open loop; firstly if you go to a plant, suppose 

you suppose you go go to the factory and say please let me open the blast furnace loop I I want 

to identify it, you will be throw you out because all plants there there are plants which cannot be 

operated in open loop, nobody will allow you. So you have to have to operate it in closed loop, 

you might request the operator to you know give some set point pattern information, so that you 

can collect your data, you cannot do more than that  

 

So so in such a case, you will be forced to identify the plant in closed loop. So there are there are 

two approaches; one approach is now it it may you do not know, whether if you want to do a 

kind of identification, if you want to do identification based on u and y then you first have to get 

u. That depends on again again it depends on whether you have transfused structure for it, y is 

generally measurable because because after all if the operator has to control y, he has to see it. So 

that value is generally available in the control room, command he himself is giving, generally 

available but whether the plant finally the input that it gets may be in the form of some exotic 

variable like; a very high current or may be some some some fluid flow that, may or may not be 

measurable, it may measurable in the field, it may not transfused, you may have so many so 

many practical difficulties.  
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So there may be situations where getting u and y for identifying a model is may not be so simple. 

In such a case; what you have to do is you you identify a model between r and y, reference input 

as y. So if you do that, what will you get? You will get the closed loop model, for why are you; 

so if you know the controller, if you already know the controller beforehand because it will be 

there in some manual return, after all some company came in and set up that control, even let say 

its digital controller. So if you know the controller and if you have identified the closed loop 

plant, then you can solve out the open loop pattern just numerical, solving, right.  

    

So that is possible, so so so this this kind of identification is called indirect identification. Direct 

identification is where you directly identify the plant taking its input terms out, indirect 

identification is when you identify the closed loop plant and solved out the open loop plan, right. 

So this now we now we more or less have covered some most aspects of least squares, least 

square is a huge area; two-hundred years of research on least square started from Gauss, so 

enormous amounts of results but anyway we more or less in the context of identification, we 

have we have at least touched upon most points.  

 

So now we just before leaving will will look at certain practical variation to the basic least square 

algorithm that you can do, sometimes you you need to do that; there there there could be various 

situation, we already I mean sort of got taste of that we we had seen the exponential data 

weighting case where we we wanted to weight in the least square criterion, we wanted to give 

different errors, different weights. Then we had also seen the instrumental variable algorithm, 

which also leads to the least square; the only thing is that in certain cases phi gets substituted by 

another vector called the instrumental variable vector, in this case we will also see some cases 

for example, in there may be some situations where you do not want update your data based on 

at each data point, why why could that happen?  

 

One reason is that, you know you have you have modelled your noise, then okay generally noise 

is; for example suppose its so happens that, you know that the data is noise suppose when when 

you have when you have tested the data found then the data has generally has really white type 

of data from noise variant some point one. Now so I mean, weird things may happen; it may be a 
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plant where sometimes may be when you took the data there is some there is some arc furnaces 

running around and there may be some welding done, when such things do I mean take place 

because there is a very high current flowing in each one of them, either either in electric arc 

welding or arc furnances or in very large motors, you get you get a very high amount of 

electromagnetic interference, suddenly coming.  

 

So what I want to say is that, there may be situations in the data where for some short periods the 

normal property of the data is disturbed. So you get some samples which has for some reasons 

very erroneous, such data are called out layers. They they they do not confirm to to to your to 

your normal model of the data; the point is that you have to careful about the out layers, why? 

Because one out layer coming, suppose your parameter was nicely converging, it has it has come 

to the true parameter and and it is holding it is slightly oscillating around the true parameter; 

suddenly if one or two out layer data points comes, it will create so much of prediction error y 

minus phi transpose theta, that your immediately your parameter estimates will will get its jerk, 

they will just simply go away  because those two data points some for some reason you got some 

bad data you should never update your model using bad data.  

 

So you have to build build when you when you practically build a least square algorithm, you 

have to build in protections against these things. So one way of protecting should be could be out 

layer rejection; that if you know that that if your parameters have more or less converge, you 

cannot get more than this error, if you have good data.  
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If your prediction error, suddenly goes beyond and beyond some really some sort; you you can 

be conservative in your estimate but if it is goes even beyond that, then you do not update on that 

you simply assume that, this data has to come due to some bad reason, this is not normal data so 

I will not update.  

 

So so then you can say that, I will set this a k is equal to 0 in this equation; if the error is greater 

than seven, you you states on their limit that this is bad data I am not going to update my 

parameters on that it will pass. Then then what will happen is that, simply theta k plus 1 will will 

remain as theta t and similarly t k plus 1 will remain as t k. You are you are just automatically, 

you just picking out one data point and throwing out.  

 

Similarly there may be sometimes, you you you also want to incorporate what is known as the 

dead zone; you in some cases, see the it is not good that all the time you are going to you may 

not like to estimate, I mean keep on estimating all the time. So if you for example, you may 

know that I have a noise of point one whole coming, there is a white type of noise of point one 

whole standard deviation; if you if you already have aware of this and if your prediction error is 
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giving you a prediction error of point zero two then why should you update the parameter? Even 

even in the phase of the noise, your your parameter has sufficiently, accurately predicted the 

output that much of point zero two volt is coming because there is there is a much larger noise.  

 

So as long as your prediction error is within the noise limit, actually your parameter is 

satisfactory; that noise will come anyway, that prediction error you cannot reduce because of the 

presence of the noise. So then you should not update again, you should not update unnecessarily 

all the time. So in such a case also; you might like a selective data weighting, set a k equal to 

zero if the error prediction error falls below a certain limit, such things may happen. So this you 

you you may like to build in this selective data weighting which will give you an inherent 

protection, suddenly your parameters will not go away.  

 

See these things are very dangerous; I mean especially these things were were employed when 

people started working on adoptive control industry, especially in the process control industry 

people tried online estimating the parameter, online design the controller and then applying the 

controller. So if your if your parameters suddenly gets a shock then your control are suddenly 

gets a shock. I mean you will get a upset controller, so for sometimes suddenly your your 

products your your controlling some stripe width or some wet paper tension, if your controller 

suddenly changes then then you are going to apply, I mean meaningless input for a little while at 

least.  

 

So during that time, it might it might jeopardize your operation. So so that is why people do not 

want such things to happen; better not change the controller during that time, let it continue after 

all how much it could have lifted again using one sample? The other thing is covariance 

modification.  

  

19 
 



(Refer Slide Time: 41:44)  

 

 

See sometimes actually what actually; it is the covariance is the gain of the least square 

estimator. So if the covariance goes to zero then what happens is that the controller, that the 

estimator gain goes to zero. Now it may happen; that because you know covariance is what 

covariance phi transpose phi inverse, roughly speaking, not roughly speaking exactly speaking, 

so that that obviously goes to zero. 

 

So now the the problem is that, suppose suppose you you are having a case; where the 

parameters are you know parameters typically change with what, set point, the linear model 

parameter of a boiler which is operating at fifty which is operating at fifty percent load are 

different from a parameter from from parameters of the boiler unit is operating at hundred 

percent load. So and and and the and the operator changes the operating point from time to time 

may be over two, three, four, five times in a day. If it if it is a power plant boiler, right in the 

morning till about eight o clock it will have one; it will have low set point, at eight o'clock 

everybody will will start going to office.  

 

So the load will increase, everything will start. So that time he will increase the boiler setting to 

may be initially fifty percent then may be ten o'clock, it may be it may be to hundred percent 
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again at three o'clock or it may be lower, again during evening he will make it higher. So he 

continuously changing his operating point not too frequently but at least five six times in a day; 

so at each of those points the linear model changes. So your, what suppose; you your your your 

you are running on online estimator, so what we are going to have is that the parameters are 

converged and your covariance has died, it will die, now suddenly the the operator has changed 

in operating point. Now now the model does not fit the model does not fit, so there is some error 

generated but your covariance is now is gone. So there is though the the error is crying, change 

parameter change parameter; there is no strength in the covariance to push the parameter to the 

new value. 

 

So if you if you expect parameter change then you should always keep your covariance live; at 

least those incident, because if the covariance are not live it will not going to push the parameter, 

it is the gain. So that is why in fact you can see that in exponential data weighting, we do 

precisely the same thing because there we are expecting a time variant parameter, we keep the 

covariance from dying. So the covariance will not die because there is a one by lambda factor in 

the covariance update and lambda is less than one. So each update we are giving is a little boost, 

so it so it does not go to zero.  

 

So that is what we do in time varying parameter, every instant we give a boost; for some times 

when when when we expect a set point, that is if if the prediction error goes beyond the certain 

value and may be if it is stays for two three instance. If it goes up just for one value, it might 

been an out layered; but if it is stays that means your model is consistently bad, for five sample 

you are getting large prediction error which means, that the parameters need to be changed at 

least you need to retune your your estimator, boost the covariance, again set it to some may be 

may not be exactly like an initial value but give it a strong value, right.  

 

So this is also required very much if you do not do it then after sometime, you have you you will 

not able to. It will take a long time for the parameter to track. Third thing is how do we 

incorporate, if we know something about the process we must incorporate it in our parameter 

estimator. 

21 
 



(Refer Slide Time: 46:05)  

 

 

If we know that the process has a positive d c gain, we should have an estimator which all forces 

that the d c gain is positive, now how will you get dc gain? For example, a q inverse suppose you 

are troubled in model is b q inverse by 1 minus a q inverse, what is the d c gain? b by 1 minus a. 

So you are you might say things like b by 1 minus a should be positive, that that you could have 

such conditions you could have conditions you you know the system is stable.  

 

So at any condition, if you find that the you are you are you are getting such an a a q inverse 

which has unstable poles; obviously it is not correct that is the a priori knowledge. You could say 

that this parameter cannot go beyond beyond this limit, such knowledge may exist. So so in 

which case you have to you have to in that in that case you have to have not only just least 

square optimisation but plus constraint satisfaction.  

 

So at every instant with the the parameter that, you get you have to inspect whether you satisfy 

the constraints; if it does not satisfy the constraints, if you if you are directly the parameter which 

is given by least square does not satisfy the constraint then you have to find the closest parameter 

to that which satisfies it. And that is that is achieved by what is known as projection. So you 

have a part of the parameter space which will satisfy the constraint. See you have a part of the 
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parameter space; over all suppose this is theta 1, theta 2 parameter spaces, two dimension just 

assuming.  

 

And suppose you have given a constraint, that the this is the visible part.  So every time suppose; 

if you get something here then you have to find the closest parameter which falls in the region, 

why closest? Because otherwise after all how do you get this parameter? You got this parameter 

by L S E optimisation. So it leads to low prediction error that is how you got it. So you must 

maintain low prediction error as well as satisfies this constraint, right.  

 

(Refer Slide Time: 48:34)  

 

 

So that is about all, two little things firstly; we did talk about multivariable that is very simple, 

actually for a for a multivariable system your parameter estimation equation will become like 

this, this is u i. So rather than having A q inverse y is equal to B q inverse u, you will have a 

number of B s, there is nothing very unusual.  

 

So the multivariable identification can be done exactly in the same manner, sorry and this is the 

common denominator; that is if you have b 1 by 1 minus a 1 q inverse u 1 plus b 2 by 1 minus a 

2 q inverse u 2, y is equal to. And you have to take common denominator, so your A will become 
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1 minus a 1 q inverse into 1 minus a 2 q inverse. And your b 1 will become this this b become b 

1 into 1 minus a 1 q inverse; note that in that case, this and this will have will have a common 

pole, yes it will have but all these parameter that is capital B 1, capital B 2 and A should not will 

not have one common factor. Between B 1 and A there will be a common factor, between B 2 

and A, there will be a different common factor, between B 3 and A, there will be another 

common factor.  

 

It will not happen that, B 1 B 2 B 3 and A all have one common factor; that will not happen 

because between B 1 and A the common factor is 1 minus A 1, between B 2 and A B common 

factor is 1 minus A 2, right. So so the for for for multivariable that is the condition, that all of 

them should not have a common factor; so that is simple. All all all I want to say will have going 

into it is that the multivariable cases nearly similar.  

 

(Refer Slide Time: 50:45)  

 

 

Third thing is last thing is, no; may be may be I should stop here, somebody waiting here. So just 

wanted to stay that, there may be situations where you want to focus your estimator towards a 

certain frequency bands; you want to know the low frequency properties very well, do not care 

some much about high frequency properties. In such a case, the idea is that you have to you have 
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to apply input which is reached low frequency, we cannot give a high frequency input and expect 

good accuracy in your low frequency model; and to improve that further, you should use a filter 

which will further focus the input output on to the frequency band. If you do that then on that 

focus frequency band, you will get good accuracy, compared to other bands.  

So that is is all for today, thank you very much.  
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