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We will discuss, what is known as a linear regression and a the the the the simplest method for 

solving that problem. So just to recapitulate once, we loosely defined system identification as a 

that is if you are given a set of process signal values; we are talking about process signals 

because we are generally concerned with identification of I mean, calculation of models for 

dynamic systems. 
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So we there will have the based on their input and output signals. So given a set of process signal 

values over time, some model structure we have to assume and some obviously some error 

criterion we have to assume. And also we could have you know about the system we will have 

certain a priori knowledge’s, we have some experiences with the systems. So we know 

something already, even if you do not know the detail model set we know certain things.  

 

So we should obviously trying try to use whatever knowledge we have while trying to look for 

model. So there we may have a set of axiomatic constraints for the model to satisfy, wether the 

system is stable or or there is D C gain is positive, some such facts we may have. So given these 

things, we have to determine the model that results in the least approximation error; according to 

this criterion that is the problem, okay. So before talking about you know we are we are we are 

concerned with dynamic models, systems, typically linear dynamic models; you can say systems 

which are describable by transfer functions loosely speaking, okay. So but before that, actually 

this problem is much more general, and that is why we want to look at it as a linear regression. 
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You know remember that, one of the first system, one of the first systematic identification 

exercises which we have done probably all of us have done in our school is; when we try to do 

some experiment in the physics lab or in the chemistry lab, and we got some points and we try to 

fit a line through these points, you know that was our systematic identification exercise to be 

précised. Because you are given a set of data points which you got from experiments and you 

you have an you you know model structure which is given by some physical law; may be ohms 

law and you are you want to fit a best feet line, best feet in what sense? Best feet, in the least 

square sense, so you have a model structure, you have a you have a best feet criterion.  

 

And you have data and sometimes you may you may also like to incorporate a priori knowledge, 

in the sense that you will like to ensure that the line passes through the origin let us say. So so 

from such things you also like to incorporate; so that was our one of the first system 

identification exercises in a in a general sense which which all of us have done. So in that we 

actually what in that that is not a case, where we are having a time sequence of signals of from 

from process model, but the but the method is absolutely similar. So first of all today we would 

like to see this, see how to do this model fitting, not necessarily for a for a for a for a sequence of 

signals y k and u k, but from but for arbitrary measurements; I mean we have some observations 
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and we have a response and we would like to fit a model, those responses could be so many 

things, I mean the the the index may not be always the time index, right.  

 

So latter on we will we will we will specialize this method for our case, where we we want to 

identify a transfer function, we will we will show that many of the transfer function identification 

problems actually finally boil down to a linear regression, right. So first let us let us try to see 

some results on linear linear regression which is much more general, which can be used to relate 

so many things I mean economic economic phenomenon, whatever the physical experiments, 

using a linear model, right. So in in linear regression we typically use a model like this, where 

we have some some responses we have  and we we want to know, for example and we have we 

have some responses and we have some what are known as sometimes known as explanatory 

variables.  

 

So we want to know, how this response depends on these explanatory variables; in this case I 

have written them using a using a vector notation, but actually it it will be like you know phi 1, 

theta 1 plus phi 2, theta two plus phi three, theta three, so this phi 1, phi 1 phi 1, phi 2, phi 3 are 

generally called explanatory variables things which explain how this Y has come. And this theta 

1 theta up to theta n, are the parameters. So we would like to find out suitable values of theta 

such that these variables can can explain this Y, that is the that is the problem, these variables 

could be anything, okay. And obviously we will not be able to, given given a set of data there is 

no guarantee especially because we have we have assumed a linear structure; there is no 

guarantee that we will able to fit it exactly, right. Never we when we when we fitted a best feet 

line, always our points were on both sides.  

 

So so there is going to be some error. So that error I am simply saying that, if I fit using a 

parameter theta, correspondingly I get an error. Now remember here I like to mention one very 

fundamental fact, which you should remember whenever you are dealing with an identification 

problem; that this model is simply a postulate that is we are looking for an explanation between 

variables phi 1, phi 2, phi n and Y, using this model structure, for for for whatever it is. These 

models may have been generated, how these with how these data has been generated that is a 
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totally separate thing. For example, you can this data might have been generated actually when 

when when when it was finally came, it might have come due to due to many other reasons; 

some some of the explanatory variables may not even be included here, that is possible or their 

their loss may not be so simple linear case. 

 

So we are not when we are when when we are trying to estimate using this process, there are 

there are two things; one thing is the data generation mechanism, for example suppose I have 

input and output data generated from a fourth order system suppose, so I stimulated the data 

using a fourth order one. Now I can say that no no no I want to fit the first order model system, 

let us see what happens. So I can it is not necessary that, that if I if I if I if I am estimating a first 

order model, data data has come from first order model, data that might have come from non-

linear process.  

 

So so distinctly there is a data generation mechanism, that is that is that is underlined system 

which is given rise to these data; that is one entity and and the model that we want to estimate is 

another entity and these two a distinctly different entities, they did not necessarily be the same. 

So here we are we are we are not saying anything about how the data is generated, we are simply 

saying that we have some Y’s, we have some phi’s and we would like to fit a model to it. 

Whatever, however, I mean as accurately as possible. Whatever we will not given to model, we 

will be calculating it, that is all that we say, right.  

 

So so and in fact there may be there are several and the second thing that I want to mention is 

that; it is not necessary that, these functions when I say a linear regression I mean that, it is linear 

in parameters. Here you may have for example; a very typical case will be that y is equal to say a 

1 plus a 2 x square plus a 3 x cube, this is the model which is non-linear in x, but it is linear in v 

parameters a one, a two, a three. So what we mean is that, we we we mean linear in parameters 

that is why it is call linear, it is not linear it may not be linear in the signal elements, when we say 

linear systems it is linear in the signal elements; in this case we are talking about linear in 

parameters, okay, signal elements may very well be non-linear, does not matter so this must be 

remembered.  
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Now sometimes you know for I mean, especially if we if we want to get analytical results; we 

will have to make assumptions about how the data was generated, without that if if if the data 

generation mechanism is left unspecified, you cannot get any results about the quality of 

estimates, especially. So you will have to make assumption very often, you have to make 

assumptions about how what what model generate the data.  

 

So for that at least one thing is clear, that if if your method is good then if the data is generated 

from first order model; and if you are trying to estimate a first order model then you should get a 

good estimate, at least that much your model should be able to do. So to to be able to verify that, 

very often we will make assumptions, that the about this system data generating model and very 

often we we assume that the data generating model is also this, this or this form. Only thing is 

that in that case we assume that there is there exists, some parameter theta naught which has 

given rise to this data. And you see, what let me explain this because this is this will come again 

and again; that there is some phi’s I am going in, okay, so y is coming out, this is your system. 
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So so how y is coming out, so there is a system parameter theta naught and there are some 

disturbances e, this disturbance are parameters are properties of a system. Now this phi and this y 
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you are feeding to your estimator and you are and so now this is your estimator, this is your 

system. So system use some theta naught and some e to to generate this y from this phi, these are 

unknown to us. Our objective is to find is to is to find some value theta, using our estimator; so 

we will feed y and phi and for this value of theta will get some value of v, so this theta naught 

and this theta are going to be distinct, this e and this v are distinct, ideally speaking. And now at 

least we will we will once we do that, then we will naturally like to see whether theta naught, 

whether theta will be close to theta naught.  

 

So so such properties will look for, so very often we will assume such model structures for the 

system also; but we must remember that the that the exactly the disturbance that is that the 

system used for generating the data and the disturbance, that you got from your model miss 

match are different things, right. So these things should be clear, right in the beginning because 

sometimes you know they they they get they get mixed up; because they are same forms of 

models, you do not know which one you using, are you using the true system model which is 

unknown or you are using the estimated model you must be able to distinguish between them. 

 

When we may represent effects of measurement errors in y or phi and it it will affect; I mean I 

mean various kinds of thing like un-modelled dynamics or your or your estimation inaccuracy, 

so many things will come. So having said this, let us try to find out first of all you know, what 

you would what you would ideally like to do; this v is simply an error in fitting, that is something 

which we could not fit but but ideally the best would have been if I could have a theta which 

would exactly satisfy y is equal to phi term plus theta, that would give me zero zero error fitting 

and the question is can I now do that? I can certainly do that in this equation, but but in general 

the point is that I am not go to fit it for one point; I have to I have ten, twelve, fifteen, twenty 

points and at the feet all of them, right that is the problem.  

 

So actually I have a set of such equations. So actually my set of equations are y 1 is equal to 

some phi 1 transpose theta plus v 1; y 2 is equal to phi 1, phi 2 transpose theta plus v 2, in in this 

way I have say n number of data points plus v n and I want to find this single parameter vector 

theta, such that all these equations are satisfied in the best possible manner, that is my problem.  
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Because I have a I have a number of experiments, when you did in a physics lab you had a 

number of points and you want to fit one line which will it will approximately describes all the 

points, right. So now when can you do that? Firstly can you solve it exactly? It is it is it is a very 

simple thing. It is a it is our linear simultaneous equation solving problem, that you have a you 

have to solve a set of linear equations, for a for for those unknowns, so so when can you solve it?   
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If you if you if you if your number of unknowns is is n, that is the dimension of theta. So if you 

have the number if you have number of equations less than the number of unknowns, then you 

have infinite number of solutions, right. If you if you have number of equations is equal to 

number of unknowns then you have exact solution; when provided that the given set of equations 

are independent, if they if they dependent you do not get it.  

 

Secondly, that this so obviously now why you could not do these? Suppose you have n, n 

equations rather suppose, you have capital N number of equations and you have and this 

dimension is n. So you take the first n equation, invert, solve the equations, so you will get one 

value of theta. Now the point is that, if if you took any other different set of equations; suppose 

you took these n, you can again solve, you will get a different thing, you will get different theta 
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than than what you got in the first time. So if you try to solve exactly; then there there will be no 

single theta which means satisfy all the equations, because your number of equations are more 

than than number of unknowns.  

 

So you so when the this is this is the most difficult situation, when the when the number of 

equation is more than number of unknowns. So in that case what what you like to do is that, you 

like to get a good approximate solution for all the points rather than getting an exact solution. 

And for example; typically speaking if you have points like this, you could do these two points 

and then find out one line which will be quite quite erroneous with respect to these points or you 

could take these two points, these two points and then find another line.  

 

So in general you will find, that is if you do that you will get large very large error with respect 

to the other points which you are not included in your fitting. So so what you must do is that, you 

must find a line which does not satisfy any of the equations exactly but satisfies all of them 

approximately, right. So you must find an approximate solution for the whole dataset as such, so 

that is what we are going to do.  
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So so whether is usual and simple, that is first of all I define and some of errors. So if I choose 

that parameter theta, then what was what could have been my error in estimating for each one of 

those points? And then make a some of squares and I say that, this is my performance criterion, I 

want to minimise it. So find theta which minimizes this, that is the problem.  

 

Now this can very easily you can you can understand that that that this can be written like this; 

where this y is nothing but so I written in vector matrix rotations, so basically all these equations 

if you stack, so y will be equal to y 1 to y n this is your Y, capital Y is equal to your your matrix. 

This thing is this is your phi 1 1 to phi 1 n, small n. And this is phi n 1 to phi n, n, this is your 

capital phi matrix, this is your capital Y matrix and theta is theta. So this all the set of equations 

you can write like this, y is equal to phi theta that is your matrix equation.  

 

So if you want to find out this square, it will be Y minus phi theta transpose, Y minus phi theta 

that will give you, that will give you V N theta. See this Y is the column vector; so if you make it 

transpose it will become a row vector, this will become a column vector multiplication will give 

a will give a scalar which is this sum, you can verify it very easily. So our usual way, that we 

have to we have differentiated with respect to theta and that is equal to zero, that will 

immediately give you if you try it, it is very well known nothing great about it, we have we have 

also try it in in other context before. So it will immediately give you that this is the least square 

solution to this problem, provided the inverse exists; provided these inverse exists otherwise you 

cannot obtain it obviously. So so this is your least square solution to this problem, if this inverse 

exists, otherwise there is no solution. So now what will do.. 

 

Student < sir this phi is the liniment of the view model> 

[Conversation between Student and Professor – Not audible ((00:20:52 min))]  

 

phi are the phi are the explanatory variables; you have some variables you have measured and 

you want to, use using these variables you want to explain another variable,  

Student <is it other model?> 
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[Conversation between Student and Professor – Not audible ((00:21:02 min))]  

Other model yes. Now signals are common to models and systems; signals signals are generated 

from system but we do not know how they are generated, but we would like to postulate some 

form of the model and then we like to find out the the best parameters in within that form, which 

explains this signal is the best. 

  

[Conversation between Student and Professor – Not audible ((00:21:24 min))]  

theta I said the parameters, it could be registered inductance value, if you have a circuit. 

Student < model parameters?> 

 Yes, model parameters, right.   
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So this is my least square solution. Now obviously, these these concepts by it knew known that 

in various situations; we would like to I mean every time I get a new data, if I have to if I have to 

solve these matrix again, remember that this matrix this side grows with N, N is the number of 

data points, it is it is actually a very large matrix. So so so I mean every time you get a new data 

new data point, if you have to again recompute this configuration then solve it, it is a it is a big 

wastage of computation, so we would like to recursive it, that is very simple. 
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So it turns out that, now you see you see that we I have just written that, if you have one more 

data point then how does capital Y look in terms of small y? So another element, so it is like this 

previous Y k and then another element added at the end, this vector will become one more 

element longer. Similarly this phi matrix will become the old matrix plus another row at the 

bottom correct, theta is same.  

  

So if you define the P K is is, now now now we have to find out; basically you have to find out 

that, if we know the solution if you know if you have already computed this solution for K K sets 

of data, how I can use that solution and then make little update so that, I get the same solution for 

K plus one data without really re-computing this equation, that is what I am trying to do.  So I 

am defining, these are this this is just you know, simple I mean mathematical manipulations. So I 

can show that theta had K plus 1 will will turn out to be define this inverse as P K, whole inverse 

whole solution is actual solution that I want to compute is this inverse this. So this inverse for K 

elements I have defined as P.  

 

So obviously what is my theta K plus 1, P K P K plus 1, phi transpose K plus 1, Y k plus 1. This 

is P K, this P. So P phi transpose Y. So now I am just simply writing it in terms of the previous 

ones and the new data points that I have got, I have to express that that is a lot of that is just a 

manipulation. So if I manipulate, this is the simplest possible derivation I got, there are more 

complex derivations than this but it turns out that; this is your update, so if you already had 

computed the least square solution for K data points, then the then a new solution for in that 

includes K plus one data points, will will be given like this. 
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Again you see this same form, everywhere you will get the old solution plus another collection 

term, that collection term will have a gain and it will have an error everywhere this thing comes, 

all estimated will have this structure. So here is the old estimate plus a collection term; same 

thing is to happen in the Kalman filter, x hat K, given K is equal to X hat K given K minus one 

plus K K into same thing.  

 

So here also you are having a gain vector and you are having an error, this is the error. So the 

question is that the old parameter, can it explain the new measurement? If it can explain the new 

measurement then this error will be zero. If it cannot explain, then it needs to be changed. So 

now this decides; so this says how much, what is the magnitude of change? So this is the scalar 

and this decides that the change should be made in what direction, right because this is a vector. 

So everywhere you get the same thing, you get the same thing in observers, you get same thing 

in Kalman filter, you get the same thing in parameter estimators, you get the same thing in neural 

network training, everywhere it is same thing.  
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So so this is your update equation, only thing is that you have to compute this now. So you have 

to update this also. So for updating this we use what is known as matrix inversion lemma; which 

says A plus B C, this is this is a this is an identity which holds for I mean dimensionally 

compatible matrices. Now you have to have to have to remember it now in not the form, but we 

must remember that such thing exists, do not be do not think that you have to remember it and 

then we sight it, anyway usually it is available.  

 

So so then using this lemma P K plus 1 will be given like this, which again has similar forms too 

there are of Kalman filters. Incidentally, here I have written this I but actually this thing turns out 

to be a scalar, this is a number. So you can you could have you could also write, P phi phi 

transpose P divided by; when you have a scalar you can generally divided by, when you have 

matrix, you write something inverse.  

 

So this turns out to be a scalar, why because if you take just take dimensionally; this turn out to 

be a scalar. So so so this is by recursive least square estimator, right. So what I have what I have 

done? I have first take got a set of measurements, I proposed a I proposed a model form, I simply 

figured it in the least square manner; and then I found a way of updating my least square 

solution, if I get another measurement that is so so I can do it recursively every time I get a new 

measurement, I can just once update this equation that, that will give you the new least square 

solution.  

 

So having done that, we need to know how good this estimator is, right. And and we need to 

answer one very important question, definitely this will give me the least square error; whatever 

way the data were generated because that is a explicit thing, for those data points using you 

cannot get a linear estimator which will give you lower least, lower square error, that fact is true 

whether the data were generated by a non-linear system or not, that is true. But why are you 

making this estimator? You are making this estimator because once you find those thetas, you 

are going to use it on other data points.  
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See normally, why do why do you build the builder system model? We build a system model 

because we are going to use that model elsewhere. So typically speaking; this we must remember 

this another thing that we typically use some amount of data for for building a model and we and 

we employ methods such that, the model that we get explains that data, very well. That is that is 

by a by basically by virtue of our method or or for example for this case; we got some data points 

Y one, Y two, Y three, Y n and we found a least square estimate, so so for particularly for those 

set of measurements the parameter vector that I have got, naturally we will fit those data, it it is 

forced to fit that data, but the question is that, now can I use this parameter theta, generally?  

 

That is can I take this system and then in future generate different data and then use this 

parameter to explain it, will it work? That is the main main question, otherwise can the model 

generalize; it has been built using a certain data set, does it work well for other data sets,  if it 

does not work well for other data set, that model is useless. So we always look for a kind of 

generalisation property of models, right. This is this is this is a big thing which has to be ensured 

with neural networks; otherwise I mean neural network could if if you it could also happen for 

neural network incidentally which generally does not happen here, is that it could the the given 

data say it could model so nicely, that it will work badly for for other data sets, that also could 

happen, that is you could have over fitting not only under fitting.  

 

So so for that matter, so so therefore with respect to these data sets, I will I will get least square 

error, no problem but the question, but if I want to now suppose; so now what is the question I 

am I am asking, when when will this model will work well for other data sets as well, when will 

it work well? So if you want to understand that then you have to made an assumption about this 

system; how the data are generated, that is how the system generates data. So if you assume that, 

the system generates data using a same kind of data set; 
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this is the way the system generates phi, given phi the system gives out y. This theta naught is 

unknown it is inside the system. Now you have got one set of y s and one set of phi s and you use 

it in your estimator and you and you got a theta. Now if you take another phi from the system 

and and another phi phi from the system, will this theta work for this? That is say; this is the first 

data set, this the second data said set then will y 2 be also given by phi 2 theta plus some error, v 

get this error will be small, will it work ? 

 

Obviously it will work, if if if this theta is closed to this theta naught because the system 

generates data like this. So if this theta is equal to this theta naught then for all data sets it it will 

match. So therefore it is it is relevant to ask; that is whether this theta is close to this theta 

naught, if we assume that the system generates data using the same form. It is it is that is why it 

is it is relevant to ask for this problem to ensure that, your model will be of general usability, 

okay. Hence, so therefore we we look for such property. For example, so first of all I will assume 

that the data is generated by this model, that this is the system model. 
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So and I have taken N such data points which have come from this system and I have estimated a 

parameter vector. So now I am explicitly putting hat, meaning that it is an estimate of my model, 

this is the true model; true model means something which this the system itself is using for 

generating data. So obviously will all would like to know, I mean it is therefore important to ask 

whether this is is closed to this but even equal to this, does it happen? So it turns out that if you 

do a little bit of manipulation and if you if you use this relation between y and phi; which is 

property of the system, that theta hat N turns out to be this theta naught plus this term.  

 

So this will be close to the true one which the system itself we using, provided this term is one. 

Now when when is this term small? Either when this term is small, the second term B is small or 

when this bracketed term becomes larger and larger because this is inverse. It is like you know y 

by z, so when does y by z becomes small; either when y goes small, smaller and smaller or z 

goes larger and larger. So so it is important to know whether that happens in our algorithm, only 

under that condition even with this is the same system and model structure; you can hope to get 
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the true parameter which the system is using, otherwise even using the same model structure you 

cannot, your your estimator will never given the true model.  

 

So it does happen on the certain condition. So what are the conditions? First condition is that, 

these goes to zero. How how do you say that, this goes to zero, when will it goes to zero; when 

this V K and phi K are going to be orthogonal or uncorrelated over sum, because because this is 

like an expectation, right. So that is why this these are the reasons for which you will find such 

assumptions are made, that the that the noise which the system is which is which is going into 

the system is orthogonal to these data points and we will see that; in our in our dynamic system 

estimation sometimes that happen, sometimes that that does not happen.  

 

So for some models forms; for some if you write the model structure transformations in a certain 

way that may happen, if you write it in some other ways, it may not happen. If it does not happen 

then you have every chance, that you will never get the true system parameters; it is possible 

even though your data will be fitted in the in the least square fashion, data will always be fitted in 

the least square fashion, about there is no doubt. 
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So the two typical cases which will give good results; are firstly that this is the we often assume 

v to be zero mean white, because this zero mean white will will ensure, actually what we need is 

that V k is un correlated with phi, these all that we need to know. But some but in many cases, if 

you assume V to be zero mean white if this is this is satisfied, you will see that in the case of our 

transfer functions system.  

 

Right now we only say that, V k is uncorrelated with have to be uncorrelated with phi K and this 

P N inverse should must remain non-singular and must grow in size. If it grows in size then this 

term will grow in grow in, will it be smaller and smaller and my estimate will come closer and 

closer to this true system, right. So this is now there are there there are several nice properties; 

you know this is a this is this kind of results are called asymptotic, in the sense that we can only 

show that eventually as n tends to infinity this going to happen. Now now this n tends to infinity 

thing is you know, it is a result which it is something it says that okay; if you do it long enough it 

will happen, but this long enough is how long? In in general you are going to you are going to 

only work with finite data, so you are very interested to know that does it happen with within 

hundred points, within two hundred points.  

 

Finally, it goes to something goes to zero. Now now something can go to zero like this, 

something can also go to zero like this. So is it that it is this is monotonic; it will always reduce 

this is not monotonic sometimes it may increase, sometimes it will it may decrease. All we are 

saying is that, it finally go to zero. So it typically if it does like this, it is likely to take longer. So 

so we are also interested to know that, what what more we can say about the estimates? Can we 

at least say that, this performance criterion is going to come down monotonically? Then at least I 

have little better hope that it will probably converge little faster than if it is when non-moulded. 

So now we can prove several such cases; for example, you can prove that if you define a 

performance index like this, now why did you define it like this? What is what is the relationship 

of this with the original one which you are minimizing?  

 

The the reason is that you have put this P K inverse. Now there is a reason, why you are put this 

P K inverse that will soon come to but suppose; if you define a performance index like this 
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which is theta k minus theta, theta is the true one which is theta naught and this is your estimate. 

So you are you are taking a weighted sum of the error, near estimate, right and you have chosen 

the weight to be P K. So the weight is also changing, why did you choose such a function? For 

one reason that this weight incidentally goes on increasing with K; so you are gradually having 

larger and larger weights, this element. Now if you can show that, just imagine that suppose you 

have a quantity Y is equal to lambda x square; now this lambda goes continuously increases and 

then you can show that this Y cannot increase, it is it is bounded it will not increase ever.  

 

So if this is increasing, this must decrease, is it not? If if this is bounded and if this is 

continuously increasing then this must be decreasing, right. So we are so this our x is like this, so 

we are going to have this this argument, if we can show that over K this Q does not increase; but 

but this keeps on increasing then I will be able to infer that this keeps on decreasing, right. So so 

it can be proved that with this thing; this the performance index that is Q at theta at k and Q at 

theta at k minus 1, if I take the performance this performance in index, if I evaluate at k minus 

one and at K, it turns out to be like this.  

 

So at least if if this if in the system has no noise suppose; this V K is zero, there is a system 

generated pure data using some unknown parameter but there was no noise then this is a purely 

positive quantity. See phi transpose P phi is a positive quantity, phi transpose theta is a positive 

quantity; so there ratio is also a positive quantity, this epsilon square is also positive. Here is the 

minus which means that; Q theta hat K is strictly less than Q theta at K minus 1, it will be less 

than or equal to it cannot increase.  

 

So so so this performance criterion this performance criterion, can strict if the system did not 

have a noise then the this performance criterion would have can only decrease; while this goes 

on increasing but for, what will it prove? It will prove that, this must always decrease; so the 

parameter error will strictly come down, it cannot increase so so so the convergence is is not like 

this, convergence is like this, right.  
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And why is it an why is it an increasing sequence? That is y is this a more positive definite 

matrix than P K minus 1 inverse? Because P K inverse is PK minus 1 inverse plus phi phi 

transpose. So if you take any vector Z and do z transpose P K inverse Z then it will be z 

transpose P K minus 1 inverse z plus z transpose phi phi transpose z.  

 

So these can can only be greater than or equal to 0, because it is a product of; if you recall Z 

transform are equal to w then it is like w transpose w, if it is w transpose w it cannot be less than 

0, it must be greater than equal to 0. If this greater than equal to zero then which means that, this 

this is a more positive definite matrix than this, correct. So in that sense P K, P K inverse keeps 

on increasing. So therefore you you can do it much more regressively mathematically, but you 

can show that it will it will continuously decrease.  
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So at least you know that, if your model structure was correct; that is if the system indeed use use 

some unknown theta and and generated the data, using y is equal to phi transpose theta then your 

least square algorithm will eventually find that theta if it is presented with enough data right. So 

then you can you can prove, you can prove many other results, for example you can prove that; 

in fact we will we will do some of them in our tutorials, that as K to the infinity, what does this 

may mean? Mean this equation means what? If I can prove it, it means that the parameters will 

finally converged to a constant value, because if k goes large enough then K plus three and k will 

be same, K plus phi and K will be same.  

 

For any finite l, these these parameters are going to be same; which means the parameters will 

will not continuously change, they will finally arive come to a stable value. So you can prove 

many such results. This says this says something about, how fast it will how fast it will 

converge? So this this is the sum the sum itself will be less than infinite, if you want to if you 

want to understand these things; you have to understand properties of infinite series, so that we 

we do not intend to do but all I wanted to say is that, you can show that if the model structure 

was ideal and if there was no disturbance then the least square algorithm will converge to the 

true parameters, monotonically, so at least it has some good properties.  
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Now the question is that, this this one way but sometimes, you can ask that okay you can ask 

many other things, for example you can ask that; if I consider the general class of linear estimate, 

that is given the y's I want to generate some estimated using some arbitrary linear combination of 

Y. 

  

(Refer Slide Time: 44:38)  

 

 

I I want to use some matrix here, I do not know what matrix. So what should be the property of 

these matrices, so that I will get something I will get an estimator, how can I do that?  So it turns 

out that if you put that that is again data is generated; if data is generated as y is equal to phi 

transpose theta plus in this case e or v whatever say v, then if you take any any arbitrary what I 

am saying is that the least square estimator is just one linear estimate, there may be other linear 

estimator in fact there is a there is very important linear estimator, which we will study in a 

future class called instrumental variables. They have very nice probabilities; they give you much 

better estimates over least square using a very computational efficient form.  

 

So it is not that you have to always use the standard least square standard least square estimate. 

So what you are trying to see is that, if we construct a a a general class of estimators which are 

generated from Y in some way; this this T what this T I do not know, but what should be the 
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property of T such that if I if I generated using this T then this theta delta which is the error 

between the true and the estimated parameter will be low, if I ask this question. So if I if I 

calculate this, this will be my theta delta using this equation as the data generating equation; then 

it turns out that, if theta delta has to be zero then T should have this property.  

 

Property number one, that this should be equal to identity and if if if this is equal to identity and 

this is zero and this should be zero, and what does it mean? That that this matrix T should be 

such that, it is where you well correlated with the actual data phi; so so it is not necessary that 

you have to use the data, you can use something else other than data but you must use use 

something which is very correlated with the data and very uncorrelated with it. If you can do that 

then whatever you put in this T matrix, will give you a estimator. In fact we will see latter 

especially in the context of the instrumental variable, that sometimes not using the data itself has 

great benefits, right.  

 

So so this was you know then so any linear unbiased estimator, but what what do you what do I 

mean by unbiased? Un-biased means that, asymptotically this theta hat will be will will tend to 

theta, if if that happens then we call an estimator as unbiased. So and then you can you can what 

is an optimal unbiased estimator is that, if you go for that that of all unbiased estimator which 

one gives you the least co-variants, that also you can ask. So fine so we will have to close today. 

So before closing that all I want to say is that, so what did we do?  

 

We first find out found out a a basic least square solution to a problem, then we found that under 

the assumption that the data has been generated using a model of the same type we can get some 

good properties from the least square estimate; that is a that is a dead estimated parameter will 

finally convulsed to quote unquote the true parameter which which the system used to generate, 

the data that we found. And lastly we found that that, it is not always necessary to go for a least 

square estimate; sometimes it may be may be good that you will rather than putting the directly 

the data, you can put slightly modified data or some other matrix only thing is that, whatever we 

use you must ensure these two properties. 
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So if you can you can ensure this property; you will get what is known as a linear unbiased 

estimator. So we will we will continue with this and we will see especially in in the next class, 

that there are several variants of the least square, this is the basic least square problem; you can 

toss and turn this problem in a in a little different way here and there, and you can get new new 

estimators which are used, which will be useful in several various various contexts. We will see 

that tomorrow, thank you very much.  
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