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Once you know how to do that we also have to know how to understand differential 

equations means, what I mean is that you have a set of differential equations expressed in 

this form. 
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X 1 dot is equal to some f 1 x 1, x 2, x 3 and all that, similarly ultimately have x n dot is 

equal to some f 1 f n x 1, x 2, x 3. Now, this set of equations would govern the evolution 

of any starting point. So, you have the equation actually expressed in this form x dot is 

equal to some function of x, these are vectors then. Now, this means that if I ask you to 

study the behavior of any given system, that means you have obtained the differential 

equations and then, your task is to find out how the system will behave. 

What do you actually have to do then, then start from an initial condition and then, 

evolve it see the behavior. Then that particular behavior is only for pertaining to that 

particular initial condition. If you then change the initial condition there is no reason to 

believe that it will behave the same way. Then the whole problem becomes enormously 



big, because in that case you will have to start from infinitely many different initial 

conditions, see their evolutions by the the method that you have learnt. 

And then, after having done all that, after having an infinite number of graphs before on 

your table, then you say this is what is going to happen. That is the task of studying the 

behavior in any system, then becomes enormously complicated. A relatively easier task 

might be to have a qualitative idea about what this system can do, what are the different 

types of behavior that are possible for the system. And in order to do that, in order to 

understand that, that means somewhat qualitatively exactly where it will go you will 

have to solve it. 

But, if you want to qualitatively understand that these are the possible behaviors by the 

system, then we will not go by this numerical routine route. Whether we will try to 

understand the differential equations what do you mean by that, we have already said 

before you go in to that we need a bit of nomenclature. Now, this right hand side could 

contain time varying terms, could also contain time independent terms. That means, for 

example, the simple pendulum in the right hand side you would have time independent 

terms. 

What was the equation for the simple pendulum x dot is equal to g by l sin theta, so theta 

only no problem. If you have the point of support oscillated somewhat externally, then 

that would introduce some externally impressed function in the right hand side, which 

would be dependent on time. So, whenever you have the right hand side f x, independent 

of time such systems are called autonomous systems, and where f x dependent on time 

non-autonomous systems. 

So, whenever we will refer to these two terms you have to understand what it means 

physically. It means that this f x right hand side, is in one case independent of time, the 

other case dependent of time. And physically if there is a circuit, in which there is a 

sinusoidal forcing function that would be a non-autonomous system. If there is a circuit 

in which there is a DC supply, then it would be autonomous system, because that is 

independent of time. 

But, if you switch on and off that DC supply, then it would again become a non-

autonomous system, because that will become a independently externally applied time 

variation. So, if you have this system description, then how do we proceed with it. First I 



said in the last class, that if you have say let me do it in 2 D. So, that I can explain it by 

drawing things on the sheet, but you can easily in concept extend it to higher dimensions. 

(Refer Slide Time: 06:05) 

 

So, your two dimensional system equation where x 1 dot is equal to some f 1 x 1, x 2 and 

x 2 dot was equal to f 2 x 1, x 2, so we will try to understand this. We have already said 

that these equations immediately define a vector at every position of the state space. 

Which means that, if you have the state space drawn, which means the state variables are 

the axis then every point will have a vector so and so forth. 

So, every point in this space having a vector this particular thing is also called the vector 

field. So, the vector field, the term vector field would mean that a space in which every 

point has a vector associated with it. Now, it is not difficult to see that, all that this 

system can do would depend on the nature of the vector field. So, in which direction 

does the solution lead will be the given by the vector field and naturally everything that 

system can do will be given by the vector field. 

So, instead of starting from all possible initial conditions and trying to work out the 

evaluation by numerical means, if you simply look at the vector field it will give a better 

idea. So, one of the things that you would need to understand or do, would be to draw the 

vector field. Now, most of the modern, higher level computer languages offer the facility 

of drawing the vector fields. Mat lab has this facility, Maple has this facility, Mathematic 



has this facility, so learn how to draw the vector field for a given system 2 D system, in 3 

D you will would not be able to draw, so it is better to understand in 2 D. 

And then, in 3 D you would imagine that this 3 D is a state space x, y, z and then, every 

point then you will have a vector, a 3 D vector. And then, the state will evolve depending 

on the vector field, but obviously we will not be able to draw that, because that will 

become a projection. And if you draw the projection it will lose some of properties, what 

properties I will come to. 

One of the properties is easy to see that, at one point that the vector is unique, you cannot 

have this type, why because the right hand side is unique. For every point you will get a 

specific value here, a specific value here meaning that this vector is unique, which means 

that this vector, this is cannot intersect. You can also draw lines going through, means if 

you have vectors going like this, starting from any initial condition you can also draw 

lines going through like this can you see. 

If you have lines going through like this and from another initial condition if you have a 

line going through like that, so you have the vectors like this. It is not possible for them 

to intersect why, because at this point then the vector would be two different directions 

that is not possible, that is not allowed. So, the vector field lines cannot cross So, these 

are some very qualitative character, properties of this vector field that imposes some 

restriction of on what it can do. 

That way the character of this vector field, this lines they sought of match the properties 

of magnetic field lines know, the magnetic field lines never intersect, so magnetic field. 

So, more or less they have the same kind of property, but magnetic field lines do 

intersect where at the poles. So, will there be something like this here, yes they can 

intersect at the points where the vector is 0, then it does not lead to any contradiction. So, 

where would the vector be 0 the equilibrium points. 
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So, the equilibrium point is where suppose I have a space x 1 and x 2, and here is 

equilibrium point, what is the property of that equilibrium point, it is that if I start it here 

it will always remain here, it will not move, which means your x dot is equal to some 

function of x 1, x 2 and x 2 dot is equal to some other function of x 1, x 2, it means that it 

does not move means x 1 dot is 0, simply x 2 dot is 0, which means at the equilibrium 

point f 1 x 1, x 2 is equal to 0 and f 2 x 1, x 2 is equal to 0, so that is the property of the 

equilibrium point. So, let us just do an exercise to find out to practice this how to locate 

the equilibrium point. 

(Refer Slide Time: 12:04) 

 



Suppose there is a system x dot is equal to y and y dot is equal to 1 minus x square x dot 

minus x or this is y minus x, so what is the equilibrium point. Well this term we put 

equal to 0, we will say y is equal to 0 and if y is equal to 0 x is also 0, this equal to 0 

means, so 0 0 is the equilibrium point. So, the point is that, if you have a state space like 

this normally any point is given by a vector, the state vector. So, when I say x 1, x 2 it is 

algebraically a vector, geometrically also it is a vector. 

So, this similarity between algebraically writing at as vector x 1, x 2 and geometrically 

seeing it is as a vector with an arrow it should be clear, there is a one to one 

correspondence between the two. And then this x 1, x 2 point this particular point will be 

an equilibrium point when this is satisfied, if an equilibrium point then it does not move. 

So, that should be understood, but it does not move, does not immediately mean that in 

physical system it will not move for example, if I have this one standing like this. 

If it is exactly vertical it will not move, but will that carry much sense engineering wise 

no, because slight perturbation will make it fall. So, even though that is an equilibrium 

point it is an unstable equilibrium point. So, we need to understand whether the 

equilibrium point is stable or unstable. So, in order to do that we need to understand the 

behavior around the equilibrium points, what do you mean by behavior around the 

equilibrium points. 

See normally you will have a vector here, a vector here something else happens 

elsewhere, but here supposing there is a behavior something like this. So, that this fellow 

is going to be stable, but that stability is can be understood by considering only a small 

neighborhood of that equilibrium point. So, I do not need to consider the things 

elsewhere. Now, even when an equation is non-linear like this, I can get away with 

studying only the neighborhood at which it would be approximately linear, or it can be 

approximated by a linear equation. So, how to do that, how do you linearize a non-linear 

function, this side is non-linear I can see that and how do you linearize the non-linear 

function. 
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Now, if you have a functions something like this, say x and f x and say something like 

this, it is a non-linear function. How do you linearize, suppose I want it to linearize at 

this point, how do you linearize, you simply draw the tangent. So, you draw the tangent 

and say that this tangent represents my linear approximation around this point, that is 

what you say. Now, what is this tangent, the tangent is nothing but, calculated at that 

point, say if this value is say x naught then calculated at x naught that is what you do. 

When you want to linearize a function you do exactly like that. Now, if you have a 

function like this in 2 D, then how do you visualize that. It is for example, imagine only 

this y dot is a function of x and y. 
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So, you have, something like this you have x y and the x dot is some kind of a surface 

here, imagine it will be some kind of a surface, some surface. And suppose now you 

want to locally linearize at this point what will you do, the local linearization of a surface 

will be a plane the plane will have two inclinations, one this way along the x direction 

another along the y direction. So, that will suffice in defining a plane at this point that is 

exactly what we do. 

So, in defining the y dot you will have two such values, one how does it vary with x and 

how does it vary with y. Similarly, for x dot you will have two similar values, so you will 

have actually the thing given by there is another issue here, that is suppose your equation 

is x dot is equal to f x, the f x any problem. 

Student: ((Refer Time: 18:40)) 

No, no I did not draw it that way here, I am not representing the equilibrium point. 

Student: ((Refer Time: 18:48)) 

Yes, I am linearize just at any point and there is no reason to believe, that the equilibrium 

point will always be at the origin, it could be at any point. So, I am just saying that the 

equilibrium point, wherever the equilibrium point you will have to locally linearize it, 

schematically I have shown it here. That does not mean it, it cannot be done here it 

cannot be done here provided the equilibrium point is here. 



Now, suppose this was the original function and I want to locally linearize it here. Then 

what would the local linear equation be, this is the differential equation locally linear 

differential equation will then be notice that, here from here the deviation, so it will be 

the delta x dot is equal to some linear function, so something here times delta x. Notice 

that earlier it was here, starting from here where the 0 was that is a different issue, but 

now that you are linearizing around that point, now you have to consider deviation from 

that point. 

In other words, your origin shifts to this point, in the new representation, the origin shift 

to this point that is a vital issue that some people miss, while developing the 

understanding. While you are doing the local linearization, you have to move the origin 

to this point around which you are doing the local linearization. And then, the variable 

becomes the deviation from that point, deviation from that point not the original one and 

then only this local linearization will be valid. So, when we do the same thing here in 

such a system, we will also do the same thing. 
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So, ultimately if you have originally the equation given in the form x 1 dot is equal to f 1 

x 1, x 2 and x 2 dot is equal to f 2 x 1, x 2. Whatever the right hand side first obtain the 

equilibrium point, there is no reason to believe that always for whatever value of this f 1, 

f 2 are it will always at the origin, it could be some other places. Imagine, if here x dot is 

equal to this y minus 3m then itself it becomes a different position. 



So, you have to first obtain the equilibrium point and then, this particular thing, then we 

will have to write it as delta x 1 dot delta x 2 dot is equal to something times delta x 1 

delta x 2. Where this deltas are the deviation from the equilibrium point that you have 

found. Now, what is this, this has to tell how does f 1 vary with x 1, that is what we did. 

How does f 1, suppose you are approximating by some kind of a plane here, how does f 

1 vary with x at this point, how does f 1 vary with y at this point similarly for the other. 

Than this effectively becomes x 1, so starting from here you can locally linearize to 

obtain this equation and this matrix is called the Jacobian matrix. Now, often in most 

studies in engineering we only consider this equation why, the reason is that you have 

when we did the whole gamut of obtaining differential equations, you have found that 80 

percent of the cases to obtain non-linear differential equations. Even the simple 

pendulum is a non-linear differential equation. 

But then, we mostly study this kind of equations, because most engineering systems are 

designed to operate at an equilibrium point. And the deviations from the equilibrium 

point are generally small, if they are small, then this local linear approximation is more 

or less valid. But, you will soon see that the moment you are considering this equation, 

the solution and other things become very simple. 

That is why most of the engineering studies you will find that we consider mostly this 

equation. But, you have to understand that this equation is actually a local linearization 

around an equilibrium point, but the system was actually non-linear. Why is that 

understanding important, because you will be able to understand with the help of this, 

only when the deviations from the equilibrium point are small. 

If they large you will not be able to, but once you have locked to this understanding that 

the system is this, then you never understand what is going to be happen if the deviations 

are relatively large. That is why it is necessary to understand this as, than approximation 

from a physical system whose representation is really non-linear. But, we have 

simplified it by considering the behavior around an equilibrium point, so we have obtain 

this. Let us just do this for one example, we have taken this examples, let us do it for this. 
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So, you have x dot is equal to y and y dot is equal to 1 minus x square y minus x, so what 

will be the Jacobian matrix. So, this is our f 1 x, y and this is our f 2 x, y, so when I say 

doe f 1 dou x is what is it 0, dou f 1 dou y is 1 nice, but here there will be something, dou 

f 2 doe x is... 

Student: ((Refer Time: 26:42)) 

Minus twice x y minus 1 and dou f 2 dou y is, so your Jacobian matrix essentially 

becomes 0, 1 minus twice x y minus 1 and 1 minus x square. But then, this will make 

sense only when evaluated at the equilibrium point and the equilibrium point we have 

already understood it is 0 0. So, if you put the 0 0 value here you get 0 1 minus 1 1, so 

that is the local linear representation of the system. No, you have to understand correctly 

this is the local linear representation, but this is the matrix, but then what is the equation, 

local linear equation. 
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The equation is delta x dot delta y dot is equal to 0 1 minus 1 1 delta x delta y. Now, 

when we are considering linear systems like this, we have the understanding that we are 

talking about the deviation from the equilibrium point. Not just from the origin, systems 

origin, deviation from the equilibrium point. Once you have this in mind, once it has 

sunk in our mind, then this delta would be pretty redundant, because whenever we see 

this we always have to remember. 

That now we have shifted the origin to the equilibrium point and therefore, we will often 

write this equation as simply x dot y dot is equal to 0 1 minus 1 1 x y. Do not be 

confused if we write it like this, this is after local linearization and therefore, after having 

shifted the origin to the equilibrium point. Now, this equation is normally would be 

written as, this is the X vector, capital X dot is equal to this matrix would be written as 

the A matrix times the X vector. 

But, so far in this we have not consider the forcing function, if the system is non 

autonomous, then that forcing function will also appear in the local linearization. 

Because, the local linearization cannot be independent of that, let me clarify this I will 

clarify a little later. Point is that, then it will have some addition term representing the 

time variation, it is customary in engineering practice to write this, in terms of two 

different things as B u both are matrices. 



B is a constant matrix not a time varying matrix, but u is a function of time, so this is the 

forcing function. So, if the system has a forcing function if an electrical circuit has a 

sinusoidal input, a square wave input, then this is representing that. And how it is related 

to the rest of the system and that is represented by vector B. So, this would normally be 

the local linear representation of a generally non-linear system. 

So, now instead of trying to understand the whole thing, let us try to start piecemeal, we 

will first look at what can happen in the neighborhood of this equilibrium points. And 

then, try to integrate the whole story, that will be the the nice way of of understanding 

the whole thing. So, first we will understand the behavior of a system like this, what can 

such a system do. Notice one thing where is the equilibrium point of this well, so far as it 

is only this, the origin is the equilibrium point it is origin. 

But, the moment you have this no longer, because equilibrium point has to be obtained 

by making this 0. And immediately you can see that X will be dependent on the time 

varying term. So, if there is a sinusoidal input for example, what does it physically mean 

the equilibrium point moves in the space. So, you can imagine this way that the 

equilibrium point is moving in the space and the actual state is trying to follow, because 

it is trying to converge on to the equilibrium point. 

While it does try to the equilibrium point itself moves, so the equilibrium point goes on 

moving in the state space and the actual state is trying to follow it and that will give rise 

dynamics. But, whether or not it will try to follow or will try to go away depends on the 

stability of that equilibrium point. So, in order to study the stability of the equilibrium 

point, we need to take this away. We need to keep this wondering of this equilibrium 

point out of our purview keep it static and then, understand what its behavior will be is 

that understood. 
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So, we will break up this problem, first we have broken up the problem in to normally 

there will be the state space with all sorts of behavior and all sorts of places different 

vectors. But, in the neighborhood of equilibrium points, there would be a specific type of 

behavior given by this A matrix which we will try to understand first. And then, we will 

argue that if the deviation from the equilibrium point is small, then it is behavior would 

be given by this local linear representation we will understand that. 

And then, we will try to understand what happens if the excursions are larger. If the 

deviations are larger, then it goes into the non-linear region and then, we will try to 

understand that. But, while we try to understand this local behavior, then also we will 

first keep out of our purview, what happens if this equilibrium point itself wonders. So, 

we will consider only the local linear representation without that B u term, simple A dot 

is equal to A X what can it do. So, we are progressing in a specific way, what can it do 

let us start from the one dimensional case. 
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In a one dimensional case x dot is equal to A X will be written as x dot is equal to a x 

one dimension. What will be the solution of this equation, this equation can be easily 

variables can be separated, so you can easily integrate it is very in trivial. So, how do you 

separate the variables, this is d x d t is equal to a x, so it is 1 by x d x is equal to a d t 

integrate it over. Start it from starting point to some ending point, so from some initial 

condition to some final condition. 

So, starting function say x 0 to x at t 1 by x d x is equal to starting from t 0 to t a d t, not t 

0 let it be as 0 to t initial condition can be 0, this integration is rather trivial. So, write it 

this is log x l n x, so l n x evaluated at x naught to x t is equal to this is a times t t minus 

0, so a times t. 
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So, this give l n x t minus l n x naught is equal to a t, so you have l n x t by x naught is 

equal to a t, so now you can extract it x t is equal to x naught e to the power a t, so that is 

the solution. This essentially means that the result how it will behave depends on the 

initial condition, but more so depending on a. What will happen a is a number, a could be 

a positive number or negative number, if it is positive then what happens, it will go on 

increasing. 

So, for a positive it will be time dependent on x start from some x naught and it will go 

on increasing, t x a negative it will be starting from some initial condition and then, it 

will go, that is the only thing possible. Now, this goes to infinity unboundedly, means 

that such a system would be unstable. Starting from some initial condition it will go 

away, it will go away from where from the equilibrium point, so it is a unstable thing. 

While here this is the deviation and deviation is exponentially decaying, therefore that is 

a stable system, so which means that for a positive, that is unstable and for a negative 

stable, this is as yet rather trivial. But, we need to understand this, because that is what 

will be extrapolated in high dimensions, how to do it in high dimensions. 
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In say 2 D, consider a 2 D system, in a 2 D system your vector would be X is equal to x 

y. So, actually you will be seeking a solution of the form x t y t starting from that is what 

you are seeking, the way you are seeking here this as the x as the function of t, here you 

are seeking this value. Now, probably you have come across the theorem, while you 

were studying Maths that there exists a theorem that, if you can somehow how we will 

worry about later, if you can somehow identify two solutions in a 2 D system. 

If we can somehow identify two solutions, then any given solution starting from any 

initial condition will be a linear combination of these two solutions, if it is a theorem 

discovered pretty long back. So, I am not going in to the proof of the theorem, but let us 

talk about the application of the theorem. So, if you have find somehow given two 

solutions in some convenient way, then we have any given solution as x is equal to linear 

combination means c 1 x 1 t plus c 2 x 2 t, y is equal to c 1 y 1 t plus c 2 y 2. 

So, x 1 y 1 t is one solution how we have obtained we will come to that later. So, 

supposing we have obtained this and this somehow, then any given solution will be 

dependent on this. Now, what determine the c 1 and c 2 it is an initial condition, so initial 

condition will determine the c 1 and c 2 and somehow we have to obtain this. So, the 

cracks of the solution then in 2 D depends on how to obtain this how to obtain this. 

Well there is a condition, do you remember the condition the condition is that, these have 

to be linearly independent solutions x 1 and x 2, not just any solution, linearly 



independent solutions. Because, you can obtain this only if the determinant x 1 x 2 y 1 y 

2 this determinant is non zero. So, you have this condition impose that these two are 

linearly independent solution, what do you mean by linearly independent, physically 

what does it mean. 

Student: ((Refer Time: 42:11)) 

You cannot multiply a constant to this to obtain this, if you can obtain, then it is a 

linearly dependent, if you cannot obtain then it is a linearly independent as simple as 

that. So, you need to obtain two linearly independent solutions that is crux of the matter. 

How to obtain this linearly 2 D linearly independent solution that is the essential things 

in any solution of a differential equation, linear differential equation. So, we need to 

solve the differential equation. 
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So, let me state the problem, the problem is how to obtain two linearly independent 

solutions. Now, what is our equation our equation is this ((Refer Time: 43:17)) except 

this, so X dot is equal to A X, where the X dot is a vector X dot Y dot and the capital X 

is X Y. Now, notice what is it doing, here is a vector, so here is a vector on which you 

have operated the matrix X to obtain this, this is also vector. 

A vector geometrically is a vector X, on which you have operated by the matrix A to 

obtain this another vector say like this. I do not know if your mathematics teachers have 



told you this, that a matrix the main role of a matrix is to map a vector in to another 

vector that is it. Often we do it and do everything very algebraically, but geometric 

consumptions are better, that a matrix is primary function is to map a vector in to a 

vector. 

If the matrix is a non-symmetric matrix, then the vector from which it maps in to another 

vector they have different dimensions. While, if it is symmetric matrix as it will be in 

this case, square matrix then it will be not a symmetric a square matrix. Then this is the 

source and this is the result source and the result will have the same dimension, but the 

point is that it maps a vector in to a vector. 

Now, this vector from which it starts operated on gives this, they will in most cases be in 

different directions, different magnitudes quite natural. There is no reason to believe that 

they will be same or something like that, they will be different. But, there exist two 

directions in a 2 D system, two directions such that, say if this is the direction. Such that 

if you start from a vector in this direction, the result will also be a vector, where is the 

black 1 in the same direction. 

So, if this is your X that will be your X dot, so what statement have we made in a 2 D 

system there always exists two directions such that, with the property that, if the initial 

vector X is in that direction, the transformed vector will also remain in that direction. So, 

the advantage is then that if you have somehow identified this take a initial vector here, 

the final vector is along that direction. So, the whole things it becomes one dimensional 

whose solution we already know, that is the clue. 

So, we have already obtain the solution of the 1 D system, who which came out to be 

where is it, ((Refer Time: 46:53)) x t is equal to e to the power a t we know the solution. 

So, that is exactly what we will do, we will take the initial condition on that direction and 

the everything will then remain on this direction, because the initial state is this how it 

moves is also along that. So, in the next instant it will again remain on this line, so 

everything will be on this line it will become one dimensional problem, good. 

So, in that case we somehow to need to identify this direction. Not only that this 

direction is called a Eigen direction, so these directions are called Eigen directions. And 

any vector along an Eigen direction is an Eigen vector. Not only that, here you have a 

vector X vector on which A has been applied, A has operated on this X vector to obtain 



this. So, this will be some since it is the same direction this will be nothing but, a number 

multiplied by X. 

That means, this number if it is small, then it is squeezed, if it is long it will be enlarged, 

but whatever it is, if it is the same direction we can say that it is just a number multiplied 

by X. And that number is called the Eigen value. So, we will be able to write from here, 

X dot is equal to A X, which means A operated on X will be nothing but, a number 

lambda times X; this lambda is the Eigen value, the lambda is in the Eigen value. 

So, the essential point then falls down to how to find the Eigen vector and how to find 

the Eigen value. In fact, in order to find the Eigen vector you first have to find the Eigen 

value, so let us find the Eigen value that will turn out to be trivial. Here this is the 

equation then, from this equation you can write A minus lambda I, where I is the identity 

matrix of the same dimension as A times X is equal to 0. Now, this equation is will be 

true, if this determinant of this will be 0, so the result is A minus lambda I determinant 

equal to 0. 
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Now, this will have to be then written as A is A 1 1 A 1 2 A 2 1 A 2 2 minus lambda I, 

which is lambda 0 0 lambda equal to 0, this determinant equal to 0, which is nothing but, 

determinant of A 1 1 minus lambda A 1 2 A 2 1 A 2 2 minus lambda equal to 0. 
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Now, from here then we can write A 1 1 minus lambda times A 2 2 minus lambda time 

minus A 1 2 A 2 1 is equal to 0. Now, we can multiply this lambda square minus A 1 1 

plus A 2 2 lambda plus A 1 1 A 2 2 minus A 1 2 A 2 1 is equal to 0. Notice that it is a 

quadratic equation this is called characteristic equation, so this is the quadratic for a 2 D 

system. For a higher dimensional system it will be as many order, good. So, quadratic 

system we know always that it has two solutions, so there will always be two Eigen 

values there will always be two Eigen values. So, you can identify, now let us see, let us 

just do one problem. 
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Suppose your A matrix is minus 2 1 1 minus 2, then what are the Eigen values, the 

characteristic equation will be lambda square minus A 1 1 plus A 2 2, A 1 1 plus A 2 2 is 

minus 4 and lambda plus this comes to 3 is it, 3 is equal to 0. So, lambda square plus 4 

lambda plus 3 equal to 0, so the solutions are minus 4 plus minus root over 16 minus 12 

by 2 is equal to this is 4 root over 2, so you have minus 4... 

Student: ((Refer Time: 53:52)) 

Goodness, how can all of you say different things to this problem. 

Student: ((Refer Time: 53:59)) 

See there is by 2 

Student: ((Refer Time: 54:08))  

Yes, so minus 1 and minus 3, so you have two solutions which means these are the Eigen 

values. What is the meaning of minus? 

Student: ((Refer Time: 54:24)) 

It means, yes it means that if you have the original vector like this. The transformed 

vector will be in the opposite direction, but in the same along the same line that is all, so 

that is the meaning of the term minus. And it is also easy to see that if it minus, then if 

the initial deviation is this, in the next instant it will move in the opposite direction it will 

come closer. At this point it will again be along that direction it will come closer, so it 

will slowly home on to that equilibrium point. We will look at that later, so this is the the 

way to obtain the Eigen values. And how to obtain the Eigen vectors that is simple. 



(Refer Slide Time: 55:15) 

 

We have A X is equal to lambda x that is what where we started, so you will have to say 

A minus lambda I x is equal to 0. Now, you can expand it and write it this will be we 

have already done that A, where is it 1 1 minus lambda A 1 2 A 2 1 A 2 2 minus lambda 

times X Y is equal to 0. So, this gives two equations, one is A 1 1 minus lambda x plus A 

1 2 y equal to 0 and the other 1 is A 2 1 x plus A 2 2 minus lambda y equal to 0, there are 

two equations, there should be, yes there is a point there is a cracks. 

There are two equations and you must say that now I solve it, no you cannot solve it 

because these two equations to your great surprise, will always turn on to be the identical 

things. These two equations will always to be identical why, because you are trying to 

find the Eigen direction not the specific vector. Therefore, X Y should not be 

determinable, only the direction should be determinable. 

So, if you have this equation is same as this equation. Then this and that will 

independently give just the direction each will give the direction, that is the Eigen 

direction. So, for this problem you work out the Eigen directions, that is all that for 

today. 


