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In the last class we have seen a particular way of creation of a chaotic orbit. There in that system 
you had essentially two planes, two eigenplanes and you had outdoing spiraling orbit in those 
outdoing planes and they somehow interacted so that the overall outgoing behavior was arrested; 
from one plane the orbits got thrown into other plane and from there it got thrown back into this 
plane and so on and so forth. So that is how the chaotic orbit is organized that is one mechanism. 
Today let us look at some other mechanisms of derivation of chaos just in order to get you 
comfortable with the idea. Today let us start with what is known as the Rossler Equation. 
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This is the German pronunciation it’s pronounced as the Rossler. You will have to make your 
mouth look like as if you are trying to pronounce o but you will actually pronounce e. So you it 
will make that o kind of sound this is Rossler. So this man proposed a certain set of equations not 
exactly in order to represent a particular physical system but it was just a set of equation that has 
certain property which will be very interesting for us to study. It is simple linear equation. Here 
is the beat of nonlinearity this is z extra except for that everything is linear. So in a linear system 
you would expect the kind of behavior that you already know. So if I ask you to analyze this set 
of equations what will you do, what will be the procedure? You will first locate the equilibrium 
point. Where is the equilibrium point? It’s 0 0 0 in equilibrium point not exactly because of this 
one. How many equilibrium are there? Try to find, both of them are actually existing. 
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Now depending on the values so depending on the relative values of c and a. So under what 
condition would they exist and under what condition they would not? c square is greater than 
four a square then they exist. If this not true then no equilibrium point. Now here in this system 
since these two equations are perfectly linear I might argue in the following way, this is a three 
dimensional thing. I will look from the top as if I am looking at the projection into the x y plane, 
I can do that. If I do that then I see only these set of linear equations and in these set of linear 
equations 0 0 is the equilibrium point and by ignoring this I can find out just by looking at this 
because if I am looking from there, I will not see this, I will see only that and I can more or less 
in a sort of highly simplified line of reasoning, I can talk about this stability of that 0 0 
equilibrium point in the x y plane. Here if you consider only these two equations then it will take 
this form x dot y dot is equal to 0, -1, 1, a. 
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If some condition is satisfied then you would notice that this will become an outgoing spiral 
behavior. Can you find out that condition? Easy from this, just a two dimensional equation. So 
what is the condition, what is the expression for the eigenvalue that’s it. Lambda is a plus minus 
a square minus 4 by 2 and the condition for stability is this term (Refer Slide Time: 8:15). This 
term should be negative then it is stable else it will become unstable. So you can easily see that it 
will become unstable at a is equal to zero. At a is equal to zero it will become unstable fine. This 
is negative term, a is equal to zero means it would be a purely imaginary pair of eigenvalues and 
beyond that it will become outgoing spiral so you would expect outgoing spiral behavior. So this 
is all you can infer by looking at only the projection, completely forgetting about what is 
happening in the z axis. 
 
Now notice the character of the thing in the z axis. So long as x is less than c this is a negative 
term. So depending on z, if z is say you start from the z is equal to zero plane then if there is 
some amount of z then it will create a negative rate of change in z. It will come down to the z 
plane. Can you see that? 
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So if x is less than c then that is happening. Any deviation along the z coordinate will tend to die 
down of course but I am sort of making hand waving argument to give a flavor. So a value is 
there but if a value is sort of overwhelmed by this negative thing that will happen but then if x is 
greater than c then you see plus a positive number. So this will fellow will tend to build up. So 
things will start to happen in the z plane also. As it happen in the z plane, as it goes in z plane 
here is a negative term which means it will make x smaller. If x is smaller then again you can see 
these become linked up but essentially you start to get a feel of why things will not blow to 
infinity.  
 
If x becomes large then z will tend to become large that will again tend to reduce x so on and so 
forth. So this is something we can infer that this fellow will tend to create a bounded orbit but 
then here you can see a and c are the two parameters and these two parameters are in some books 
we will find the abc. They put the parameter this way but for the sake of simplicity we have 
taken a as the same and there is an equilibrium point on that plane which has become spiral. Let 
us look at the behavior there. 
 
(Refer Slide Time: 00:11:48 min) 
 

 
 

I have started just from anywhere and it goes through some oscillation and finally it converges 
on to something that is almost on this plane. Almost there is a beat of excursion along the z 
direction but nevertheless it is a periodic orbit it has created a periodic orbit. Notice that first I 
argued that there would be a unstable equilibrium point with outgoing spiral kind of behavior 
somewhere here. So it will tend to go out let’s check. Let’s set this initial condition to be zero 
and very close to zero, 0.001 and let us restart the whole thing and see how it behaves.  
 
 
 
 
 
 



4 
 

(Refer Slide Time: 00:12:58 min) 
 

 
 

So you can see that here there was a plane that plane I was talking about, if you look from the top 
you will see this outgoing spiraling orbit that you see right now but it has ultimately gone out. So 
that the nonlinearity will start having its plane and as a result of it there will be excursion along 
the z direction which will keep the whole thing bounded again which means that this out going 
spiraling behavior could not really continue. If you to start for some where here then let us see 
what happens? Where do you want to start so that you can see the incoming spiral orbit say x is 
equal to -4, y is equal to -6 and z is equal to -1.  
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It has converged on to that from the outside which means it is a limit cycle. We have already 
talked about that situation where it is a outgoing spiral behavior on the inside and incoming 
spiral behavior on the outside. Ultimately there is a closed loop behavior, a periodic orbit that is 
created. So it is a periodic orbit that is created, from the outside also it is coming in because of 
this a feedback term. Now let us change the value, a little more let’s see 3 and let us do it. 
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From inside it looks better. Have you noticed what has happened? No, not only the radius has 
increased something more has happened that too looks now.  
 
(Refer Slide Time: 00:15:42 min) 
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There are two loops now. The one that I talked about as a period two orbit. This is a period two 
orbit. Initially it was a period one limit cycle. Now it is a period two limit cycle. If you increase 
the parameter even further say what you actually saw in the first computation. So you can see 
that now it is still a period two orbit. Let us increase the parameter in steps. I am increasing in 
very small steps though.  
 
It seems to be a still period two orbit. What did I do? When I am pressing this one what I am 
telling the computer to do is where it ended the last computation, you start from that as a initial 
condition so that you delete all the initial transient and then you will be able to see the final 
steady state behavior. So as you increase it further, here you can see a lot of things happening but 
is it really there? No, it is still a period two orbit. Now I am making a 3.9. 
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Something has happened. What has happened? It is now period 4 orbit. So you see the period 2, 
now it has separated and these were earlier together. Now they have separated and as a result of 
which it has created a period 4 orbit.  
 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 

(Refer Slide Time: 00:19:18 min) 
 

 
 

Increase it further. How many? Still 4. How many? Too many but nevertheless a periodic orbit. 
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I can see that it was changing too fast so let me see what is in between. This is still a period 4 
orbit. At 4.1 it is still a period 4 orbit. 
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4.15 the period for each of these branches have now broken up. As a result it is a period 8 orbit 
and then it will enable you to understand what we saw at 4.2. 
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It is period 16 orbit so we see a succession in which it was initially a period one orbit then it 
change to a period two orbit, change to a period four orbit change to a period eight orbit change 
to a period sixteen orbit. Do you see it is a progression and where does it end? If we have a series 
1, 2, 4, 8, 16, 32, 64 and so on and so forth where does it end? Infinite, so it is not really difficult 
to predict that going by this sequence after sometime you will end in a period infinity orbit or in 
other words a chaotic orbit.  
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You can easily see, in once step I will change it somewhat more. 
 
(Refer Slide Time: 00:21:22 min) 
 

 
 

Let me change it a little more so that you can see it clearly. 6 is there. Now see the evolution how 
it goes? So as it goes outwards it is strong up and it lands inside again it goes outwards and so on 
and so forth. So you can increase it and see. You can see it has turned into chaos. So what was 
the sequence in which it was going? In this case you could clearly see that it was not just 
happening any way, it was going in a particular sequence in order to reach chaos it was what is 
known as a period doubling cascade. It was following a period doubling cascade. Can you see 
the Eigen plane even though the system is non linear you can still see that more or less it is 
following the the eigenplane here in this part and then because of the non-linearity it is going out. 
So this is character of the Rossler attractor. You can see it from various angles for example I stop 
it.  
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If you see from another angle, you can see what is happening. It is you see the threads going up 
and coming down, it’s like this. Do you see the structure? You might see it from various angles 
to make it clearer.  
 
(Refer Slide Time: 00:23:55 min) 
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So you have the structure more or else clear now. So that was one another very clear example of 
how it happens, how it finally builds in to a period infinity or a periodic orbit. We will see why 
this happens, what is the mechanism in subsequent lectures. Right now I will not explain why it 
went from period 1 to period 2, period 2 to period 4, period 4 to period 8 and not something else. 
Today I will not do that but later I will come back to this question. That is obviously a very 
pertinent question why does it happen that way. Why doesn’t it go from period 2 to period 3 for 
example? So we will come to that.  
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Let us now take up another very interesting and very simple system. Suppose you have a 
pendulum. If it is simple pendulum its equation would be say if this is your x in normal theta, we 
now call x because that is the only position variable necessary in order to specify it. So it will be 
x double dot plus something times x dot this is the dissipation term plus something times x is 
equal to, this is actually the forcing term. This is actually the sin x term as you have already seen. 
So let us write it this way that we have already seen g by l sin theta that term comes, x double dot 
plus cx dot plus sin x.  
 
Now this will be a very simple is equal to zero will be very simple. We have already seen its 
behavior. Its behavior would be that there would be an infinite number of equilibrium points, 
there would be a spiral in inverse than the saddle again the spiral, again the saddle so on and so 
forth we have seen that. Let’s make it a little more complicated. Suppose you have a forcing 
function that applies the force like so in the tangential direction. You might do it like this that 
you have a point of suspension and suppose this point of suspension will be moved that’s one 
kind of forcing. That means the pendulum is hanging and here is a point of suspension and that 
fellow is being moved. Those of you who have done the dynamics of physical systems course, 
we take that derivation of that equations has one of the standard problems very simple but 
ultimately it leads to somewhat complicated equations. 
 
Let us not today land into such complicated equation because we are not looking at the equations 
today, we are looking at the behavior. So let’s take the very simple system where the forcing is 
exactly on the tangential direction and the forcing at tangential direction can be a sinusoidal 
term. So that sinusoidal term let that be some amplitude k cos omega t. by the way here there 
was a g by l term which we assumed to be in unity where sort of scaled everything as a result of 
which this sigma which is the frequency of the forcing function that has become a function of the 
natural frequency oscillation of this fellow. Natural frequency of oscillation of this fellow was 
root over g by l. 
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So this is actually expressed in terms of that. In every case ultimately we learned of this equation 
we are trying to study the behavior of this equation. Very simple system just a pendulum with 
some kind of damping and you are giving a forcing function. Let’s study its behavior. Now for 
that let’s start of all over again. I will go to the driven pendulum. Now here our parameter is, if 
the value of k here so let us start which say 0.4. See it is homing on to a periodic orbit. Can you 
see that? It’s a nice periodic orbit. So it has become a periodic orbit, in what way that this fellow 
is making it oscillate and the pendulum is also oscillating just like that.  
 

  (Refer Slide Time: 00:30:25 min) 
 

 
 

This closed loop here is nothing but an oscillator emotion in the real physical system. This 
frequency of the oscillation, the forcing frequency really because here there is a natural 
frequency of oscillation and there is a forcing frequency but here the forcing frequency will 
dominate its behavior and therefore will make it oscillate at that. Only when the two frequencies 
interact in a way somewhat moving out of state with each other, you see start to see other type of 
behaviors. Let’s now increase it further, increase the parameter further. 
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See here it is still going into a nice periodic orbit. Is it completely true in the sense that if I start 
from another initial condition say -3 and 3 does it land there?  
 
(Refer Slide Time: 00:31:51 min) 
 

 
 

This implies that there are actually two coexisting behaviors. You start from somewhere else it 
goes here, you start from here it goes here. Can you see that? So it is not really just one oscillator 
emotion, there are two possible oscillator emotions of the system. These are two coexisting 
attractors. So for such a simple system you have coexisting stable periodic orbits.  
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Stable in the sense that if you keep running like this they stabilize on to these two orbits. Now let 
us increase it further. Still periodic orbit starting from two different initial conditions.  
 
(Refer Slide Time: 00:33:12 min) 
 

 
 

Not coming anywhere right? Let’s then I saw that at 1.0 it was nice to coexisting periodic orbits 
and then this fellow starts doing this wide things. So let us increase slowly, let’s see. 
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1.1 it is still, no it’s not coming to the same behavior. Can you see there? It’s not periodic orbit 
yet. If you are not convinced let’s see not periodic orbit really. Let us allow it to run for longer 
time. See what happens. I want to run it fast and so that don’t waste time on this, both individual 
and not coming back to the same behavior. If you want to start all the time you are seeing this. 
So you see it has a large periodicity. So in between 1.0 and 1.1 something more happened. So we 
need to increase in even more smaller steps. I am illustrating this because on various systems you 
will have to do this procedure. At this state you still a nice periodic. Now look what has 
happened. See what is it now? It has really gone into a period to orbit both of them. Can you see, 
there is a difference here? 
 
(Refer Slide Time: 00:35:18 min) 
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So both of them gone into period 2 orbits and if you increase it slightly more, in this system the 
changes are relatively faster. You would notice that it is now changing into period four orbit 
almost. So here also you see a succession of periodicities period 1, period 2, period 4 but here 
there is a additional complication that there are two very symmetrical attractors but coexisting 
attractors. Now we are in a position to change it significantly and see the result. 
 
(Refer Slide Time: 00:36:19 min) 
 

 
 
I have changed it too much let’s do it slowly. You will not be able to follow what is happening. 
 
(Refer Slide Time: 00:36:38 min) 
 

 
 

No it is going up in time.  
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See the blue parts and the red parts are getting mixed up. They are no longer separated, they are 
getting mixed up. So beyond a certain parameter value starting from different initial conditions 
their behaviors at different always, their exact positions at different all right but essentially they 
tend to behave in a qualitative way in the same manner. They visit all parts of this attractor 
which means that the two initial conditions, if you have two D initial condition the state space 
that they visit they sort of mix up. This is called a mixing in the state space. If it is a periodic 
orbit with two different periodic attractors then there is no mixing. Start from different initial 
condition they go to different parts of the state space.  
 
While in this case you have a mixing of the behavior starting from different initial conditions and 
this behavior is really chaotic. How do we make sure? In order to make sure let us start the 2 
orbits from very close positions. For the red one it would be 0.00001 and 0. Now let us start it.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19 
 

(Refer Slide Time: 00:38:40 min) 
 

 
 

You cannot distinguish them. Now you can, this is the hallmark of the sensitive dependents on 
initial condition. We have started from very close initial conditions but ultimately they got 
separated out which means that its behavior is a chaotic behavior. Just to recapitulate what is the 
technical connotation of the term chaos. One it is the bounded behavior, two it is a periodic 
behavior and three there is sensitive dependence on initial condition and in all three systems that 
you are studied we saw this property that there is these three characteristic features. Now you see 
the last day’s one of you had commented that if you have a chaotic orbit, I had said that then 
prediction fails.  
 
(Refer Slide Time: 00:39:48 min) 
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Why because in order to do the prediction you will have to start from initial condition and solve 
the set of equations to come somewhere there and if there is even a minischool (00:39:58) error 
in the initial estimation of the state then obviously there will be a large error in the estimation of 
the state after some time, for due to this particular reason that two extremely close initial 
conditions evolve completely differently. They exponentially separate out and that’s why 
prediction fails. prediction fails not only because of our instrumental errors. Instrumental errors 
means if I want to measure the initial condition of any physical system, there will be some 
instrumental errors which I represented in the last class in terms of an error ball and we had 
argued that if this error ball reduces then the prediction is successful. If this error ball, I am not 
talking just of the error ball expanding in size but it is distorting in such a way that in some 
direction the distance increases then the prediction fails. 
 
Under what condition would the error ball increase in size? If you take the Jacobian, his 
determinant is greater than one. Then it will be increasing in size, non dissipative system there is 
a energy input due to which things can blow up but here we are mostly considering dissipative 
system which means that this error ball will shrink in size but even though it shrinks in size, it 
may sort of flatten out in such a way that in one direction it grows. In other direction it shrinks 
and the growing direction that will go to infinity unless something is done to it and that 
something is where it is folded. That is a mechanism we talked about. Now this failure of 
prediction does not happen only because of your instrumental errors. 
 
Suppose due to some way by some means, you have accurately estimated the state. Still how will 
you convey to the computer as a real number? The moment you want to convey to the computer 
as a real number, computer obviously has a finite length of any number. So it will have to be 
truncated somewhere. You might argue that I may specify the initial condition by means of a 
rational number which requires really a finite number of bits. You might argue that but the fact is 
that in the real number space, the irrational numbers are dense on the real number space which 
means that if you want to to estimate it in its neighborhood there will always be a some irrational 
numbers which means that this argument will fail. Ultimately in order to specify that you will 
need to write down a infinite number of digits in order to specify that, which is not possible and 
therefore both due to the instrumental error as well as due to specification error there will be this 
error ball and therefore there will always be an error in the prediction of the future state. 
 
Now this as one of you commented in the last class you can still make a prediction to sometime 
in the future and how long the time is can be estimated on the basis of how far it goes off. These 
two initial conditions will go off but there can be the question how far it goes off or how slow it 
goes off. Two initial conditions will exponentially diverge from each other but that rate of 
divergence can be different for different systems and depending on that we can confidently say 
that okay for weather three days hence I can predict with confidence but not more.  
 
For another system, for the given pendulum I can say that 0.5 second hence I can predict with 
confidence. Obviously that depends on, if this error ball is a round shape and then when it 
reaches here it takes this kind of shape. Then it went something like this and as a result you can 
say that here there is an expanding direction and here there is the contracting direction. In 
general so long as you can represent it as an ellipse I can easily identify the expanding direction 
as the major axis and the contracting direction as the minor axis.  
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Then we can say that the separation between two points, let us write delta x0 the separation 
between two points and that goes into delta x at some time t. Now if these two points happen to 
be in this direction then you can write it as delta xt is e to the power… So here is the term that 
comes in sort of a linear approximation we are making here. You might argue quite logically that 
there is no guarantee that this lambda, it really exponentially increases. Yes, may not really 
exponentially increase but nevertheless if at every point you assume that there is a local linear 
representation then in that local linear neighborhood, you can see that if there are two real 
eigenvalues then the immediate evolution will be in terms of e to the power of lambda t and then 
goes here then again e to the power of lambda t, goes here again e to the power of lambda t. So 
that this will go on as more or less like this. Only thing is that at every point this lambda may not 
be the same.  
 
The answer to that question about how long can I predict essentially depends on this value of 
lambda. If this lambda is positive, we know that there will be exponential separation increasing. 
If it is negative it will decrease. If it is positive then it will increase, if it is negative then it will 
decrease. So for a chaotic system we can confidently say that one of the signatures of chaos 
would be that the lambda will be positive but nevertheless we can still ask the question how 
chaotic. Some kind of a major of chaos that will be given by this number here. The question is 
how can we estimate this number in a physical system? Let us consider this issue. 
 
(Refer Slide Time: 00:47:44 min) 
 

 
 

So let us talk in terms of two different representation. Suppose there is an orbit that going like 
this in the state space. So at every point I can locally linearize it that means at every point I can 
write down the Jacobian, obtain the eigenvalues and make a reasonable estimate of how this ball 
is going to change its shape. If it is a saddle kind of orbit I know that it will increase in some 
direction and it will shrink in some direction so that I can easily say that as it goes, after 
sometimes it will take shape something like this and the way it evolve depended on the 
eigenvalues. 
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So we can confidently say that the unstable eigenvector direction will be somewhere in this 
direction and the stable eigenvector direction will be somewhere in this direction. So for small 
stretches of the evolution we can represent the rate of divergence in terms of the maximum, the 
bigger of the two eigenvalues. If it is negative then we know that it sort of shrinks, if it is positive 
it expands and therefore if there are 2 or 3 eigenvalues the bigger one will represent the rate of 
divergence. So we can do one thing. A program can be, suppose we simply look at the Lorenz 
system like this. 
 
(Refer Slide Time: 00:49:33 min) 
 

 
 

Start from this point and go on, as it goes on at every point I am calculating the Jacobian, 
calculating the maximum eigenvalue and since this is a non linear system that will not remain the 
same. At every point the values might be a bit different. So we keep on keeping track of the 
maximal eigenvalue and then average it around over the whole orbit. Can you do that? Yes so 
that we get an estimate of this number lambda, average about the whole orbit you can do that. 
That number is called the Lyapunov exponent. So the concept is that as the orbit goes at every 
point in the orbit, not at every point in the state space but along the orbit. Why because if you 
look at this state space, this is an attractor which means that start from any initial condition 
outside, it will converge on to this orbit which means that if you start from two initial conditions 
outside their distance will reduce, as it goes homes on to this attractor. So it is not just anywhere 
in the state space, it is not average over the state space. It is averaged over the orbit. 
 
So as you go along this orbit at every point you locally linearize the Jacobian. You obtain the 
Jacobian, obtain the eigenvalues and keep track of the bigger eigenvalue, the one that is positive. 
So you keep on calculating that over the whole cycle as it goes on and average it out. Had it be a 
linear system that would be necessary? Because then the Jacobian will be same every where but 
since it is the non linear system this is necessary. That would represent the exponential rate of 
divergence of nearby orbits that bigger eigenvalue. Now the actual problem is not this, this is 
trivial.  
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Given a set of equations you can always do that but the actual problem is that often you have an 
experimental situation. From the experiment you have got some kind of an orbit because you can 
measure at successful instants, the value of the position and the moment and the stuff like that or 
in case of electrical circuits, you can measure the currents and the voltages and thereby you can 
plot the orbit on CRO screen. You can see the attractor, chaos and everything can be seen on the 
CRO screen. Now suppose there is an experimental situation like that, how do you going to 
measure the Lyapunov exponent? In other words suppose I have got a set of equation that you 
are not very comfortable with linearize at every point. 
 
Let’s take it like this. Can we take another route which will give us some clue about doing it on 
an experimental data set? Let’s try to understand this question. What question am I asking? 
Essentially thing is that at every point I have to local linearize and get the eigenvalues but of 
course I cannot do that unless I have a hold on the equation set. So let us try to formulate some 
other means of doing so which can be applied also to experimental data where you do not have 
the equations. So in that case what we will do? 
 
(Refer Slide Time: 00:53:50 min) 
 

 
 

We will start from an initial condition which will sort of evolve in the state space. We are trying 
to find out how nearby initial conditions diverge and therefore we will have to take another 
initial condition say we will take so much here. So this orbit, the blue one is the natural orbit or I 
shouldn’t say natural orbit, every orbit is natural. It is the orbit that we have calculated initially 
and then we perturb it and then recalculate the orbit. From here as a result of which its distance 
will go on increasing after some time stop the procedure and calculate how far it has moved. So 
this is delta x0 and this is my… I can now express it in that term since I know the time. I can 
express it that delta xt is equal to e to the power of lambda t time’s delta x0 but this is only about 
this much. Can we do that over the whole? No we cannot, why because this expanding direction 
will go on changing. As we have already learned it will fold. So after some time this expanding if 
it folds, it will come back to a position near to it. Even though there is a stretching in the state 
space, the point might actually come closer. Will it not? 
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Suppose you start from another initial condition it goes on in this orbit, suppose after some time 
this fellow go this way and that fellow goes that way. After some time both come to one of the 
lobes. Will the distance reduces? You would not infer from there that the exponential divergence 
is stopped, no it’s still there. So what we will you do? We will then have to rescale this 
difference, after some time we have to stop it and again we have to come to a point that is closer 
to this one. Again we have to evolve, we come to this point. Again we have to come to a point 
that is closer again we have to evolve this point, again we have to find where the difference is so 
we have to go this way. Why because it actually folds frequently that is a character of the state 
space of such systems? 
 
So periodically you let it evolve two trajectories. Let it evolve, one of them is what is known as 
fiducial trajectory, the trajectory is the nominal trajectory and the other is part of trajectory. So 
the part of trajectory you allow to evolve for some time and then you rescale it in that direction. 
Do you understand that? Why do you have to put it in that same direction, why can’t you start 
here from another position? Because this has already aligned, this line has already aligned in the 
direction of the expanding direction. So you take another point closer to this initial condition, 
along the same expanded direction let it evolve. The expanding direction moves, changes again 
come here, take another point so do you understand the algorithm the way you have to write it. 
From here to here the evolution is calculated by the set of equations by the runge-Kutta method 
and these are also calculated by the same things but depending on periodic rescaling and again 
you have to evolve by the same method. Today let us stop here. In the next day we will see how 
this can be also taken to the experimental situations where you do not have the equations to 
evolve where you have just a data set coming from the experimental set up. So that’s all for 
today.  


