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In the last class we had concluded that for the set of equation that I have given you is called the 
Lorentz equation, the origin will be the only equilibrium point before the value of r =1. after that, 
as the parameter r is changed through the value of one, you have that particular equilibrium point 
becoming unstable while two other equilibrium points then appear and becomes stable. as you 
change r further, then you will see that the real parts of the Eigenvalues of those two equilibrium 
points which were having complex conjugate Eigenvalues, i.e., having inwards spiraling orbits, 
there the real part would slowly go towards zero and finally at some parameter value it will cross 
zero which means that they will also become unstable. So we ran into situation where the the 
fellow at origin was throughout unstable after r =1 and the other two also became unstable. So let 
us see how the orbits look like all through these sequences of events as the parameter is 
changing. I will use a readymade program. 
 
(Refer Slide Time: 00:02:22 min) 
 

 
 

You can easily do this by Matlab coding. That is exactly why I asked to do it. So first let us start 
with a parameter value something r = 0.8. Here it is‘s’ but we have written sigma and its b is 8/3 
which is 2.667. So if I now start the orbit simulation, you will see it starts from this point and it 
goes to zero.  Start from any other initial condition it will also go to zero and you can see that it 
is going to zero through one of the stable Eigenvectors. Now let us increase the parameter 
beyond one while from theory, we expect that the origin fellow will become unstable and 
something else will become stable. 



2 

 

Let’s see if that happens. Let us increase it to say 1.8. Let us increase the time. You can see here 
it was coming here (Refer Slide Time: 04:00) but it is going away. If you increase the parameter 
further, say 10 now it will be clear how it is going away. 
 
(Refer Slide Time: 00:04:31 min) 
 

 
 

Now here there was one fellow that has become unstable but now you can see clear spiraling 
orbit spiraling inwards towards this and do you see that this spiraling orbit is in a plane? It is this 
plane that I was talking about. How do you obtain this plane? As I told you have to obtain the 
you can easily obtain the location of this equilibrium point at that equilibrium point you have to 
evaluate the Jacobian matrix obtain the eigenvalues now there will be one real eigenvalue and 
two complex conjugate values. You can by by looking at it you know that the real eigenvalue is 
directed something like this (Refer Slide Time” 05:17) and the complex conjugate eigenvalue 
associated with the Eigen plane and you can see that Eigen plane. That Eigen plane is to be 
obtained by taking the real part of that eigenvector and the imaginary part eigenvector both real 
vectors. The plane passing through these two vectors is the plane here. So you can analytically 
calculate this plane. But nevertheless the point is that here we have starting point and it is going 
through all sorts of things and finally it is moving on to the equilibrium point. But you have to 
notice from analysis that there should be two of them. So let us try to do that. Its starting point 
was 15, 10 and 40. Let us start from -15, 10 and 40. It was a symmetrically placed location. So 
let us recalculate it. 
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(Refer Slide Time: 00:06:31 min) 
 

 
 

So this starts from the from the right-hand side and it goes and converges onto this one. This 
fellow starts from here and it goes and converges onto this one. There are the two equilibria. The 
other fellow is unstable and these two equilibrium are now forming a plane and along the line 
which is orthogonal to it. There is the stable eigenvector and these planes are also stable Eigen 
planes at this parameter value. Let us increase further. What do you expect? As you increase the 
parameter further, its real component will become closer to zero. Suppose I don’t go to the 
positive side but it becomes closer to zero. What do you anticipate to happen here physically? 
What does the real part give? Real part gives e to the power sigma t. it will come in very slowly. 
The rate at which it is coming in will slow down and therefore it will have very long-going 
spiral. Let’s increase it to say 20 and see what happens. 
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(Refer Slide Time: 00:08:11 min) 
 

 
 

See if you run it slowly, notice how it is going. Still it is coming into the equilibrium. So one 
from this initial condition, another from that initial condition. But you can clearly see the planes. 
now let us increase the parameter more and run it again. 
 
(Refer Slide Time: 00:08:59 min) 
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When we run it now it will become even slower in going down. The rate is slowing down. Now 
increase it further. Now I am slowly increasing it. It’s 23. 
 
(Refer Slide Time: 00:09:23 min) 
 

 
 

We can anticipate that at 24, something will change I am changing it here. 
 
(Refer Slide Time: 00:09:47 min) 
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They become unstable. They are going out. Let us execute it little slowly so that you can see the 
evolution.  They are going out. If they are going out, the natural question is: where do they go? 
They are spiraling out. If you stop at time 10 seconds, then they will stop here. This fellow has 
gone only this much and that fellow has gone only that much. But if you can anticipate that if 
you running for a longer time then this plane will intersect with that plane somewhere. So this 
orbit will run into that orbit and that orbit will run into this orbit. Now if I increase the time of 
computation to longer time, they are going out as anticipated from theory. 
 
(Refer Slide Time: 00:10:59 min) 
 

 
 

Then something that cannot normally be anticipated from theory happens. Do you see their 
movement? This is called chaos. So it is not a very difficult thing to understand. It is reasonably 
simple. Now while this fellow goes on, let me tell you how this was first discovered. It was 
actually model of the weather. There are a large number of people who try to model the 
atmospheric circulations and from there, they tried to predict what will be the behavior or they 
also try to predict the weather. For example you may have heard that the weather prediction 
business in India requires a super computer. Do you know why? why does it need a super 
computer because at different places, people measure the air pressure, humidity, temperature and 
things like that and all that makes a grid and finally there has to be a computation and the 
computation obviously takes into account simple hydrodynamic equation. Heat produces 
convection. Next things go up as it goes up, it has to come down because it cannot indefinitely 
go up. There has to be circulating current. So around the early 60’s, 60 to 63, when the 
computers were very primitive, the kind of computer that I was talking about. In MIT, there was 
a group working on that the person whose name associated with the set of equation his name is 
Edward Lorenz. He simplified the set of equations into this set of three equations. Normally it 
will be enormously complicated stuff. But that can be simplified. 
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(Refer Slide Time: 00:13:45 min) 
 

 
 

Just imagine the whole thing is simplified into this situation that you consider a ring containing 
some kind of a fluid and you have say, a Bunsen burner here and you heat it up here and suppose 
you have got some kind of cooling device by which you cool the upper part. So what will 
happen? It will tend to go up and this fellow will tend to go down. But it cannot really go up in 
both the directions. It cannot go down in both the directions. So otherwise it will tend to take this 
route or that route and these are represented by these two different directions of rotations that 
you see on the computer. so such a simple thing where the at atmospheric circulation has been 
reduced to this simple annular ring and heating in one spot and cooling in another spot that can 
easily be modeled and he showed that it can be modeled into these three simple set of equations 
and he was trying to understand how this simple set is. 
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(Refer Slide Time: 00:15:00 min) 
 

 
 

Now as for any system, for example, many of you are electrical engineers, some of you are may 
be mechanical engineers, for any given system you will write down the set of differential 
equations and you solve them and ultimately you get an evolution of something like this. Some 
kind of an evolution against time. He also got an evolution against time. This will also give an 
evolution against time. There was nothing very holy about it. But then one day he noticed 
something clear because I will as I told you that those days the computation procedure was not as 
simple as you have today. So the computers were slow. the programs were slow and you had to 
give those brick size collection of cards and finally that goes into the computer and then the next 
day, the print outs come out in the form of a thick collection of printouts. Now supposing you do 
some computation for some time and then you want to start the computation all over again, what 
will you do? The graph will not be available to him. It was the numbers that were printed out. So 
the numbers at the last column would be entered into the computer and that would go on again. If 
you go for lunch, you enter another card with those initial conditions and let it run again and then 
after the whole day’s work, you go home, note down the final value and then next day you come 
start all over again. So that is how it ran. So one day he did the same thing but he noticed while 
he went for lunch, he entered the final value and after he came back from lunch, he entered the 
initial value as the final value of the last computation and it went on. It so happened that the 
same computation had been done the last day while it has been done by ignoring the lunch time. 
That means he went on. So he had at the end of the day two computations starting from the same 
initial conditions but one which had been interrupted at the lunch and one which had not been 
interrupted at the lunch. But there should not be any difference because final value was entered 
by hand. But two days after he noticed that for some time, the two wave forms were almost the 
same and but after some time, it was completely different. That was the starting point of what we 
today understand as sensitive dependence on initial condition. Let us try to understand here. 
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(Refer Slide Time: 00:17:55 min) 
 

 
 

Suppose the two initial conditions for this system, let us make it 26 say, and let us make the two 
initial conditions, the blue one and the red one very close to each other. Probably you cannot 
read this but the starting point is 15, 10, 40 for the blue one and the red one, I will make it 
15.00001. They are sufficiently different and close. So we will restart the whole business. 
 
(Refer Slide Time: 00:18:39 min) 
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Now they are going together. That’s why you can see them. Now they have started going in two 
different directions.  You must say that 0.0001 is not sufficiently close to each other. Let me stop 
it and run all over again. 
 
(Refer Slide Time: 00:19:15 min) 
 

 
 

They are moving together. That is why you can see only one. You might notice that though they 
are evolving independently and therefore they go in two different directions leading to different 
predictions about the behavior of the system or the state of the system yet more or less, their 
behavior overall is highly predictable. All remain within this range. They move in those two 
Eigen planes and so they are not completely unorderly in the common parlance of the term. So 
what is happening? 
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(Refer Slide Time: 00:20:15 min) 
 

 
 

You have started from arbitrarily close points and one evolution would be showing something 
like this and other one would be starting at almost the same point and it would go on evolving 
almost the same way if you plot them in time. Finally at some point some deviation will start 
popping up and then after some time you will find that they evolve in completely different way 
this phenomenon is one of the hallmarks of the case it is called sensitive dependence on initial 
condition and in fact, however fast these two initial conditions may go, it will only increase the 
time for which they more or less follow each other. If you make it 10-12, that kind of close to 
each other, then it will only go together for a longer length of time but after sometime they will 
be in going separate directions. There exists no separation which will make the two evolutions 
the same. What is the physical import of this? The physical import was to very long time sink in 
the scientific community and since you are learning this subject some 25 years after this event, 
we are at a better place to give some idea about what is happening but it took a very long time 
for people to really realize what is happening here. See the point is that throughout human 
history, we have done this business of starting from initial condition, trying to predict what will 
be the behavior of anything later. The whole business of classical mechanical essentially this. 
What Newton did was essentially this. What all the physicists after him did was essentially this. 
Trying to observe the objects in the sky like mars, the moon; take the reading of the initial 
condition, write down the system equations and solve it. That is how they finally were able to 
predict where these boundaries will go and they were successful and you see in the engineering 
community will do the same thing. When we try to design a circuit, when we design a system 
when we design a mechanical apparatus, then we do the simulation, that means we write down 
the differential equations we send it up with an initial condition and we see how it behaves. if 
you can predict that it will go from here to here in the state space, it will really does go from here 
to here. What creates this confidence? It is this. Now look at it from a different point of view. 
 
 
 



12 

 

(Refer Slide Time: 00:24:01 min) 
 

 
 

Suppose you have measured the initial condition to be here in state space, for all practical 
purposes, is it really a point? No, because supposing you are measuring the position and the 
momentum of a pendulum, can you measure to the accuracy so that you can state that it is a 
point? You can never do that. In fact, astronomical observations on the basis of which most of 
the predictions are made are even more inaccurate. So they will always be some inaccuracy in 
the specification of the position and the momentum, the variables in the state space and therefore 
you cannot really say that this is a point. All you can say is that I have measured it to this value 
but I know how much my error bounds are. Normally a proper scientific measurement will 
always specify that this is my error bound, this is the accuracy of my instrument and therefore I 
know that I have measured this value but I know that it could be erroneous to this extent but not 
more. One would say that here there is an error bar along this axis this is an error bar. So for all 
possible scientific statements, one would say that the initial condition is somewhere in this error 
ball. so when you actually do the computation, try to predict what will be the state of the system 
say one hour later, what are you doing? You are actually evolving from this initial condition to 
another state. But you can also apply this to all the initial conditions within this error ball. If you 
do that then the error ball will change its shape when it reaches here suppose it has become this 
much which means that it has evolved somewhat like this. A bigger error ball has become a 
smaller error ball. Then even though the initial estimate of the initial condition was inaccurate, 
you can say with reasonable confidence that the final prediction is accurate. So, initial error 
actually is shrinking as we are going on the prediction process. The character of the vector field 
is such that your final prediction still becomes quite accurate and it becomes somewhat 
insensitive to the error in the initial measurement. Till the 1960’s, people had encountered or 
studied this kind of system in the mean. What is the character of the system that the error ball 
containing the initial conditions that shrinks as the system evolves. Now you might again make a 
measurement here and then the measurement here would have the same kind of the accuracy as 
here. So you will get an error ball again like this. So you noticed that having measured the initial 
condition earlier and having predicted is more accurate than the measurement now.  
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If that is true, then our predictions are accurate reasonably accurate. In fact our predictions are 
accurate. How successful is the Newtonian program. This is the result of the Newtonian 
program. His program was that I will write down the differential equations, I will set out the 
basic rules that formulate the differential equations and finally those equations have to be solved 
and finally you get them. See in 1995, there was a total solar eclipse. About a couple of years 
before that, the scientist had calculated using this program using the Newtonian program. He 
predicted that the totality line will pass through this particular zone and the totality belt will be 
this big. If you stand at the particular point of time from this time to that time, you will be able to 
see the total solar eclipse based on this program. Having observed the position of the sun, moon 
and earth earlier and having predicted by writing down the system equations, solving the system 
equations, they had predicted. How accurate that where we stood at a point, we watched our 
clock we had to synchronize it with the Greenwich clock but nevertheless we kept the watch. It 
started exactly at the time. not only that, in order to make that prediction in future even more 
accurate, this scientist will have to observe it properly. So professor J. V. Narlikar had a program 
in which he stationed school students along the fringe of the totality belt asking them to note at 
what time it started and about what time it ended. That information were again put together at 
one place to correct the prediction for the next point. This is how the Newtonian program works. 
It works with that kind of accuracy. Now we know that is because of this particular property that 
you can do the predictions. You can shoot and you can finally find out where it will lie because 
of this property. 
 
Now why is this happening? This is because now we can easily understand in terms of the 
character of the system here. If you are observing at that point you can at this point locally 
linearize the system equations. You can obtain Eigenvalues and if the Eigenvalues were real and 
negative, then we expect any deviation from here along these direction will shrink and along the 
other direction as well. Therefore this ball which may be have started as a circle will take the 
shape of an ellipse. It will take the shape of an ellipse but the major and the minor axis both have 
been shrunk because the Eigenvalues were negative. So as it evolves, the circle evolves into an 
ellipse but in both the directions, it would have shrunk. So this render is not really correct. It will 
be something like this. So this is one related to one Eigen direction and the the minor axis also 
related to another Eigen direction and both directions shrink. So if the system is stable, then you 
have this property. If the system is unstable, in engineering you do come across unstable 
systems. Don’t you? They their Eigenvalues are in the right hand side. If the eigenvalues are in 
the right hand side, it will expand but it will expand to infinity. So it is as if the initial condition, 
the error ball of the initial condition that is expanding continuously and finally going to infinity. 
That is what an unstable system is. So these are the two types of systems that we had 
encountered so far. The system that we see around us which are stable have this property that in 
all the directions, they shrink and if they are unstable, they expand and go to infinity. We will 
learn how to keep instability within bounds and how to stabilize a system that is a whole gamut 
of control theory. Just one concept if you have the starting a setup initial condition as the error 
ball; a circle then it will take the shape of an ellipse if the Eigenvalues are real. If they are 
complex conjugate with a negative real part, the orbits will be spiral but inward spiral as a result 
of which these set of initial conditions will shrink. But it will rotate. It still remains a circle but 
the initial condition that was say here will rotate and remain a circle. But it will rotate and will 
come somewhere here. Are the concepts understood? See I am not really solving an equation 
now. I was so far trying to convey the ideas about how we can relate dynamics with the 
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Eigenvalues or Eigenvectors and at the end of the day; you should be able to visualize that. A 
situation with real Eigenvalues will mean that a ball of initial condition with shrink but will take 
the shape of an ellipse. A ball of a complex conjugate eigenvalue it means that the ball of initial 
condition will rotate as it goes on it will rotate but depending on the real part, it will either shrink 
or expand. There are two possibilities. 
 
(Refer Slide Time: 00:35:30 min) 
 

 
 

Conversation between student and professor: his question is that: if you are measuring 
somewhere here and had obtained an error ball and you predict using the set of differential 
equation and say it becomes this much and now you observe it, you still have the error ball this 
much. See we are making the assumption that from here to here, the time is not so large that the 
technology is improved so that you can measure the error with a larger accuracy, a smaller error 
ball. I am not assuming that. I am assuming that the technology is more or less the same so that if 
you observe now you will have some error ball if you observe it now it will have same kind of 
same size of error ball but the character of the system is such that if you write down the 
differential equations and start from all the initial conditions here they will land up here. So even 
though you do not know where it is in the initial condition, here you can predict with confidence 
that it should be in this small ball at this point in that sense we are not really underestimating the 
error.  It is the character of the system that prediction becomes more accurate than observation 
now. That is a character of all stable systems. While studying contour theory you didn’t realize 
this but this true for all stable systems stable dynamic systems. So we have a situation where 
have come across a system in which there is sensitive dependence on initial condition. We have 
just seen that in front of your eyes. Sensitive dependence on initial condition means that two 
initial conditions within this error ball will go apart as the time flies. Obviously it cannot be like 
this. If it is unstable, then what will happen? It will go to infinity. It doesn’t go to infinity. It 
remains bounded. So now we can specify the character of a chaotic system. Chaotic system 
means bounded aperiodic behavior. It’s not periodic. The same state is not coming back. It is not 
periodic. Same state is not coming back yet there is sensitive dependence on initial condition. 
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So three essential properties of chaos. They are bounded, aperiodic and with sensitivity 
dependence on initial condition. Just bounded will not serve the purpose because sink type 
equilibrium point is also bounded. Aperiodic will not serve the purpose. I will come to that later 
because there are orbits which are bounded, aperiodic but there is no sensitivity dependence 
initial point. So all these conditions satisfied is chaotic. Let us see how this this condition can 
happen. This means somehow you have started from this initial condition. Can it take the shape 
like this in the chaotic system? Obviously it will not because if it takes the shape, as it goes on 
goes on increasing and finally it will go to infinity. That is not possible. That is not the character 
of this. So this is not true. Is it possible to have it like this? This means it takes the shape on an 
ellipse. If they take the shape of an ellipse, then the major axis might keep on increasing and go 
to infinity but still we will to do something about it. Can it be like this? It becomes smaller and 
only turns as would happen for complex conjugated eigenvalues? No because in that case it will 
shrink to zero. So this is also out of question. So something is happening like this. But then we 
still do not have the answer as to how can that remain bounded. It will inevitably go to infinity 
after sometime. What happens is a trick. If it takes a longer shape, then after sometime this can 
also bend. Then this will keep on increasing which means again it will take the shape and this 
whole thing can bend. That means when it bends, it looks something like this (Refer Slide Time: 
41:11).  
 
(Refer Slide Time: 00:41:10 min) 
 

 
 

If you take this, stretch it and bend it, you will get this kind of shape. Have you ever seen your 
mother making parota? Role the stuff and fold it again. The whole thing is rolled and again 
folded. She does that because in the folds oil would go in and that makes it very tasty. But this is 
what is happening in a chaotic system. It is stretched and folded. So the state space of the chaotic 
system is a serial process in which the state space is stretched and folded. So that process goes 
on.  
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(Refer Slide Time: 00:42:49 min) 
 

 
 

In fact, this is clearly illustrated by a process that was proposed as a mathematical iteration 
procedure by Steven Smale. It is same Smale who got the field medal for his work on other 
areas. He is a great mathematician. He said, “let us start from a square”. I will define a process of 
iteration with this square and the way that topologies work, I will do all sorts of processes with it 
without tearing it. So I will hold it like this and will stretch it. So in the first process he will 
stretch it which means that this will become longish but this side it will shrink. In the next 
process, he will take it and bend it like a horse shoe. Now this is a new shape which can be again 
taken as the starting point for this process. So this shape will again we stretched and folded. Try 
to understand what will happen in the next iteration. 
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(Refer Slide Time: 00:44:20 min) 
 

 
 

This fellow will be stretched like this. But now it will be even thinner. This fellow will be taken 
and folded back. Can you now realize what is happening? So we will start with this. This fellow 
has gone here. So it will go like this here (Refer Slide Time: 44:57). Then this will go like this, 
this one is bent and if it is bent like this, it will take the shape. So stretching and folding. Again 
put this here, do this process. Do this at infinite time. What do you have? These will be infinitely 
thin but infinitely layered structured but we will have the property that to initial conditions in this 
direction will keep on separating out. The distance will keep on increasing. There will be a 
sensitive dependence on initial condition without ever running into the situation that has run to 
infinity. Still it has remains bounded.  So this is called this Smale Horseshoe Mapping. The 
process by which we can understand what goes on in the state space of chaotic systems. Smale 
Horseshoe Mapping means that this match to this through this process. Again this is continued as 
an iterative procedure. Ultimately you will end up with this infinitely layered structure that you 
see in the states space of chaotic system. 
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(Refer Slide Time: 00:47:10 min) 
 

 
 

There is another immediate conclusion that in order for this kind of behavior to happen, what is a 
character of the equilibrium point? If there is an equilibrium point in the system, what is the 
character of this equilibrium point? It has to stretch. Stretch means there should be one direction 
in which it is shrinking. Another direction it is increasing. Shrinking means a negative 
Eigenvalue. Increasing means a positive Eigenvalue - e to the power lambda. It should be 
positive and therefore there should be some fellow sitting here. It has a character of a saddle. So 
a saddle equilibrium point must be responsible for this kind of a behavior. In such systems there 
would normally be at least one saddle equilibrium point. Now we have more or less understood 
what chaos is. This word is actually somewhat of a misnomer. This word was coined by James 
Yorke. 
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(Refer Slide Time: 00:48:33 min) 
 

 
 

He wrote a paper titled “Period-3 Implies Chaos”. The paper is very provocatively titled. We 
have seen that period 1 system can be there period two systems can be there and he prove 
mathematically there if a system allows period three behavior means that it also allows chaotic 
behavior. so that was his claim but than this is the first time that the word chaos was used and 
since the word chaos is used in common parlance, more often in IIT than elsewhere, that is why 
it is it it generally takes a takes a meaning in over heads. But here it has a completely scientific 
connotation. the scientific connotation is that it is that kind of a behavior of a dynamical system 
where the behavior is bounded, sensitively dependent on initial condition and at the same time, it 
is not periodic. look at it for another point of view that you can have a periodic orbit; period 1 
orbit you can have a period 2 orbit at that that we have already talked you can have a period three 
orbit you can have a period many orbit and you can also have a period infinity orbit. so this is 
nothing but that period infinity orbit – bounded. That is the character of chaos. so what is a 
implication of the sensitive dependence on initial condition? The implication is that prediction 
fails because if you want to predict you what is the tool? The tool is that you first get hold of the 
initial condition, plug it into the system on the differential equation and predict. the solution of 
the system with differential equation is your prediction. if there is a sensitive dependence on 
initial condition, even if the initial condition is having very miniscule error, it will lead to 
completely different final results and therefore prediction will be completely useless. that is why 
after Lorenz’s work, it is now more or less understood that weather prediction is very much 
useless. there was no prediction but still why do these guys use super computers to try to predict? 
If it is true mathematically that prediction is very much useless in such systems, why do these 
guys spend millions of rupees on buying super computers and trying to do something? it is 
because the two actually did follow each other sometime which means that prediction is good 
within a certain time frame. Weather prediction therefore is not infinitely good. You cannot 
really keep on predicting the weather. But you can predict within a day or two and that is exactly 
what they try to achieve or if the error is very small. 
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(Refer Slide Time: 00:52:44 min) 
 

 
 

Say if this (Refer Slide time: 52:49) error ball is evolving into an ellipse but the rate at which at 
this direction expands is not very large. That’s what you mean .now this is related by what? you 
can see that this expansion of this line into that line is the result of e to the power lambda 2 with 
lambda positive. So if you can measure this lambda, we can sort of specify the rate of expansion 
and your point is correct that the extent to which the prediction will be good will depend on that 
lambda. But this is a non-linear system. So you cannot measure lambda everywhere. We learnt 
how to measure the Eigenvalues at the equilibrium points and these are not happening at 
equilibrium points. It is just evolving. What do you do about it? You could, for all practical 
purposes keep on following that orbit. Suppose you just calculate the orbit and for every point 
you keep on obtaining a Jacobian and calculate the eigenvalues and take the average. that’s a 
reasonable estimate of the rate of expansion and if that is not very large to the positive side a 
small positive number may be, then you would say that, “Okay, even if I know that system is 
chaotic, I can still predict to say this may reduce”, with confidence. Therefore following your 
lead I can tell that the measurement of this rate of expansion is a vital importance when it comes 
to deciding whether I can predict or not or to what time frame I can predict. This is a very 
important number. In the next class we will take up the issue of how to measure this number. 
Notice that it has the character of the Eigenvalue but it is not really the Eigenvalue in the sense 
that this system is a non-linear system. Eigenvalues can be computed at every point but here we 
talking about the average positive Eigenvalue so that is not really the Eigenvalue. It is sort of a 
eigenvalue average over the orbit not just everywhere in the state space. As the orbit goes, I am 
calculating the Eigenvalue everywhere and then averaging the positive one out and you are 
getting a number. these numbers which have the character of the the Eigenvalues but related to 
the non-linear system are called the Lyapunov exponents. Obviously in a three dimensional 
system, there will be 3 Lyapunov exponents. Out of that if one is positive, I would say that there 
is sensitive dependence on initial condition. so one of the conditions of chaos is that at least one 
Lyapunov exponent must be positive. That’s all for today. We will continue in the next class.  


