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We are close to the end of the course. Through the whole set of lectures, we have learnt that 
there are some very peculiar specialties of chaotic systems. Most important of them being that 
tiny perturbations in the state can lead to very different results. Tiny perturbations in the 
parameters can again lead to very different results. Things are very sensitive to perturbations in 
the state, to perturbations in the parameter. Naturally this often gives raise to the intuitive feeling 
that these guys are the very difficult one to follow. In fact that has been the belief ever since the 
advent of this subject that here are some systems which are chaotic by themselves and if that 
happens then you have difficulty because it has certain characteristic features but nevertheless 
ultimately when you want to control it, it becomes very difficult because slide change here and 
there will lead to completely different results. But over the last 12 years or so, there have been 
some very important developments that have proved this belief to be wrong. In order to illustrate 
what this is, I will get into a step by step.  
 
Another important specialty of chaotic system we have learnt is that while the state moves in the 
attractor chaotically that means the state never repeats itself. There are infinite number of 
unstable periodic orbits embedded in the attractor and while going through this kind of erratic 
motion, this state often comes very close to one of those unstable periodic orbits. It cannot get 
locked there because it is unstable. Slight perturbations, slight difference from the unstable 
periodic orbit will lead it to elsewhere but nevertheless the point is that there are an infinite 
number of unstable periodic orbits embedded in that attractor. It may so happen that one of those 
unstable periodic orbits represent a very desirable behavior of the system. 
 
For example there is an engineering system where the desirable behavior is represented by one of 
the unstable periodic orbits but it’s unstable. Therefore if you really release it there, it will not 
remain there. It will go away elsewhere but if you can identify one of those unstable periodic 
orbits as representing a desirable behavior, for example there have been the situations where 
there was a laser. You see people want to improve the power throughput in the laser guard and 
that depends on which periodic orbit you are actually working in. They were shown to the 
situations where the power can be doubled, if you lock into one of those unstable periodic orbits 
and there are similar situations in other areas also. 
 
The problem then becomes, can we control the unstable periodic orbits embedded within a 
chaotic attractor? The reason that I showed that this is especially advantageous is that for a non-
chaotic system, the kind of system that you have all come across in regular control theory 
courses are where if you want to bring about some change, you have to put in some control 
action. In order to get a desirable behavior which may be quite different from what your 
presently operating behavior it is. That means if you want to get into a large change in the 
resulting behavior, you have to put in a large control action.  
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That means the kind of system that you have already come across, not in this course elsewhere. 
There large control action is required in order to bring forth some kind of a large change in the 
character of the system, small control action will only result in a small change. That’s what but 
here in the kind of system that we have been discussing, there exist a possibility that tiny change 
in the parameter or the state might lead to a very large change in the resulting behavior because 
there is sensitive dependence on initial conditions, there is sensitive dependence on parameters 
and so there exists the possibility that a very tiny nudge, a tiny perturbation, tiny very directed 
control action might lead to very different system behavior and that very different system 
behavior might be the one that is desirable. You now have the possibility of enabling a control 
action by very tiny perturbations. How can we do that? That is the subject matter of today’s talk. 
 
The point is this could be handled in the plane of continuous time dynamical system but as you 
know mostly such things are handled more easily, the mathematics become much simpler if we 
treat this problems in discrete time. We are essentially talking in terms of the Poincare section 
and what happens there. If you consider what happens there then you will find there is a chaotic 
orbit and if you place a Poincare section there are an infinite number of points through which this 
piercings happen. But out of that, one represents an unstable periodic orbit and that on the 
Poincare plane is an unstable fixed point of that Poincare map. 
  
(Refer Slide Time: 00:07:00 min) 
 

 
 

Suppose that Poincare map is represented as zn+1 is equal to some function of zn and the 
parameter, z is the state. We are now bringing the problem down to the state of discrete time 
representation and this is the discrete time representation of the system suppose. Then in the 
neighborhood of that unstable periodic orbit, the one that you are trying to stabilize. Suppose that 
unstable periodic orbit is represented by zstar then in the neighborhood of that suppose here is the 
unstable periodic orbit and so this is the zstar and here is say zn. Presently the deviation is this 
much. In the next iterate suppose it mapped to this point, see it went like this. As a result the 
deviation is this much. 
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Then this deviation can be expressed as a function of this deviation. In fact in the local linear 
neighborhood this can be represented as a linear mapping. We can write that local linear 
approximation as zn+1 minus zstar that means the resulting deviation is equal to, we are now 
writing in terms of the linear so there would be A matrix multiplied zn minus zstar. This will be 
the relationship as dependent on the state. Now see the original thing was also dependent on the 
parameter. So you can also write another parameter dependence factor as B (p minus p0) where 
p0 is the parameter for which you had obtained zstar. This representation is nothing, very simple. 
It is essentially, if you consider no change in the parameter then this part is 0. Then you are 
saying that the deviation in the next iterate is nothing but a matrix time the deviation in the 
previous iterate. That means you are essentially representing as a linear equation. 
 
Similarly if you suppress this, that means this remains constant then the change in this brought 
about by a change in the parameter is given by the matrix B. Here you have a local linear 
representation. Now what will you do? You will essentially observe how much is this deviation. 
That means you will observe in any particular iterate, how far have I fallen away from the state 
where you want to be. That means this is the state where I want to be and this is where I have 
fallen. I will measure this and depending on this, I will change the parameter by a small amount, 
very tiny amount but nevertheless I will change the parameter depending on this. We can write 
this again like a linear relationship as the p in the nth iteration that means I am assuming that it is 
possible to change the parameter at every iteration by small amount but it is possible to change 
by a small amount. So p, the parameter in the nth iterate minus the p nominal value that means 
how much perturbation I am giving in the parameter that should be dependent on some constant 
matrix times the deviation in the state.  
 
If I have deviated so much, I will give so much parameter perturbation. Now here there has to be 
a transpose because obviously you need to bring it to a one dimensional state. Then only it is 
represented as minus k transpose that means if the deviation is positive, you give a negative 
deviation in the parameter. This is again a very linear way of looking at it. I will show that also 
works because see in the neighborhood of that unstable fixed point, you can always locally 
linearize it and that behavior is essentially this behavior. We can write it like this. What is the 
dimension of this? The dimension of z that means if it is n dimensional, this would be n 
dimensional stuff. Naturally this has to be an n dimensional, n to one dimension so that their 
product gives a one dimensional.  
 
Now if I substitute it here, what do we have? We have zn+1 minus zn, let us write it as delta zn+1. 
See we are substituting it here. This zn minus zstar which is nothing but delta zn or deviation in the 
nth iterate that remains common. So what do we have here? You have A minus B k transpose 
times delta zn. If the initial deviation were this much, this will be the final deviation after one 
iterate, if you are giving a parameter perturbation of this extent. Now do you see what is the 
condition for stability? Simple, this matrix here must have eigenvalues all within the unit circle 
that’s it. As simple as that. Just ensure that this matrix has eigenvalues inside the unit circle that 
immediately guarantees that in successive iterates, this deviation will die down to zero.    
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Now normally the way it is done is obviously if the zn is large, see this relationship. If the zn is 
large deviation from the zn star then what will happen? This number is large, as a result multiplied 
with the k transpose it will give a large perturbation and mostly we don’t want it. Because the 
main advantage of the chaotic system is that we can do it with a small perturbation. So what we 
do is if the deviation is large, we simply wait. No, this is not the right time to apply the 
perturbation. Wait, because we know that if the system is chaotic, it’s also ergotic means that if 
we wait sometime then sometime or other, the state will fall in a close neighborhood of zstar and 
when it does, apply the perturbation. You simply wait till this term becomes tiny enough so that 
if your controller says that my control will be only this much and no further. Then simply wait 
till it comes within that range and then apply. You normally see that there is a chaotic system 
going on, it moves chaotically and the moment it falls within that small neighborhood, 
immediately you apply the control action and there it is. It immediately gets locked to the 
unstable period orbit. 
 
Now this getting locked to the unstable periodic orbit or getting controlled into the unstable 
periodic orbit, you might visualize as something like this. See you can make a stick stand on 
your finger. So that’s inverted pendulum position, you know we have already said that is a 
saddle, that is the unstable fixed point, unstable equilibrium point. You still can move it tiny bits 
and keep it vertical, you don’t really need to go around moving a large amount. You can do it by 
small amount. Can you not? The way you can, here you were doing exactly that. Under what 
condition we will need to move it by large amount? If the position of the stick is like this then 
you will have to move it like this so that it becomes vertical. But if it is very close to the vertical 
position, you can always move it by very tiny amount to keep it vertical that’s exactly what we 
are doing. 
 
A is essentially the Jacobian matrix and B is this one as differentiated with respect to p. So here 
is a zn+1 as a function of zn and p, if you differentiate it with respect to zn, you get the Jacobian 
matrix which is A. If you differentiate with respect to p you get, which is B. But you might ask 
in that case this functional form has to be known otherwise how do I differentiate. I will come to 
that issue a little later. This algorithm has been applied to many different situations but the most, 
the one that goes into scientific facular is the paper where the scientists created artificial 
fibrillation in a frog heart. You know they dissected the heart that was still alive, heart of a frog 
and they induced artificial fibrillation, the way a man dies before that there is a fibrillation. 
That’s why you put defibrillates and all that. They induced this and then they apply this small 
tiny nudges and they were able to stabilize the heart for a long time. So that was a nature paper 
that has become sort of a turning point in the application of this theory. It has been applied to 
lasers, it has been applied to many different areas. Let us try to understand this scheme somewhat 
intuitively. What are we doing? Suppose the fixed point zstar is a saddle fixed point.  
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Here is your zstar this particular position, a saddle means there would be the manifolds which in 
this case will be a stable manifold and an unstable manifold. Suppose this is the unstable 
manifold and this is the stable manifold. Here is your zstar and suppose at any particular point of 
time it lands here. What are you trying to do? You are trying to move it back here but notice, 
here you have the advantage of having a stable manifold means that if you can somehow nudging 
to this point then you don’t have to do anything. Automatically it will run into this. Essentially 
the point is true is to push it here. 
 
Now what are we doing? We are changing the parameter. A parameter change means for that 
changed parameter, if you now calculate the fixed point, it will be a different fixed point. Fixed 
points position will be different. Now suppose the fixed point’s position now is somewhere here. 
It has moved that means this is zstar for p0 and this is the zstar for p0 plus delta p. So it is moved 
here. As it is moved here, it will again have the stable manifold and the unstable manifold. This 
is the unstable manifold and this is the stable manifold. What will be the character of the unstable 
manifold? What will it do to a particular orbit sitting here? In the next iterate how will it move? 
It will move away more or less in the direction of the unstable manifold and it will move towards 
this in the direction of the stable manifold.  
 
As a result in the next iterate, it will fall somewhere closer here because it will move towards this 
and towards that and by proper choice you might make it fall just here. That means exactly on 
the stable manifold of the earlier fixed point and then withdraw that perturbation. The fixed point 
comes back here and now you have the point exactly on the stable manifold. Just wait, it will 
automatically get there. What have you done? You have just applied a perturbation at a particular 
instant and then left it. Only once you have applied the perturbation and that’s it and then 
withdrew the perturbation. Not that you are keeping on the perturbation but the action of this 
specific geometry of the system ensures that the iterates slowly converge on to the fixed point. 
It’s not difficult to see that if you want to bring it exactly on the stable manifold here, all that you 
need to do is to ensure that one of the eigenvalues here is 0 and the other one is what it was 
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without the perturbation. You can easily calculate the K matrix because the A and B are known. 
Is that clear? Here you have equation, its one of the eigenvalue should be 0, the other one should 
be as it was without the perturbation then it will simply be landing here. It’s extremely simple to 
obtain the K matrix. 
  
Of course all the time you might not need to say it exactly equal to 0 because here what you are 
doing? You are exactly putting it on to the stable manifold. That doesn’t always mean that it will 
remain there because the system has some noise. Though I am saying that if you land it here, it 
will automatically come to this. It doesn’t really, this argument holds in absence of noise. If there 
is noise then obviously it goes again out. The moment it goes out, you wait for some time but 
you again apply the perturbation. So that this algorithm actually rests on repeated application of 
the perturbation depending on the amplitude of the noise. This method was invented by Ott, 
Grebogi and Yorke and that is why this method is called OGY algorithm or OGY method. 
  
The question he asked was what about A and B, how do you know them? Obviously if have the 
system equations given like this, obtaining A and B are trivial but for a realistic system 
experiment is running you don’t really know A and B. You would like to somewhat estimate A 
and B. How to estimate A and B? What is happening? You have the system running, actually it is 
a continuous time system and you are placing a Poincare section, you are observing the points on 
the Poincare section. First what would be the character of the orbit when it comes in the 
neighborhood of that particular fixed point because it is ergotic so it will go on moving 
everywhere and it will come arbitrary close to the fixed point also. If it does what will be the 
character of the next iterate? It will again fall close to that because it is close to a fixed point. 
  
If you have a time series on the Poincare section that means this point to this point to this point to 
this point and if you have a file containing the time series, if you go on scanning the file you will 
find two lines that are very close to each other. If you do detect then you know that here the 
pointer is a close neighborhood of that unstable fixed point. Take these two values. Again if you 
keep on scanning it, again sometime later it will come very close to that. That means you will 
again get a pair that are very close to each other, take those values. Similarly by scanning the 
whole file containing the data of the system, you will get a large number of such pairs. The pairs 
that fell close to each other. That means you have got now a collection of points that fell close to 
each other.  
 
Now you are trying to estimate the values of A and B formula. What do you have? You have got 
a point that map to another point. You have got another point that map to another point, you have 
got third point that map to third point. All these data you have. Essentially you have zn mapping 
to zn+1 and as we have seen that you can represent it as a linear function like zn+1 is equal to A 
plus, it’s like a affine transformation. You can represent it like this, these hats I am putting 
because these are the values that we need to estimate. Essentially since we do not know, if we 
had known the fixed point then we would say that now let that fixed point be my origin and we 
will count only the deviation from that origin, from that fixed point. But here we do not know the 
location of the fixed point. We only know that this point map to this point but we only know 
intuitively that the fixed point must be somewhere in that neighborhood.  
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We do not know the fixed point. If we do not know the fixed point, we are working on the 
original coordinate system. We are unable to move the origin to the fixed point and that is why 
we need to consider this C. This becomes an affine transformation. Once you have a large 
number of these values zn+1 and zn, you can do a least square fit to obtain the values of A matrix 
and C matrix. You can do a least square fit to obtain these values A matrix and C matrix. Once 
you have obtained so from here fit to A matrix and C matrix, you obtained. 
 
Now the question is can you locate the fixed point? Yes, you can because once you have 
obtained it, you will say the zstar is equal to A hat zstar plus C. How would you obtain zstar? I 
minus A into… this has to come to this side, inverse so that will be the zstar. We have located the 
fixed point. So zstar, the fixed point is we did not know where it is. But simply from observing the 
data, we can locate the fixed point. But for that we need to first obtain the A hat and C hat and 
then just do this, obtain the position of the fixed point.   
 
That means we have been able to estimate A matrix, this is the same as the matrix A that appears 
here. Estimated A matrix from the data but what about B? Now B is obtained, as you can see B is 
where you are asking the question if I change the parameter how much will my fixed point 
move? That is the essential question you are asking. All you need to do is to give some 
perturbation to the parameter and redo this procedure. As a result of which the zstar will change 
and then you ask how much did my zstar change due to a unit change in my parameter that is the 
B. 
  
(Refer Slide Time: 00:31:04 min) 
 

 
 

B is nothing but zstar of p plus delta p that means zstar as a function of p plus delta p minus zstar at 
p, this whole thing divided by delta p. So estimated B is this. You see, you did not really require 
the system equations. You simply observe the evolution or from there you could extract all this 
information’s, so you could extract all these information’s. Not only that, I have already told you 
that there are certain situations where you have only one train of data that means some 
experiment is going on and you have access to only one state variable and not every state 
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variable. You don’t even know what is the complication of the system, how many state variables 
are there. You may not know and you have got just one variable that has been measured. In that 
case what you will do? You will do the delay coordinate embedding. That means you create 
additional state variables by delay coordinate, you do the same thing. Then that delay coordinate 
system, you place a Poincare section, you can do that. You can thereby obtain these points from 
which you will do the estimations.  
 
(Refer Slide Time: 00:32:50 min) 
 

 
 

You can do that and from there, you can estimate A and B and C. Yes, that is also possible. It has 
been demonstrated that this whole thing was even if you have access to just one state variable 
and then you can decide how much should the perturbation B that you apply in the parameter. 
You apply the perturbation in one instant and simply wait. You got the point? Still there is a 
problem. The reason that people were so very excited about it is essentially the cardiac problem 
of humans. It is known that as a man goes close to death because of cardiac failure, essentially 
the dynamics which is a periodic dynamics that changes to various high periodic orbits and to 
chaos and naturally the problem becomes how to control that chaos. Presently do you know what 
is done? 
 
Presently they implant what is known as a defibrillator, this big device. Some of your fathers 
may have already, I know people who have and it is extremely painful when it really strikes 
because whenever it goes into a… that stability is lost, it is going into a high periodic orbit that 
means you see erratic oscillation of the heart. Then the defibrillator works. What it does it gives 
an enormous shock that means it just gives a big nudge. So that it gets into again the regular 
periodic orbit, it does and the man survives. But due to that shock, there is often death of cardiac 
tissues. That means the life is prolonged but not very long and also that particular event is very 
painful for the patient. I mean, I have met people who have undergone that. It’s like somebody 
dropping a whole chest on the chest of the person, he feels like that. The idea is that can you then 
instead of giving one big shock, can you give tiny nudges to get the orbit back to. It has been 
successful in non-human hearts.  
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Yes, people as I told you that it has been done for the frog heart. Permission has not been 
obtained to do it on human heart as yet. That means it is done on by dissecting, opening the 
heart, keeping it alive and doing that. It has so far been unsuccessful that means you do have one 
chain of data coming, from there you do delay coordinate embedding, from there you do estimate 
these values and depending on that you give very small amount of electrical pulse. Instead of any 
other thing, electrical pulse is the most convenient thing to apply here. Keep a tiny electrical 
pulse and that does it. This has been shown, it does stabilize. But the question is when I said that 
if the state is far off from the equilibrium point, from the fixed point you simply wait till comes 
back. For a patient will you wait? Will you wait long enough, let it come back it is ergotic. It will 
sooner or later come back and the fellow might die before that. 
 
Obviously the question comes that how can we quickly bring a state to a desirable state. That 
means instead of waiting, I want to bring a state quickly to a desirable state. Is it possible? Yes, it 
is possible only in chaotic systems because in a non-chaotic system, you will again have to give a 
large change, large perturbation in order to move a state from one point to the other. While in a 
chaotic system the advantage is that slight tiny perturbation can result in a large change. The 
question is how can we make a tiny perturbation so that within a very short time, I will get where 
I want. That is the problem then. Let us illustrate that. Let’s start targeting. so far what I was 
discussing is known as control of chaos. 
 
By the way before going to targeting, let me give you the idea of another algorithm that has been 
very widely used. That is supposing you have got a chaotic system whose data is coming and 
here is the plant. It is just chaotic and you make a feedback loop. Here is the input and here there 
is a feedback loop. Here is the plant that is now behaving chaotically and you want to control it 
into one of the unstable periodic orbits. What is this fellow? This is nothing but a delay. What are 
you doing? You are taking the output, giving it a delay and adding it to the system behavior. 
What will be the result? This is the error that is going into the plant. If the error is non-zero then 
it will lead to some kind of a control action. It will be zero only when the delay is such that it is 
exactly the same delay or a same period as the periodic orbit that you want to stabilize. 
 
Suppose you have got a delay and you have got a means by which you can change the delay. 
Then what will happen? So long as its period or delay is not the same as the period of the 
unstable periodic orbit, nothing will happen. But the moment it becomes the same as the unstable 
periodic orbit, immediately this fellow will go to zero and you get a locking on to… this 
algorithm was invented by a person called Pyragas and that is why it is called as the Pyragas 
statement and this has also been applied to many chaotic systems. 
  
Now let us come back to the issue of targeting. In targeting essentially what are you trying to do? 
We want to reach that state, some desirable state in the least possible time and again we will use 
an algorithm which has no equivalent in non-chaotic system. These are very dependent on the 
sensitive dependence on initial condition. 
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Let us illustrate that with the logistic map. You have got the logistic map here, so this is xn and 
xn+1. Suppose you are here and you want to reach here (Refer Slide Time: 40:43). One logic 
would say that start from here and keep allow it to oscillate for long time. Sooner or later it will 
come here. Yes, that’s true but then we said, we don’t want to wait till then. The equation here is 
as you know xn+1 is equal to mu xn (1 minus xn). Here is the parameter. Assume that you can vary 
the parameter as your control action by tiny amount in any iterate. Now if you have the variation, 
suppose it is now for a chaotic behavior you would need something like 3.9. The 4 is fully 
chaotic but suppose it is 3.9 which will give you chaotic behavior. 
 
Normally it is 3.9 but suppose you have scope to vary it in the range 3.8 less than mu 4.0. That 
means this way 0.1 and that way zero point. That is an extreme amount that you can vary. Then 
what will happen? Supposing this was here and this would map to this point. If you had used 3.9 
then it would map to some other point. If you use 4.0, it would map to some other point because 
for 3.9 the graph would be slightly different like this. For 4.0, the graph would be slightly 
different like this. In one case it maps here another case it maps here. There will be a range over 
which it maps, it has a capability of mapping for this range of mu.  
 
If you have the option of varying mu over this range, you have the capability you have the option 
of reaching this range in the next iterate. If you now withdraw this perturbation then this range 
will map to some range. How will you obtain it? This range you bring to the 45 degree line and 
you bring here, so you have got this range. In the next iterate this range will map to this range. 
Do you notice that because of the stretching behavior, this range is slowly increasing. So after 
sometime this range will increase and within couple of iterates, it will include the point that you 
want to reach. So what was our logic? I will apply a small nudge now, directed in such a way 
that three iterates later I will be where I want to be. Do you see that this is possible now? 
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What do you need to do? You need to find out that if I give the parameter perturbation now, what 
is the range of values I will reach in the next iterate? Start from that range of values which is the 
range of value that I will reach in the next iterate, start from that range of values and find out the 
range of values in the iterate after that. Very soon you will find that the target is included within 
the range. The moment you have found that the target is included, you have found how many 
iterates did I meet in order to reach that. Now notice the argument. One, in first iterate give the 
perturbation. Two, find the range of values in the subsequent iterates. 
 
Suppose we have found after the third iterate, the target is contained in that set. Then it is only 
pressing the calculator. What will you do? You will start from that target point and back track. 
Starting from there, you will back track that means xn+1 you know, you calculate xn, back track 
and finally at the first iterate then you will land up in equation like this where you need to know 
mu. You will be able to calculate that. It only needs pressing a calculator not even a computer. 
You understood? So three is back track, starting from the target which tells you that in the first 
iterate if I give only that much of perturbation say from 3.9, it needs to be made 3.8 may be. In 
the first iterate you change the parameter to 3.83 and then bring it back to 3.9 and let it done. 
Automatically it will come there. You understood the point? How could this be possible? This 
was possible only because of the sensitive dependents on initial condition. No other reason. It 
was possible because of the sensitive dependence on initial condition. Here we are using the 
sensitive dependents on initial condition. It’s not difficult to see how to apply this. This I 
illustrated with a map. How will you apply it to say 2 D map? 
 
(Refer Slide Time: 00:47:44 min) 
 

 
 

Suppose in the henon system, the orbit is something like this. Suppose you are here and you want 
to reach this point. How will you do it? Give the parameter perturbation in the first iterate that 
means there is a range of parameter. If you give that range of parameter, this point maps to say 
this point, this range. Now withdraw that parameter perturbation. This range will map to say this 
range and then you will find that this fellow is included which means that it is possible to reach 
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from here to there with only two iterates, two jumps. Then you calculate how much was the 
exact change necessary in order to get from this to this point, to this point. Easily be done. 
 
In case of continuous time system, essentially the logic is the same. You start from a particular 
state, you are trying to target that state. Now if this state is my target then how would I go? From 
here I will apply the tiny perturbation for some span of time. In this case one iterate, in that case 
some span of time say 5 seconds. I say that I will apply a tiny perturbation for 5 seconds, so 
apply the tiny perturbation for 5 seconds, you can easily find out by solving the equations. You 
can easily find out the ball in the state space that will be reachable and then let that ball evolve. 
After sometime you will find that the target is included in that ball. Find out the time that was 
necessary in order to reach from here to there? Then back track, you can find out the exact 
amount of perturbation that would be necessary in order to reach from here to there.  
 
This logic has been applied in a very unlikely scenario I suppose it was 1988. There was a space 
craft, not space star. It was basically a satellite that was almost nearing the end of its time. There 
was a comet coming then NASA scientists decided that this particular space craft would be used 
to observe that comet. They wanted to have a commentary encounter but the distance was 
something like 50 million miles and the fuel was almost exhausted. There are only tiny amount 
of hydrazine fuel left and it could give only tiny nudges and you wanted to reach 50 million 
miles. How is that possible? They calculated because the three body system earth, moon and the 
satellite is a chaotic system therefore there is sensitive dependence on initial condition and 
therefore it should be possible to hold the space craft over such a large distance just by using a 
tiny perturbations. They calculated that, they did that and they reached there and that was the 
first planetary encounter. It essentially involved five rounds around the moon.  
 
The actual orbit was rather complicated but they had to give only tiny perturbations. So that the 
gravitude steer the system to that point. These are typical applications of this logic, happens only 
in chaotic system. You cannot have this kind of things happening in non-chaotic systems. We are 
very close to the end of the course, essentially through this course we have learned some very 
typical features of nonlinear systems. We have learned that not all nonlinear systems are chaotic 
but all chaotic systems must be nonlinear systems. Normally in regular control theory course or 
whatever course you have learnt in engineering, they look at only the linear system behavior. So 
all these possibilities are essentially left out of the ambit of what you learn. That sufficed more or 
less for a 19 century engineer or 20th century engineering. For a 21st century engineer that often 
does not sufficed because firstly most of the things that one has to deal with are nonlinear. 
 
Secondly earlier we use only the linear theory in order to design control systems. Now no longer. 
Probably you know the fighter air crafter all open loop unstable. They make it open loop 
unstable because otherwise there is no maneuverability and then you need to stabilize with your 
hand. So here is the control that we exercise on a system that is chronically unstable. Likewise 
many other systems are designed in the same way to have maneuverability. You can easily see 
that chaotic systems have offered additional advantage in maneuverability because in a chaotic 
system there are enormous number of unstable periodic orbit involved and you can switch from 
one to the other. You do not need to design say 100 different systems for 100 different works. 
Just one system, stabilize a particular periodic orbit you have the behavior that you want. 
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The versatility, the width of the different types of behavior that are possible, these are offering 
many advantages to chaotic systems so that now it is even thinkable to design systems 
chaotically, to be used in engineering applications. That was say 5 years back nobody was 
thinking about that. By the time you guys become full-fledged engineers, you will find more 
applications and then the things learned in this course might prove to be useful. I suppose that 
will be enough for this course. 
Thank you.  


