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In the last class we were dealing with a Floquet theory by which one tries to assess the stability 
of periodic orbits. If you have a periodic orbit like this, the way to understand the stability is start 
from some initial condition. That means this is x at t0 and then as you go around this orbit, you 
end up here at x at capital T. Then the whole period is T minus t0. The way to understand the 
stability is to express x at capital T as some function phi times x at t0 and this phi will be 
dependent on the initial time, the initial value and the total time, so t, x0, T. 
 
(Refer Slide Time: 00:00:56 min)  
 

 
 

This particular thing is nothing but a matrix because here you have a vector that times a matrix 
gives the final vector. This matrix as we told is the monodromy matrix. The Eigen values of the 
monodromy matrix are the Floquet multipliers. Ultimately the job is to identify this matrix and 
obtain its Eigen values.  
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Now as we have said that if we are evolving something from here to this point say I have xA and 
here I have xB then xB when expressed in terms of xA is xA pre multiplied by the state transition 
matrix. That is how we understand in standard control theory, so xB is the phi, the state transition 
matrix times the state xA. So that is the concept of the state transition matrix then we will write 
xB is equal to phiAB times xA. Now if we write this then it is also true that if you take a 
perturbation from here and that ends up as a different perturbation say here then this 
perturbation, the delta xB can also be expressed as phiAB delta xA. The way states are related, the 
perturbations are also related. We will essentially follow this up in order to develop the concept 
of the monodromy matrix. 
 
(Refer Slide Time: 00:04:55 min) 
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In the last class we had started saying that here if you have a state xA then suppose it goes to state 
xB and then it continues to state xC or in other words, it goes from xA to xC in between a state is 
xB. Then you can write as we have just done xB is equal to phiAB xA, you can also write xC is 
equal to phiBC xB. These are the individual state transition matrices then you can write xC is equal 
to phiAC xA from here to here and then phiAC will be nothing but phiBC times phi. So simple is if 
you have them. You have the flight from xA to xB to xC then if you want to obtain the state 
transition matrix from A to C, it is just a multiplication of the state transition matrix from A to B 
and B to C. So far so good. This is the general theory that you learned in standard control theory 
texts. Now what are these?  
 
(Refer Slide Time: 00:06:40 min) 
 

 
 

The system is linear time in variant L ti then your phi going from t, starting from t0 will be… 
starting from t0, flight over a time of t will be or t0 2 t will be exponential matrix A (t - t0). Here 
this A is a matrix so this is a matrix exponential. The way the matrix exponential are treated, I do 
not have the time to discuss it in details here but this can be found in any standard control theory 
text book. Essentially the way we handle any exponential, we handle the matrix exponential in a 
same way as a binominal expansion. If you know the matrix A that means if you know the 
elements of the matrix A and if you know the starting time, the ending time then you can 
evaluate this just as a number and in MATLAB this matrix exponential evaluation is given by the 
expm function. So all you have to give is expm within bracket and you have to give whatever is 
in the exponent. 
 
This is the simple thing and if you know this then you can easily write delta x of t. That means 
the perturbation at time t is e to the power A (t - t0) delta x at t0. This is nice and this tells you 
that if you have an orbit something like this then if you can start from here, go up to here and if 
you can calculate the state transition matrix from here to here and then if you can come back then 
all you need to do is to multiply the same state transition matrix and the state transition matrix to 
obtain the total state transition matrix of the whole cycle.  



4 
 

Or you can break it up into further segments say five segments. In that case you have to go from 
here to here, obtain the state transition matrix, go from here to here obtain the state transitions 
matrix and then multiply all that. No, it doesn’t work. It doesn’t work if you have non-
smoothness in this orbit. Let’s come to why.  
 
(Refer Slide Time: 00:09:34 min) 
 

 
 

Suppose you have an orbit going something like this. Say here is a switching manifold, it starts 
from here and it hits like this and then it goes like this and this is different, the vector field is 
different and then it goes like this. This is the starting point and here you have the vector field is 
different in the sense that if you draw these two tangents, they will be different. If you draw these 
two tangents they will be different. In that sense the vector field just before crossing and the 
vector field just after crossing are different and that is exactly what happens in most non-smooth 
dynamical systems that we have already seen.  
 
The question is now, if you say that from here to here, my state transition matrix is A1. From 
here to here, the state transition matrix is A2. From here to here, the state transition matrix is A3 
then you cannot say that means you will write delta x of say here it was hitting at tau1, here is 
tau2 starting at 0, ending at T. Then x (tau1) is A1 delta x (0), delta x (tau2) is A2 delta x (tau1) and 
delta x (T) is equal to A3 of x (tau2). If this is how the A1, A2 and A3 are defined then you cannot 
say that the product A1, A2, A3… (Refer Slide Time: 11:47). This is actually not equal to… this 
is important because most people make a mistake at this point that these are not the same. Why?  
The reason is something like this.  
 
When you are starting from here, when you are writing this, when you are writing this, delta x0 
you are essentially saying that I am considering a perturbation and then when you are reaching 
here your saying that this is how my perturbation is flying. Then at this point the original 
trajectory reaches the switching manifold and the perturbation is something like this. But then 
after it starts, you see that all the points on the perturbation do not reach the switching manifold 
at the same time, they reach at different times and therefore after the perturbation when you start, 
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you start from different ellipse. Then you go on, come to this and you get an ellipse. Here also 
you have a some kind of a different ellipse to start with and then that goes on. When it reaches 
here, whatever is the size or the shape of the ellipse that is given by the total monodromy matrix.  
The initial ball means you consider a circle or a sphere and then pre multiply that by the 
monodromy matrix gives you the final ellipse or ellipsoid and that tells you, whether or not in 
any particular direction it elongates or shrinks, contracts. If it contracts in all the directions then 
it is stable. If it does not contracts in all the directions that is unstable so on and so forth. But it’s 
not difficult to see that since all the points, all the perturbed trajectory do not reach the switching 
manifolds at the same time. Therefore this will not be valid, this will not give the monodromy 
matrix. That was valid for this case because there was nothing like a switching. 
  
(Refer Slide Time: 00:13:57 min) 
 

 
 

If you consider a perturbation that evolving here and then that continue to evolve here. 
Essentially it is a same continuous evolution and that is exactly why it worked but in this case it 
will not work. In that case how to handle it? When we tried to handle it in that situation, 
essentially let’s start in a neighborhood of the switching manifold say here is a switching 
manifold and here is a part of the orbit that reaches the switching manifold. 
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It starts from a point say x0 and reaches at, I will write it here xt, tp is the time when it reaches. 
Zero is the time when it starts and tp is the time when it reaches and then it goes off. There is a 
perturbed trajectory that starts from this point and it also goes and reaches and from this point it 
goes off. The blue one is the original trajectory and the green one is the perturbed trajectory and 
the perturbation is given by this vector and this vector is delta x0. The perturbed trajectory is x0 
bar and this is delta x0. When this fellow has reached the switching manifold, this fellow has not 
reached and supposing at that time when it is here, this fellow is here. So you can draw the 
perturbation like this at this point.   
 
What is this particular value? It is x bar which is at the time tp and then after some time, it 
reaches the switching manifold and then it goes off. When it reaches a switching manifold, this 
fellow has already crossed and has come to some distance say here. At that point you can draw 
the perturbation. Now this perturbation here is delta x, we will call it p minus and this 
perturbation will call delta xp+. Essentially we are interested in how the perturbation evolves 
across the switching manifold and you can see that, this perturbation is wholly in this side of the 
switching manifold and this perturbation is wholly in that side of the switching manifold.  
 
We are trying to find out how this one maps to this one or in other words, we are trying to find a 
expressions so that we can write delta xp+ is equal to something times delta xp-. That is how we 
are trying to express. What we are trying to express? We are saying delta xp+ is something times 
delta xp-. Once we do that then this is the state transition matrix across the switching surface, this 
term. We will do that. Now a few things we need to write. What is this? This particular point is 
green, x bar this is at tp bar. The tp bar is a time at which it reaches the switching manifold. So 
this one is x at tp bar, so this is the setting in which we are trying to do things. Let us carry on. 
First thing, what is x0 bar that means perturbed trajectory? X0 bar is x0 plus delta x0.  
 
Now we need to find out this perturbation and this perturbation. What is this perturbation? Delta 
xp- is, this minus this. The x bar tp - xtp and delta xp+ is equal to x bar tp bar; tp bar is the time at 
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which this trajectory reaches the switching manifold minus x (tp) bar. These are the three 
equations that we can easily write, basically relating these two. Since we are interested in this 
equation we are interested in the right hand side, how it will ultimately come up. Now you see 
xtp bar is this one (Refer Slide Time: 20:30). So xtp+, it has evolved through this. If your vector 
field in the left hand side is fp- and the right hand side is fp+ then it has evolved through the right 
hand side vector field. This is xtp+ in the first order approximation, you will have fp+ times the 
time that is taken. That is delta t so this plus the vector field times the time that is taken. 
Similarly this point here x bar tp bar is this x bar tp+ fp- and the flight time. X bar tp is here, so we 
can substitute. We can write this is equal to xtp+ plus delta xp- plus fp-. We have expressed these 
two. Next step, keep this thing in mind so that we need to refer back to it. 
  
(Refer Slide Time: 00:22:33 min) 
 

 
 

Now we start from delta xp+, this is what we are trying to find out. We are trying to find out this. 
We have already seen that this is the x bar (tp bar) minus xtp bar and the two right hand side that 
also we know so we will express it as x bar tp bar is here and xtp bar is here. We will substitute 
these two and thus we get x(tp) plus delta xp- plus fp- delta t minus x (tp) minus fp+ delta t. These 
two cancel off and so we are left with delta xp- plus fp- delta t minus fp+ delta t. Essentially this 
minus is this times delta t, so far so good. If we drop an orthogonal here then you would notice 
that delta xp- times the normal to the switching surface is equal to, this is fp- delta t normal times 
the fp- delta t. If you take its component here and its component here, they are just opposite to 
each other and the components are obtained by taking the normal to the switching surface.  
 
The normal to the switching surface is n, say n is here, so n times this vector is equal to negative 
of n times this vector. We can logically write n transpose because n will be a vector, it has to be 
transposed in order to multiply with it. This times fp- delta t is equal to minus n transpose delta 
xp-. If you are not convinced, this can also be obtained from the condition that this evolution 
satisfies the condition for the switching manifold at this point and this evolution satisfies the 
condition of the switching manifold at this point and switching manifold is beta x equal to 0. 
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We can write beta of xtp equal to 0 as the condition, when this is satisfied and beta x bar tp bar 
equal to 0, as the condition when this is satisfied (Refer Slide Time: 27:02). Now you can take 
this and expand this. I will write 0 in the left hand side, 0 equal to beta x bar tp bar. We will 
expand it, beta xtp plus; beta x bar tp bar is just from here, you already have it; plus delta xp- plus 
fp- delta t and this can be taken out and this can be written as beta xtp plus n transpose delta xp- 
plus fp- delta t. Now this term is 0 because of this, so you get this which is the same as writing 
this.  
 
At the end of the day, you have delta t expressed as minus n transpose delta xp- divided by n 
transpose fp-. This is the expression for the additional time taken by the perturbation to reach the 
switching manifold. Now once we have it, things fall in place because we started with this. We 
wanted to express this and this was ultimately expressed as here.  
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We will start from here, we will write. Just keep this in mind, I will write it here. Delta xp+ is 
equal to delta xp- plus fp+ minus fp- times minus delta t. Can you see? If you take delta t out, it is 
fp- minus fp+, we are putting the negative sign out so that this get cancelled off. So this times nT 
delta xp- divided by nT fp-.  Now what are we driving at? Ultimately we are driving at this and 
you can see, there we have it really. We are trying to find this which is delta xp+ divided by delta 
xp-. So if I divide now both sides by delta xp-, we have it. We will write this particular thing 
which is called this saltation matrix. We are actually trying to express it as delta xp+ is equal to 
saltation matrix S times delta xp-. What is the definition of the saltation matrix? It is the state 
transition matrix across the switching manifold that is called the saltation matrix. Saltation the 
word means jump, so it is just nothing but a jump matrix. In some literature you will find the 
word jump matrix.  
 
You can easily see from here then the S will be; this will be divided by xp- so it is I plus xp- has 
been divided by so this goes off. You will say it is fp+ minus fp- bracket times n transpose divided 
by n transpose fp-. This is the saltation matrix, this is the expression for the saltation matrix. Now 
in deriving this, so this is important. Keep this in mind. In deriving this, we had assumed that this 
surface is static. We did not assume any movement of this surface but in general it can move. For 
example the switching manifold, the switching surface there is no reason to assume that it will be 
always absolutely static, it is possible for it to move. In case of the impact oscillator, the 
impacting surface can move. In case of the switching circuits, the condition for switching can be 
a moving surface so that’s all actually not only possible reality.  
 
In that case the expression in general will turn out to be I plus, the numerator remains the same 
fp+ minus fp- n transpose. Here it will be same thing n transpose fp- but additionally there will be 
one term that relates the rate of change of the switching surface. So will be the partial derivative 
of the switching surface with respect to time calculated at t is equal to tp. This is the total final 
expression for the saltation matrix. Once we have it things will become rather simple because let 
us come back to the condition that we took. Leave it, let me draw it again. 
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Here is your switching surface and here is your starting point, it go up to this point, come up to 
this point and say you go up to this point. This is the evolution in that case, this is the starting 
point 0, this is the ending point t. Suppose your evolution from here to here is given by A1, from 
here to here is given by A2 and from here to here is given by A3. The state transition matrix from 
here to here up to the time tau1 up to the time tau2, 0 to tau1 is A1. Tau1 to tau2 is A2 and tau2 to 
capital T is A3. In that case as I told you cannot say that the total monodromy matrix is A1 times 
A2 times A3. Here at this point there will be a saltation matrix say let us call it s1 then there 
would be another saltation matrix at this point s2. Then the monodromy matrix M, we will start 
this one in the right hand side; A1 times S1 times A2 times S2 times A3. 
   
Notice the order in which we are writing. It is starting from the right, proceeding to the left as 
you go around the whole orbit and it is a very simple to do the same thing for an orbit something 
like this. If it is a complicated orbit, higher periodicity with number of switching’s it is nothing 
but you start from a point and you find out this state transition matrix from here to here and then 
at this point you again obtain the saltation matrix. Again the next flight, again the saltation 
matrix, again the next flight and then you simply multiply them. That is how you obtain the 
monodromy matrix and the Eigen values of the monodromy matrix will be the Floquet 
multipliers, that’s all. If the Floquet multipliers are inside the unit circle, you have a stable 
periodic orbit. If it is outside the unit circle, you have an unstable periodic orbit.   
 
This is how we actually find out the stability of periodic orbits and in case of the non-smooth 
dynamical system where there is some kind of a switching. This is the complication ultimately 
that can easily be solved and ultimately you can obtain the monodromy matrix. Now as I told 
you, we were considering border collision bifurcations in which the ultimate thing that we need 
to evaluate is how do the Eigen values change as the fixed point goes across the unit circle. 
There an orbit like this will be just a fixed point of the corresponding Poincare map and the 
Eigen values of the fixed point will be same as the Eigen values of this (Refer Slide Time: 
37:35). 
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When such an orbit crosses the switching boundary that means, imagine that there was an orbit 
something like this. 
  
(Refer Slide Time: 00:37:46 min) 
 

 
 

As you change the parameter it crosses and it becomes something like this. Then there has been a 
change, there was only one excursion to this side earlier. Now there are two excursions here, so 
in between there has been a border collision event, a greasing event which is nothing but a border 
collision event. Naturally in order to understand that border collision event, you will have to find 
out the Eigen values of the fixed point, the fixed point in the discrete map. The discrete map is 
obtained something like this. You have got a Poincare section and you look at the position here 
and here you look at the position here and you are interested in the Floquet multipliers. You are 
interested in the Eigen values of that fixed point which is nothing but what we just obtained.  
 
In one case you will have to obtain the Eigen values of this orbit, its Floquet multipliers and here 
in this orbit and these two Jacobian matrixes will need to be substituted in the theory that we 
already presented and there the theory will predict what will be the outcome of this bifurcation. 
This is how we apply the theory to a particular complete situation of a non-smooth dynamical 
system. Is that clear?   
 
We have learnt how to handle non-smooth dynamical systems and then let us now go to another 
topic because we have more or less covered the issue of this in detail. Let us now treat the 
problem of how to actually do experiments in nonlinear dynamics. Experiment means where you 
are trying to construct something, you are trying to observe its trajectory in the state space. You 
are trying to observe how it looks on the Poincare section. You are trying to observe how it 
looks, when you draw the bifurcation diagram that means some way of experimentally obtaining 
the bifurcation diagram. We have already treated that in many cases, you will need to reconstruct 
the dynamics by state space reconstruction technique but that apart. How to actually do the 
experiments?  
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Now let’s consider this one by one.  
 
(Refer Slide Time: 00:40:41 min) 
 

 
 

First let us assume some kind of a generic experiment running inside this box. What does it 
mean? It means that supposing inside you have got a Chua circuit, there is some kind of an 
oscillation going on in the voltage and the currents. If it is some kind of an electro chemical 
oscillation, so there is a container in which the constituent components, constituent reagents are 
changing in the concentration as a dynamical system. If you have mechanical dynamical system, 
you have got some physical mechanical component moving and ultimately you have got this and 
you get some kind of a sense of that. What I mean by sense of that is if it is an electrical system, 
you have some way of measuring the voltages and the currents and the currents are also very 
often measured as voltages by passing it through a standard resist so that you get a voltage 
proportional to a current. If you have some kind of a mechanical system represented by say the 
position, the momentum, the pressure and stuff like that, all these need to be ultimately converted 
to some kind of a voltage signals. So you need transducers. If you have an electrochemical 
experiment going on, that also needs to be converted to some kind of an electrical signal in order 
to actually observe it.  
 
Now let us first illustrate it with reference to an electrical experiment, some kind of electronic 
circuits in which you are observing this. What are the results of the observation? Results of the 
observation is some voltage at some points, some voltage at another point and one of this voltage 
may be a current proportional to a voltage and then we can put that on to the CRO and in the 
CRO, you will find that there are a few ports, different ports. It is x port and the y port. If you put 
it in the x port and measure it against time, you will see some kind of oscillation like this. Here is 
your time, here is your x. There is a knob that you can turn in order to plot it in the xy mode. If 
you do that and you have to put the other variable also in the y mode, y channel then you get 
what is actually the orbit in the state space not exactly that. Suppose this is a higher dimensional 
system but you are observing only two then it is projection of that in the direction of this xy.  
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You might imagine that it is actually three dimensional system with some kind of a oscillation 
going on but when you take your say x coordinate and the y coordinate then you are essentially 
looking from here as if your I is here and you are seeing the projection of it in the xy plane. That 
is what we will observe here. You will not be able to actually observe the three dimensional 
thing because for that equates a difference visualization technique. It is possible to do a data 
acquisition and plot this on a computer in 3 D that’s possible. You have a plot of the phase plane.  
If you see it is something like this, you know that it is a periodic orbit. If you see something like 
this you know it is period two orbit, you see something like this you know this is period three 
orbit and so on and so forth. 
 
Suppose you want to observe it on the Poincare section what do you do? As you know the 
Poincare section can be obtained in two possible ways. If it is an autonomous system, you will 
have to place the Poincare section physically that means if it is an autonomous system and you 
have some kind of orbit like this and you have to choose a particular value at which you place 
the Poincare section say here.  
 
(Refer Slide Time: 00:45:07 min) 
 

 
 

What does it mean? This value corresponds to some particular value of a coordinates say z, so a 
particular coordinate satisfying a specific value is equivalent to placing the Poincare section. 
What will you do? You will sense this and these will have to be compared that means the z 
coordinate value, z coordinate signal has to be compared with a given DC voltage corresponding 
to this level. You get the point? The point is that here you have the x coordinate, here you have 
the y coordinate and here also you have the z coordinate and you are placing the Poincare 
sections such that whenever z is say 1 then I observe it. What does it mean? I will have to take 
the voltage corresponding to the z coordinate, say this is the voltage corresponding to z 
coordinate. I will have to compare with a signal one and I have to put a comparator.  
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Whenever this comparator changes sign, you know that it has been crossed but you are not trying 
to observe it in both the directions. You are trying to observe it when it crosses from one side 
which means at this point, you will have a signal something like this out of which you either 
choose the positive edge or the negative edge but not both. You either choose the positive edge 
or the negative edge but not both so whenever this is happening, you need to observe the x and 
the y coordinates. You are actually not trying to observe the z coordinate ultimately, you are 
trying to observe the x and the y coordinate when a specific condition on the z coordinates is 
satisfied. So what you do, suppose you are trying to observe it at the positive edge. Then 
ultimately from here you need something like this. At this point you want to observe, at this 
point you want to observe, at this point you want to observe. You need a very sharp impulse at 
these points meaning that I want it to observe at that instant.  
 
How do you obtain sharp impulses from this? It is rather simple. All you need to do is to put a 
differentiator. If you put a differentiator at this point, it will give a spike. At this point it will give 
a negative spike, at this point it will give a positive spike, at this point it will give a negative 
spike and all that. Put a diode, eliminate the negative spikes, you get only the positive spikes at 
the point where you want to observe it. You have a sequence of spikes, you have a sequence of 
impulses at the points where you want to observe it now.  
 
In a normal CRO you will find that at the back of the CRO, there is something called a z 
modulation port where if you put this signal then it will make the CRO observe the x and the y 
coordinates only at those instances, when it is positive. The simple way of doing it is that in the 
CRO, here is the screen and here is the x and the y. Put x and the y but also at the back put the 
signal, this signal at that z mod port. In some CRO’s you will find that it observes when it is 
zero. Some CRO’s observe when it is positive so depending on the specific CRO that you are 
using, you might need to put inverter. That means you will need to make this value 0 when you 
want to observe it else it is a positive value that depends on the model of the cathode ray 
oscilloscope that you are taking. So here is the x port and here is the y port, you take the x port 
and the y port put these things.  
 
So what you do? Ultimately what do you get on the screen? You see dots. Where are the dots? 
That is when x and y are observed at this instance which means you have done the sampling, you 
are observing it on the Poincare section. So whatever appears on the CRO screen is the face 
portrait in the discrete time. This is actually how the observations are done in mechanical or 
other domains essentially the same procedure has to be followed only you need to get xyz as a 
voltage signal. Now come to the point how to obtain a bifurcation diagram on a CRO screen. For 
obtaining the bifurcation diagram say something like this. 
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What is your x axis? It is a parameter. What is your x axis? It is a variable so this variable could 
be xy or z and these are as I told you have to be obtained as a voltage signal. But parameter then 
also has to be obtained as a voltage signal then only you can put it on the CRO. Now some 
parameters are naturally a signal parameters. For example if there is a reference signal that you 
are giving and that itself is being used as a parameter, you can use that or a circuit in which you 
are applying a input voltage which is variable that is a parameter. So that can simply be taken as 
a x axis coordinate. Why? Because that is already available as a voltage signal. In the cases 
where you do not have a parameter directly available as a voltage signal, you have to cook up 
some way in which it is converted into an equivalent or proportional voltage signal.  
 
Suppose a resistance is varying then how to do that? You will have to use a two limb rheostat, 
one limb is your load, the other limb varies at the same time and you apply a voltage. You allow 
a current to flow and depending on the resistance you get the sense of voltage. So there are 
various ways of actually doing it but the essential message is that ultimately you have to obtain 
the parameter also as a signal. Now put the parameter, the voltage corresponding to the 
parameter in the x coordinate of the CRO. So here is a screen, here is a x and the y, x will now be 
the parameter and put the y coordinate as one of the variables. For example xy or z, you take one 
of this and put in the y coordinate.  
 
Normally what will you see? For a specific value of the parameter you will get just a point, if the 
orbit is period one because parameter has a specific value and if it is a period one then the 
sample value also has a specific value. Sampled, that means here you have already put this 
particular signal in the z modulation port. That means you are not observing it continuously, you 
are observing it in the z mod. Then as you change the parameter that means you change the input 
voltage, change whatever is the parameter then this coordinate will change. As a result this point 
will move and suppose this orbit goes through a period doubling. Then what will you see? As the 
parameter reaches a particular value, you will see there are two sampled values for the state y, 
again two.  
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You will get something like this. Again if it goes into period four, it will get something like this. 
If it is chaotic orbit, you will get as much. The whole bifurcation diagram actually appears on the 
CRO screen but not at the same time. As you move, it actually swifts through, this bifurcation 
diagram actually swifts through and when it comes here this is no longer there, it is vanished. 
How to capture the whole bifurcation diagram? In the olden days we used to take a camera, 
switch everything off, all the lights off. Take the camera and make a very long exposure that 
means it its kept open so long as it is being given a sweep, so this parameter is given a sweep and 
it ultimately captures the whole bifurcation diagram on the film. Develop it and you have it. 
  
Now it is you have got the digital storage oscilloscope where you can store as you give the sweep 
we can store. Ultimately you see the whole bifurcation diagram on the computer screen. This is 
another nice way of doing it but one word of caution, the digital storage oscilloscopes measure 
the actual signal and the noise with equal intensity. If the system is noisy then you will see a lot 
of smudge around this, if it is done with the digital storage oscilloscope. While in analog 
oscilloscope the actual signal is brighter than the noise signal so you see the bifurcation diagram 
better with analog oscilloscope. But nowadays it does because it is somewhat cumbersome to 
switch lights off and put a camera and do that slowly.  
 
The other way of doing it is that if you have a parameter, one way of giving a sweep is to 
generate a signal that is stepped like this. That means this parameter instead of actually slowly 
varying it, you gave a stepped input. How do you do that? You can generate a step signal and use 
that as the parameter and if you do so then what happens is that exactly the same thing that you 
do in simulation. What you do? You change the parameter and then you observe it, again you 
change the parameter in another step you observe it, so that is how you do. If you give this kind 
of stepped signal as the parameter, it automatically observe it and say after sometime it falls and 
then it goes like this again. Again falls, what will you see on screen? It will be swept, sweep will 
go on and you will see the image static on the screen. Image of the bifurcation diagram static on 
the screen. That is another nice way of doing it. We will continue in the next class.  


