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So far we have been studying the non-smooth bifurcation phenomenon that will occur in one 
dimension or two dimensional maps. We will go to more details of it but before going to that 
stage let us take stock of where we are. Essentially I said that there are a large number of 
physical and engineering systems which when modeled in a discrete way gives rise to piecewise 
smooth map. Therefore in order to understand the bifurcations occurring in them, you will have 
to understand the bifurcation that can occur in a piecewise smooth map and then we said that in 
the neighborhood of the border collision event we have… if you want to understand what exactly 
happens we can locally linearize the state space around that border crossing point and thereby we 
obtain the normal form and then we went on analyzing that normal form and we have gone on 
and on. Let us come back and then figure out where we are. Our objective was that we should be 
able to explain the bifurcations occurring in such systems. Based on whatever we have learnt 
regarding the character of the bifurcations, the different types of border collision bifurcations that 
can take place and so on and so forth. Can we now explain mathematically the bifurcation that 
we actually observe in systems? 
  
(Refer Slide Time: 00:02:38 min) 
 

 
 

For example if you observe that in a physical system, I am not talking about the normal form 
now. Suppose a bifurcation diagram is observed which goes like this. Then based on what we 
have learnt, can we infer anything about what is happening here. Obviously we can see that there 
is a sharp bend in the bifurcation diagram and if the map is smooth, we don’t expect this kind of 
a bend.  
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If we encounter such a bend where before the bend and after the bend, the behavior is period one 
or some other periodicity but nevertheless there is a bend. Then based on what we have learnt we 
would say that no, at this point there has been some non-smooth phenomenon occurring and that 
should fall under the category of the border collision bifurcation where a stable periodic fixed 
point hits the border and still remains a stable periodic fixed point. In order to explain that we 
will have to obtain the Eigen value just before and just after this event. With these two arrows I 
am showing that at these two points, just before and just after we will analyze the fixed point.  
 
We will obtain the Eigen values and then if you do so, we will notice that the Eigen values have 
jumped. But again from inside the unit circle to inside the unit circle. It might be something like 
this, I am just schematically showing it but it could be anything else also. Say initially it was 
something like this, these two fixed points and they jump to these two positions, still its stable. 
This kind of phenomenon then if you encounter, we will be able to explain in terms of the 
physics that you have learnt.  
 
(Refer Slide Time: 00:04:46 min) 
 

 
 

What if you encounter something like this and so on and so forth? What will we say about this? 
Here as you can see there was again a bend, rewind the period two orbit. In order to explain that 
we will need to take the second iterate of the map that means from the original system, we have 
obtained the map. Now we will take a second iterate and apply the same logic. If you take the 
second iterate then it is simply something like this. This will be second iterate remember then 
this will be period one. So you will see just one bend and then you will have to obtain the Eigen 
values at these two points and if you obtain the Eigen values of the second iterate then you will 
again encounter the same kind of situation that the Eigen values initially were inside the unit 
circle. They jumped discretely, they changed discretely but still they remain inside the unit 
circle. But that logic will now be applicable to the second iterate of the map, not the first iterate. 
You might do that by simply obtaining the Eigen values of the fixed point that is here, another 
fixed point that is here, the Jacobian matrices, multiply the Jacobian matrices, you get the 
Jacobian matrix of the second iterate. If you analyze that you will get this behavior.  
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If you see the computer screen, I am drawing a bifurcation diagram and that is the bifurcation 
diagram of the boost convertor. Can you see what is happening? You might see that here this is 
again drawn by dynamics. It is the bifurcation diagram drawn from the top to bottom. Can you 
see the mouse? Yes. From here a period one orbit starts and the parameter, in this case the load 
resistance has been varied from 100 ohm to total 600 ohm. So up to say something like 300 ohm. 
It was a period one orbit, so there is a range of the parameter, load resistance for which the 
periodic orbit remains.  
 
At this point what has happened? It is a smooth period doubling, a normal smooth period 
doubling so just by the appearance of it, you will be able to infer that this is an event where the 
Eigen value of the period one orbit became minus 1. Following this event, the two branches of 
the period two orbit diverts from each other and then something very peculiar happens here. 
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Can you see this? At this point and at this point, something very peculiar happens because now 
the orbit suddenly becomes chaotic. Let me draw this because this is too narrow line. Let me 
draw this here which will make it clearer.  
 
(Refer Slide Time: 00:08:45 min) 
 

 
 

It was like this and then it underwent normal period doubling bifurcation but at this point it 
became chaotic. How would we explain this event? Now you can see that here is a period two 
orbit that suddenly underwent a transformation and obviously this event you can easily see that 
cannot be a smooth event, it cannot be a smooth bifurcation so that as to be a border collision 
event.  
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But what actually happened? At this point a period two orbit hit the border. In order to explain it, 
we will have to consider the second iterate of the map and one of the points of the second iterate 
map hit the border. Imagine that the border was here and it was hit. So following that I can see 
that it went into a two piece chaotic orbit and then after sometime this two pieces merged. If you 
look at it from the point of view of the second iterate map, you would be able to see something 
like this. If you start in a normal form then it would be something like this that a period one orbit 
hit the border and then it became a two piece chaotic orbit. In general it is a transition from 
period two orbit to a chaotic orbit. When did that happen, under what condition did that happen?  
 
(Refer Slide Time: 00:10:58 min) 
 

 
 

This is our tauL axis and this is our tauR axis and we found that happens somewhere here. In this 
part there is a transit from periodic orbit to chaotic orbit, not in this part because here it is a 
transition from no fixed point to a chaotic orbit, so somewhere here (Refer Slide Time: 11:27). 
We have seen that in this part we have the period two orbit and then you have period three orbit 
and period four orbit, in between you have the chaotic orbits. In this case if you try to analyze it 
then it should be explainable by means of that theory, if you want to analyze it. But how would 
you analyze it?  
 
Essentially in order to analyze what you have to do is to take the second iterate of the map, 
obtain the Jacobian matrix of the fixed point just before the border collision happened. But after 
the border collision happened, what happens? You don’t have the period two orbit any further, it 
is a chaotic orbit. So whose Jacobian will you find out? In fact inside this chaotic orbit, there will 
be an unstable period two orbit. The essential point is that in this case also when we are trying to 
study we studied the Eigen values of the period two orbit before and after the border collusion 
event. Here also even though you do not see in a salient way the period two orbit, you should 
know that it must be there and your job is to find out the Jacobian of the period two orbit. Only 
then you will be able to fit into this theory. The way it is done is that you will obtain the Jacobian 
of the period two orbit before and after. How to locate that unstable periodic orbit? I will come to 
that later.  
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You will need to locate that unstable periodic orbit and then on that, you will have to calculate 
the Jacobian. Once you have calculated the Jacobian, what are we doing? We are obtaining the 
trace and the determinant. Now from the original system we have obtained the trace and the 
determinant but the strength of this theory is that these two quantities, the trace and the 
determinant are invariant under coordinate transformation. 
 
When we transform it into the normal form, these two quantities don’t change. From the original 
system if we obtain the trace and the determinant, we can thumb the table and say that I have got 
the right trace and the determinant for the normal form also. Then we will say that for the 
particular parameter that I have chosen, it falls here and from a theory we can see that it must 
lead to the transition from a periodic orbit to a chaotic orbit and that is exactly what happens. Let 
us give you one more example to illustrate what we mean. 
 
(Refer Slide Time: 00:14:28 min) 
 

 
 

Say you encounter a bifurcation diagram something like this. Say it goes to another set of … 
(Refer Slide Time: 00:14:41) I wish to draw it like this that means acute angles and then and 
finally it becomes chaotic. At this point what happened? There was a period doubling but the 
branches that immersed out of it, went in acute angles which are not the characteristic of smooth 
systems. By looking at it you should be able to infer that it is a non-smooth period doubling. In 
order to analyze this, what will you do? You will obtain the Eigen values just before the border 
collision. Whose Eigen values? Period two orbit that means the second iterate of the map. After 
the border collision, whose Eigen values you will find out? Now it is period four. No, you will 
not obtain the Eigen values of period four map. You will obtain the Eigen values of the same 
iterate. That means earlier it was the second iterate, now also you will have to locate the period 
two orbit which will be going like this unstable period two orbit. You will have to obtain the 
Eigen values of that. Then once you have done that, you will be able to show that it satisfies the 
condition where we have already shown that there will be a transition from a periodic orbit to a 
period two orbit, higher periodic orbit. 
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Let’s go one step further. Suppose after this you have encountered that in a smooth system, after 
it goes into chaotic, there are periodic windows. You have encountered that. Now in this case 
also, in non-smooth system also there can be periodic windows but suppose you find that the 
periodic windows are like this. Not really periodic windows, most of you who study literature in 
this field will come across bifurcation diagrams looking like this. What will you say about that? 
We know that such periodic windows are normally created in a smooth map by saddle node 
bifurcations where a new periodic orbit is born. Now why we were studying the non-smooth 
systems?  
 
We also learnt that a non-smooth saddle node bifurcation can also lead to a situation where both 
are unstable. If both are unstable then there is a possibility that the resulting orbit will be chaotic. 
You should immediately realize that’s exactly what is happening. Here there has been a birth of a 
periodic orbit, not only one but a pair of periodic orbits but both unstable. As a result around that 
there has been a new chaotic orbit that is been born and because of the birth of this new chaotic 
orbit, you see this window which is not a periodic window. It is also a chaotic window but a 
different chaotic window than this.  
 
But remember, here there are three bands that are going. At three points I can see that it has been 
born. What does it mean? It means that this is the event happening in the third iterate of the map. 
You will have to look at the third iterate of the map and if you do so, you will find that there 
must be two fixed points. I mean the theory says that there must be, by closing your eyes and 
thumbing the table you can say that there must be two different unstable period three orbits. Two 
different unstable period three orbits that has been born at this point. The way to analyze it, 
locate this period three orbits, find out their Eigen values and then fit into the theory. Where do 
we expect it to be? You expect it to be somewhere here, in this part where the bifurcation is from 
no orbit to a chaotic orbit.  
 
So seen in the third iterate, it will be no orbit to a chaotic orbit, it will be like this. There was 
nothing before that. At this point two periodic orbits were born both unstable but what is the 
different between them? One a regular saddle and another flip saddle. So even though both are 
unstable you can easily figure out what kind of orbits are they. One will be a regular saddle 
another will be a flip saddle and then the bifurcation diagram individually seen from the point of 
view of the normal form will be like this and seen from the point of view of the actual system, it 
will be like this. The explanation of this kind of an event will have to be obtained by the theory 
of the non-smooth maps.  
 
What happens here is that you have the birth of a two periodic unstable orbit, one regular saddle 
another flip saddle but the chaotic orbit is not stable. That is what happens here. In this part it is 
stable, in this part it is not stable because in between there has been a boundary crisis so this 
fellow is unstable. You would not say that nothing happens here. You would say that if the 
parameter range is here then it leads to the creation of an unstable chaotic orbit. Now unstable 
chaotic orbit had been created, you might argue that what if it is not there anyway. No, it’s not 
true that it is not there.  
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The point is that these unstable chaotic orbits may later in the bifurcation diagram have its own 
influence because at some of point of time, it may take part in any interior crisis so that suddenly 
you will find the attractors enlarging into something you don’t know what. But the point is that 
orbit was created some times back in this kind of a bifurcation which you did notice because it 
was not observable. But theory will prompt you to say that no in such a system, it is possible to 
have the birth of unstable chaotic orbit which will have its own influence on the dynamics, later 
if it somehow encounters an interior crisis. Just to recall when interior crisis happens. When the 
existing stable periodic orbit somehow contacts with that unstable chaotic orbit then the whole 
chaotic orbit becomes stable. Under that condition you will find that suddenly something that 
was not there appearing into the picture and often we are very hard put to explain where did this 
fellow come from. This actually came from this kind of an event. So we have more or less 
understood.   
 
(Refer Slide Time: 00:22:51 min) 
 

 
 

What will you say if you have an ongoing chaotic behavior say at this point, it terminated and we 
have this in a piece wise smooth system. What will you say? This event since it is a piece wise 
smooth system, this could be related to a smooth saddle node bifurcation or it could be a non-
smooth bifurcation where the parameters are here. If they are here then what is the character? It 
is like a saddle node bifurcation were a pair of stable and unstable fixed points are born. Will the 
stable fixed point be visible? If you have something like this, you would said that similar thing is 
happening in the third iterate but no you will have to test that. Why? Because such thing could be 
as in the logistic map, you have the period three window created by a saddle node bifurcation. 
Here also it could be so.  
 
How do you distinguish between them? You will have to say that at this point, not only this 
fellow has been born but another fellow has been born which is unstable. It cannot have this orbit 
otherwise. Just following this, you obtain the Eigen values of these two orbits, a period three 
stable orbit and locate a period three unstable orbit because you know from theory that it must be 
there. Locate the period three unstable orbit and find out their Eigen values.  
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Now what happens in a smooth system? In a smooth system if you assume that this is the chaotic 
orbit and at this point there is a birth then it will be born like this and then the other orbit will be 
going like this. Here these two are going at this point in an orthogonal direction but here it is an 
acute angle but this is sometime difficult to identify. So as you go closer and closer, these two 
fixed points come closer and closer and then at this point they have the same Eigen values. Not 
here. 
  
Here as you go closer and closer, these fellows Eigen values will remain different. That is the 
characteristic of the non-smooth saddle node bifurcation where two orbits have been born but 
you would notice that one with the Eigen value placed such that the tauL is greater than 1 plus 
deltaL and the other with the tauR between plus 1 plus deltaR and minus 1 plus deltaR. They are 
different at this point itself. By examining that we would be able to infer whether it’s a smooth 
saddle node bifurcation or a non-smooth saddle node kind bifurcation where a parameter is 
placed here. Basically my point is that, all this theory based on the normal form is fine but do not 
be carried to think that it is just a mathematical exercise. It is essentially an exercise by which we 
would try to explain phenomena that actually happen in physical systems.  
 
 (Refer Slide Time: 00:26:57 min) 
 

 
 

Now let us come to the middle part which I said may show some surprise where we had 
concluded that it is a bifurcation where a period one orbit remains stable, like it hits the border 
and remains stable as a period one orbit. So this is mu and this is x. There are complications 
because the existence of the period one orbit does not prevent the coexistence of high periodic 
orbits.  
 
Let us consider. Will any period two orbit exist here? In the last class we have seen that the 
condition for existence of period two orbit is that it is below this and it is above this. We have 
seen that I am not repeating. The condition of existence of period two orbit is that tauL is greater 
than minus 1 plus deltaL and tauR less than minus. That is the condition we have already seen that 
and since we have seen that I am not going into the details of it.  
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We do not expect the period one orbit to exist here because it exists outside this range. But that’s 
not true for the period three orbit. That’s not true for the period four orbit. We will need to 
consider the existence of these orbits. How do you probe whether or not a period three orbit will 
exist?  
 
(Refer Slide Time: 00:28:52 min) 
 

 
 

The period three orbits existence will be given by, suppose this is the state space and there will 
be one point here another point here and third point here. This point will map to this point, this 
point will map to this point and this point will map to this point. This can be a period three orbit 
or this point will map to this point, this point map to this point (Refer Slide Time: 29:10). What 
is the distinction? This orbit is having two points to the left and one to the right, we will be 
calling it LLR orbit and this orbit will be having two points to the right and one point in the left, 
so it is called LRR.  
 
When we talk about the period three orbit, it could be either of the two and we will need to talk 
about both. We will have to find out where both will occur. How will you do that? That is 
algebraically pretty straight forward but you might need to do some algebraic manipulation in 
order to actually obtain it. What will you do? You will start from this point, apply the left hand 
map once, apply the left hand map another time and apply the right hand map again to ultimately 
come to x3. Then you would say that x3 = x1, so you will then solve the equations in order to 
obtain the position here, similarly here, similarly here.  
 
Similarly here you will apply the left hand map once, right hand map again, right hand map 
again, come back here solve it. That way you can solve for each of these points. Once you do so 
what you have obtained? You have obtained the positions of these individual points. Out of that 
one you can ignore because it will be immaterial. For example this point in the right hand side 
that will always be in the right hand side. That cannot go to the left hand side. If it does then all 
the points of a period three orbit will be left hand side which is impossible because the left hand 
side is a linear side.  
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In the linear map you cannot have a high periodic orbit. Similarly this point cannot go to the 
right hand side so it essentially boils down to finding the locations of these two and imposing the 
condition that both these x coordinates should be negative in this case and both these x 
coordinates should be positive in this case. If we do that then we can find out the range of 
parameters where this will exist and this will exist. Similarly we can obtain a period four orbit 
and so on and so forth. It may so happen that some of this will occur somewhere here. That 
means just imagine suppose a period three is occurring here. What does it mean? Suppose a 
period three is occurring for mu greater than 0. If you actually do this, you will find a large 
number of such regions where other high period orbits will occur. But just try to imagine what 
will happen, what will we see when we change the parameter mu.  
 
(Refer Slide Time: 00:32:32 min) 
 

 
 

We are changing the parameter mu and there was a periodic orbit that came and hit the border. In 
the other side of the border, the period one orbit remains stable and so we will draw it something 
like this. But at the same time, the other period three orbit will exist in this side that means this 
fellow will be something like this. Now imagine such a thing is happening in a practical 
dynamical system and you are changing the parameter like say in an electrical circuit of voltage, 
in a mechanical circuit some applied force or something like that. Something representing the 
parameter mu. You are changing it and its moving like this and finally it hits the border. Just 
following it what happens? There are two orbits, one period three, one period one. If there are 
two stable orbits they should have their own basins of attractions. So each one will have its own 
basins of attraction but you see the character is that the more closer to the value of mu is equal to 
0 you go, the closer this points are and at mu is equal to 0 they are actually at the same point, 
physically. Then they move away from each other and they have their own basin of attraction.  
 
Now every physical system has some ambient noise, you can’t help it. Every physical system 
will have some noise. As a result of that noise it will be slightly moving, not exactly following 
this particular small line but slightly moving around it. Now here it encounters a situation that 
there are two basins of attraction but they are arbitrarily close to each other and the noise is 
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stronger than that. What will happen? What happens is that there is no guarantee in which region 
will it be, in which basin of attraction will it be. It is moving arbitrarily, randomly and in that 
random motion it is intermittently going to this basin of attraction and intermittently going to that 
basin of attraction and while it does so, this parameter is changing.  
 
These basins of attractions are going away from each other but while they were arbitrarily close 
to each other, this fellow was randomly moving. What does it mean? It means that ultimately 
when they move away from each other, these basins of attraction, this state point will be in either 
of the basins but there is absolutely no guarantee which one will it be. This is another 
fundamental source of uncertainty. There are uncertainties in various ways occurring in a chaotic 
system but this is not a chaotic system, periodic system but still it has a fundamental source of 
uncertainty. As you change the parameter, once same system it will lock into a period one orbit 
here. Another time same system you do the bifurcation diagram, it will go in to the period three 
orbit without any difference made in the actual system configuration, no change in the 
parameters. This is called a multiple attractor bifurcation and these are considered to be 
somewhat undesirable because we never know which orbit it will ultimately go in. In any 
engineering system you would like to predict that if I make this change in the parameter it should 
behave like this but here is a case where you cannot predict, it either goes there or goes here. 
  
Now how to actually find the parameter range in which this multiple attractor bifurcation occurs. 
You see it will be either a period one with a period three orbit, period one with a period four 
orbit, period one with a high periodic orbit, period one with a chaotic orbit whatever it is but 
period one plus something. I will illustrate how to obtain the range in which the period one orbit 
will exist with the period three orbit because that is something that can be done. Following the 
same logic you can find out in which parameter range will the period one orbit coexist with the 
period four orbit, five orbit, six orbit and all that. As I said, suppose I am dealing with this LRR 
orbit and I am trying to find out its value. We can solve the equation and we can obtain the value. 
I will write, you can easily check but it will be advisable if you redo the thing so that you can 
obtain it independent of my writing in this paper.  
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For the LRR orbit, there will be two equations, given two conditions. One this fellow become 
equal to 0 and another this x coordinate become equal to 0, these are the two conditions. If you 
write it will be like this, 1 plus tauL minus deltaR plus tauL tauR plus deltaL deltaR plus deltaL tauR 
whole with mu divided by 1 plus deltaR square deltaL plus tauL deltaR plus deltaL tauR plus deltaR 
tauR minus tauL tauR square. It may look formidably large and complicated but don’t get worried 
about it. Obviously there will be another equation which will be similar, it is 1 plus tauR minus 
deltaL plus, this is symmetrical plus, this symmetrical plus deltaR tauL whole mu divided by 1 
plus deltaR square deltaL plus tauL deltaR plus deltaL tauR plus deltaR. No, this is tauL tauR square, 
this is greater than 0. 
  
Obviously the range of existence of this orbit, LRR orbit will be delimited by these two 
conditions. Now here is a number in the numerator and here is a number in the denominator and 
both are equal to 0 for the condition or greater than 0 for the condition that it will exist. 
Obviously this will be positive, if both these are positive or both these are negative. Similarly 
this will be positive when this and that, both are positive or both are negative. This immediately 
tells you that this condition, this condition and this condition, notice the two denominators are 
the same; these two lines, this condition is equal to 0, this condition equal to 0 and this condition 
equal to 0, they delineate the range of the parameter space. So this will give an equation of a line, 
this will give a line and the denominator will give another line.  
 
These three if you draw, you simply get some kind of an area. You can say that this area will be 
representing the range in which this fellow exists. If you place the initial condition there or the 
parameter there then you know that in this parameter range, I can expect a multiple attractor 
bifurcation. If say you have obtained a bifurcation diagram looking something like this, you are 
happy that it was a periodic orbit and it remained a periodic orbit. But as I told, you have to 
obtain the Jacobian matrices and then you have to feed to the theory and after having put this 
trace and the determinant into that picture, if you find that it falls somewhere here, you know that 
even though I have not detected it in the bifurcation diagram, this fellow exists. Locks 
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somewhere, so I am in a dangerous situation. That is the power of the theory that from the theory 
we can anticipate there no, even though I don’t see it, I am in a dangerous situation.  
 
Similarly you can obtain the condition for existence of the period four orbit, period five orbit, six 
orbit and all that and all these will represent the multiple attractor bifurcation conditions. Now 
these are understood to be problematic but there is another situation that is understood to be 
dangerous. That is when there are two attractors, here we are considering one period one 
attractor another period three attractor but suppose it is period one attractor and another attractor 
infinity. That means it is another situation where this period three attractor is not there. It is an 
attractor infinity but the same multiple attractor bifurcation occurs. That means as you go 
arbitrarily close to this point, there is another attractor at infinity and its basin of attraction comes 
arbitrarily close to the fixed point. 
 
Even though if you just look at the fixed point and keep on obtaining or looking at it Jacobian, 
you will find the fixed point is stable, you are happy. Yet its basin of attraction collapses to 0 at 
the point of bifurcation. That is called a dangerous bifurcation because simply, normally in 
control theory the Eigen values are understood to be the indicator of stability. Here is a situation 
where the Eigen values give no indication on the stability. If you obtain the Eigen values you 
will find them they are stable, yet the system collapses because there is always some ambient 
noise and it has a finite probability that it will go into the basin of attraction of the attractor at 
infinity, it will collapse.  
 
It is necessary to understand why that happens and where that happens because even though this 
middle part as I told you is, many people think this is a safe part because it was a period one, the 
remaining period one it is not really the safe one. Let us try to understand clearly. You have seen 
that these two conditions will actually give three conditions because the numerator here, the 
numerator here and the two denominators are the same. These two individually are the 
conditions.  
 
(Refer Slide Time: 00:45:13 min) 
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If you plot them, you will get say I am plotting in that middle part, so this is tauL. So what is 
this? This is 1 plus deltaL minus 1 plus deltaL and so on and so forth. This condition will turn out 
to be like this and so out of that one is this condition which is here, another is this condition 
which is here and there is the denominator condition which is there. It is actually single line. You 
can say that fine I have understood that the LRR orbit will occur in this parameter range. Will it 
be stable? The stability condition is a bit different because the stability condition, how do you 
obtain? The stability condition is that the Jacobian of the left hand side times the Jacobian of the 
right hand side times the Jacobian of the right hand side, so JL JR JR. Its Eigen values should be 
less than 1, that is the condition. 
  
Now if you obtain that then you will see that in one of the condition, Eigen values can be less 
than one means it could be plus 1 or minus 1. The plus one condition is exactly the same as the 
denominator. You can easily do that, it will turn out to be exactly the same as the denominator. 
This line is also the condition for its stability, this side it will be stable. We understand that it 
could be stable. The moment I say that it could be stable, I understand that it is stable in addition 
to the period one fixed point. In addition to the period one fixed point, it’s a LRR type period 
three orbit is stable. The moment you tell me that I will ask who forms the basin boundary. If 
there are two stable orbits, there has to be a basin of attraction. Immediately I will ask who forms 
the basin boundary and you know that the basin boundary can be formed only by the stable 
manifold of a regular saddle fixed point. Who is that regular saddle, where is that regular saddle?  
 
In fact all these orbits will have a complementary orbit. Complementary orbit means if it is a 
LRR orbit then take one of the symbols to the left then whatever orbit you get, it is a 
complementary orbit. So LLR orbit is a complementary orbit. First suspect is that, is there a LLR 
orbit? Yes, in fact there is a LLR orbit, if you really investigate you find that there is a LLR orbit 
and that is what forms the basin boundaries. Naturally we will try to find out where does this 
orbit exist? The moment we try to do that we find that this fellow exists over a range, you will do 
exactly by the same procedure that means for the LLR orbit again you will find similar 
conditions. I am not writing that, it is not necessary for me to write all the time but if you do that 
you will find that exists over a condition that is like this and namely over a larger range.  
 
Notice I have said that there is no reason to think that the LLR orbit in LRR orbit will occur for 
the same range because these conditions will turn out to be different. If the conditions turn out to 
be different, obviously the orbits region of existence will be different. Because you are solving 
different equations and the difference is manifested mainly because the stability conditions 
would be the same. Here it will be a different number, different range, different line. What does 
it mean? It means that if I place the parameter here then I have the coexistence of the period 
three stable point and the unstable point because if LLR orbit at that point is unstable. I have the 
condition, the LLR orbit is a regular saddle. Its stable manifold is forming the basin boundary but 
have you understood the condition.  
 
This condition is where period one orbits is there, period three stable orbit is there but at the 
same time period three unstable orbit is there which is a regular saddle and at that point it will be 
unstable. So that unstable regular saddle points stable manifold will form the basin boundary, 
simple case.  
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What happens here? Notice if I place the parameter here then the period one orbit is there, the 
period three unstable orbit is there but the period three stable orbit is not there because the 
existence condition has not been satisfied yet. You will be satisfied when you move here but here 
it is not there. What does it mean? It means that there is only the existence of a period one stable 
point and a period three unstable point but the unstable point is now a regular saddle, it will have 
a stable manifold and all stable manifolds of regular saddles form basin boundaries. Basin 
boundaries between what and what? Yes, one is at the period one attractor, the other will be at 
infinity. So under that condition it will lead to that situation that I talked off that there is a 
coexistence of a period one attractor with an attractor at infinity. If that happens then the system 
will inevitably collapse at the bifurcation point. Even though the periodic orbit remains stable 
because its basin of attraction shrinks to zero size. What you will actually see is something like 
this.  
 
(Refer Slide Time: 00:52:32 min) 
 

 
 

Let me draw it with this. It was stable, it remains stable but this stable fellow had a basin of 
attraction say something like this which also scales with mu and therefore that shrinks to zero 
size. Here also there was a basin of attraction, I am not drawing a chaotic orbit it is just a basin of 
attraction that also scales with mu and that also shrinks to zero side at this point. So at this point 
the basin of attraction has size zero. That is called a dangerous bifurcation that has no equal, no 
parallel in smooth systems. In today’s lecture we have essentially tried to understand how to 
apply this knowledge to actual physical systems and we have in addition come across with two 
possibilities.  
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(Refer Slide Time: 00:53:57 min) 
 

 
 

In brief so far I have not discussed one possibility. That is if you have the determinant greater 
than one then what? So far we have not talked about that. We have considered only dissipated 
systems but if the determinant is greater than one then what? This condition, since I am running 
out of time today, I will come to that in the next class. This condition what happens where the 
determinant is greater than one? That’s all for today.  
Thank you.  
 

Preview of next lecture 
 

(Refer Slide Time: 00:54:29 min) 
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So far we have been considering the situation where the determinant in both the sides of the 
piecewise smooth map were less than unity. What does it physically imply? It implies that if you 
take some area then in successive iterations of the map, the area will shrink. Essentially that is 
the meaning of the determinant being less than unity. The determinant being negative means, the 
area flips to the other side. It’s like a dish, it flips. But in general we have been considering the 
situation where you have modulus of the determinant less than unity. Just recall that in case the 
determinant is negative then it does not allow a complex conjugate pair of Eigen values. If the 
determinant is negative, the Eigen values are always real either it can be a regular saddle or a flip 
saddle or attractors, regular attractor. Is regular attractor possible? No, probably only flip 
attractor is possible. We have more or less dealt with these possibilities. 
  
Now let us come to the situation where which admits the possibility of the determinant becoming 
greater than one. Now obviously if the determinant is greater than one in both the sides then it is 
sort of expanding in both the sides. Take any unit area, it will expand in all the subsequent 
iterates and as a result the attractor will not exist. It will go to infinity. But supposing the system 
is having one side in which the determinant is positive. Under what condition can it happen? For 
example, in most power electronic circuits there is a switching. The switch is turned on or off 
and that is what gives the piecewise smooth character of the system. We were trying to figure out 
the physical meaning of the determinant becoming greater than unity. Is it possible in a physical 
system? Just imagine the situation where the switch remains on perpetually. What happens then?  
 
(Refer Slide Time: 00:57:23 min) 
 

 
 

Obviously if the switch remains on and there is only an inductor connected across it. For 
example a circuit like this, the power supply is here, there is a switch and then you have got an 
inductor here.  
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(Refer Slide Time: 00:57:27 min) 
 

 
 

Why? Because since this side is negative. Its implication is that if there is any initial condition in 
the right hand side, in the next iterate it will go to the left hand side because of the flipping 
behavior. It has a flipping behavior.  
 
 
(Refer Slide Time: 00:57:55 min)  
 

 
 

Since any iteration in the right hand side goes to the left hand side in the next iterate, it means 
that you can only have this orbit but not this orbit. Period three, we can only have LLR which 
means that there will be one range for period three, one range for period four, one range for 
period five and all that. That you can calculate from those equations. 
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(Refer Slide Time: 00:58:17 min) 
 

 
 

The resulting behavior is like this. There is one range for period two, one range for period three, 
one range for period four and so on and so forth but that will ultimately add up to an infinite 
periodicity here. It is a period adding cascade which will add up to infinite periodicity but here, 
infinite periodicity will not imply a chaotic orbit. Is that clear? It’s a bit tricky because we had 
earlier said that a chaos is nothing but an aperiodic orbit. This is also aperiodic orbit, infinity 
periodicity means aperiodic orbit yet, it is not a chaotic orbit. Why? Because since every part of 
the state space is contractive, the Lyapunov exponent must be less than 0. If it is less than 0, this 
fellow even though it is a high periodic orbit or infinite periodic orbit, it is not a chaotic orbit. So 
with the details, we will continue in the next class.  
Thank you.  


