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So far we were talking about systems that are smooth everywhere, smooth means everywhere 
differentiable. That means we have been considering equations of the form x dot is equal to f of 
x where x is a vector and this function f is continuously differentiable everywhere. We were 
considering that kind of systems. Now in nature as well as in engineering, there exist a large 
number of systems where there is some kind of a switch over action. For example you might 
imagine that the state space is divided into some kind of compartment so that if the initial 
condition is here, it will be guided by some equations of the form x dot is equal to f1 of x. While 
doing that if it somehow intersects this then the system equations that govern the evolution of 
this curve. This curve is the solution of the differential equation, the state space trajectory that 
equation it will change to something else for example, so that it will then go in some other 
directions, doing some other thing. Then again when it comes back, again it undergoes a 
switching and it goes in some other directions. 
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You might imagine situations like that where there is some kind of a switching. Such systems are 
called switching dynamical systems also called hybrid dynamical systems. The word hybrid 
comes in the context of where the continuous time evolution, there is also interplay between 
some discrete events in this case discrete switching events. What happens in such cases? When 
we try to understand what happens in such cases, try to picture that such systems will also have 
to be discretized. That means you need to obtain some kind of a discreet time description of the 
system and we know that discrete time description of the system is obtained by the method of 
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Poincare section. If there is a system like this, the normal description would be something like 
this. 
  
(Refer Slide Time: 00:03:49 min)  
 

 
 

System description would be x dot is equal to, it will be f1 of x if x is in the compartment say R1, 
f2 x another function if a state x is in the compartment R2 and so on and so forth. This is the 
general system description that we are talking about. But first in order to understand what 
happens in such systems, let us consider only two such compartments in this state space. You 
might imagine what is a practical implication of this? For example there are large number of 
switching circuits, power electronics circuits or switching circuits where there is an on state of 
the switch and there is an off state of the switch. During the on state it follows one set of 
differential equations. If it is in the off state of the switch, it follows another set of differential 
equations and obviously this is the description that we need but there are also many other 
practical examples when this happens.  
 
For example imagine the bouncing ball. Imagine the mechanical systems where there is some 
kind impact. When there is an impact it goes a bit to the other side depending on the flexibility of 
the impacting surface. Then so long as it has not impacted, it is governed by one set of 
differential equations and if the impact is governed by another set of differential equations. 
Schematically drawing, we would draw it like this. There is one spring and there is one damper 
connected to a mass and there is some kind of a force acting which makes it oscillate back and 
forth and there is a wall. It could hit the wall and come back. If the wall is rigid then that will 
result in instantaneous reversal of the velocity. While if this surface is somewhat soft then it will 
go into that and while it goes into that surface obviously the system equations change. This 
exactly brings in this kind of description. You might also imagine the situations of hydraulics 
systems where there is some kind of a closing and opening of valves.  
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When the valve is open it will be one set of differential equations, if valve is closed it will be 
another set of differential equations and the good example is the human heart in which there are 
of course valve openings and closings. The heart action is started by a triggering action. That’s 
also a non-smooth behavior. The smoothness relates to the differentiability.  
 
Now here when it goes from within this compartment, at every point it’s differentiable, this 
curve is differentiable but the moment it hits and goes in another direction, at this point it is not 
differentiable. At this switching surface the behavior is called non-smooth. This is what non-
smooth should be understood, it means that is not differentiable on a specific surface or a 
switching plane. If the original system is n dimensional, the switching plane can be imagined to 
be an n - 1 dimensional hyper surface. So that whenever this state comes and makes a contact 
with that hyper surface, it goes into another set of differential equations. How do we analyze 
such systems? The moment we try to do that, try to picture this kind of an orbit. 
  
(Refer Slide Time: 00:08:40 min) 
 

 
 

Suppose it is a three dimensional system and suppose here there is a switching surface and I am 
drawing some kind of a switching surface. It could be nothing else but I am just drawing. Now 
suppose there is an orbit something like this. Now this orbit does not intersect the switching 
surface, it always remains in one side of the switching surface and therefore all points of the orbit 
would be smooth but you might also imagine a situation where the orbit is something like this 
but intersects, goes in the other side and comes back and then goes. 
  
Now what is the difference between these two? Obviously the difference is that it has intersected 
the switching surface, gone to the other side and come back and that’s how it completes. In both 
cases you might place a Poincare section. For example if you place a Poincare section here then 
you will see the mapping as this point mapping to this point and you would get some kind of a 
functional form of this mapping. You might not be able to obtain the functional form in close 
form but nevertheless you know that there is some function that maps from this point to that 
point. If you do the same exercise in this system, you would place the Poincare section here and 
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you would now talk about the map from this point to this point. Obviously just try to understand 
logically. If you think that there is some kind of an expressions for the map, will the two 
expressions be the same? Obviously not, because of, in going from here to here, what happens? 
It went through this and it landed up here. While going from here to here to there it is like this, it 
goes like this and it comes here. So all through, it goes to one set of differential equations (Refer 
Slide Time: 11:43).  
 
While in this case, in going from here to here you have to go this way. It comes here, goes across 
the switching surface and there is another set of differential equation that describes its evolution 
and finally it comes here, again finally it comes. Obviously in order to find out the map from this 
point to this point, you would need a much complicated things to be performed and obviously the 
functional form will be different. Now these two different functional forms will have a critical 
value where you might imagine, let me draw in another piece of paper. 
  
(Refer Slide Time: 00:12:35 min) 
 

 
 

You might imagine that’s starting from a point and then it just graces and goes. It does not go to 
the other side, it just touches but does not really go to the other side. This orbit will be a critical 
behavior between these two types of behaviors and if you place the Poincare section now, it is 
not difficult to realize that starting from this point it maps to this point. Means it goes like this 
and comes back here.  
 
If you started slightly this way then it would have not graced, if you started slightly that way it 
would go to the other side and come back. This point is sort of a critical behavior between these 
two different types of behavior and it is not difficult to see that there can be many such points. 
That means there can be another point here which will also have the property that starting from 
here, it will grace and come back here. Starting from another point it will grace and come back 
here.  
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Therefore there will be a line that will divide these two types of behavior. In this part it will go to 
the other side that means it will undergo the switching. Starting from this side it will not undergo 
the switching and the functional form in this part will be one type like this and the functional 
form in this part will be another type like this.  
 
(Refer Slide Time: 00:14:49 min) 
 

 
 

What does it all mean? It means that at end of the day, you have a discrete time state space if I 
now blow up this in the next page. It will be some kind of a description like this where in this 
compartment it will be xn+1 is equal to some function xn and in this compartment it is xn+1 another 
function of xn where x are vectors. What is so holy about it? We know that in such a system, as 
you change a parameter the location of the fixed point will change. The local linearization will 
also change, the Eigen value will also change so on and so forth. We know that when the Eigen 
values exit the unit circle, cross the unit circle you have bifurcations.  
 
It might happen that the fixed point is here and as you are changing the parameter, you are 
always keeping track of the local linearization and keeping track of the Eigen values and as you 
change the parameter, the position on the fixed point moves and it crosses the unit circle. One of 
the Eigen values crosses the unity circle. When that happens obviously we can explain what 
happens in terms of what we already learnt. Why, because we have already learnt that if this is 
the unit circle and if one Eigen value goes this way then it is the period doubling bifurcation. If 
this is the unit circle, circle of radius 1 and Eigen value goes and hits this way. What is it? It is a 
saddle node bifurcation.  
 
If you have a unit circle like this and Eigen values move like that what is it? It is a half 
bifurcation or nine marks sacker bifurcation giving rise to the birth of a quasi-periodic behavior, 
these are all known. If similar things happen while the fixed point is in one compartment, we 
know what happens. But there is also the possibility that with the change of the parameter, a 
fixed point may come and hit the border. Maybe it goes to the other side. If it goes to the other 
side then obviously so long as it is here, its evolution is defined by this.  
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So long as it is here, it is evolution is defined by this one (Refer Slide Time: 18:01). They will 
have different Jacobians, they will have different Eigen values. In other words what will happen 
is that, the moment it hits, the Eigen values will discretely jump from one place to another. It 
may be so that the Eigen values were, so long as it was here in this side, suppose the Eigen value 
were say here and here. What is it? An attractor, a flip attractor because one Eigen value is 
negative. But when it landed here, when it crosses the border it is possible that they discretely 
jump to this location which means now it has become unstable, it has been complex conjugate.  
It will lead to a spiral outward orbit and so on and so forth. There is a possibility of a sudden 
discrete and abrupt change in the behavior caused by this kind of phenomenon. That kind of 
phenomenon that class of phenomenon that are caused by the collision of a fixed point with such 
a border line is called border collision bifurcation.  
 
Let me give an example. This is a two D description that means here we are considering, since I 
have drawn it in two dimensions it means that x is a two dimensional vector x and y. Here you 
would say x, here you would say y and so on and so forth. But there may also be situations where 
it is just one dimensional. In that case what does this picture look like? In one dimension you can 
draw the graph of the map. 
 
(Refer Slide Time: 00:20:24 min) 
 

 
 

In that case you might end up in situations something like this, say in one side say this is the 
border line xn and this is xn+1. Suppose this is the border that means for these values of xn, it will 
have one functional form, for those values of xn it will have another functional form and it is 
divided like this. Suppose so long as xn is less than this value, the behavior is something like this. 
A smooth but at this point there has to be non-smoothness, the character has been changed. It 
might be like so. It is not difficult to see then that in one D also such things can happen and let us 
start to work on this kind of idea because one D, one dimension is easier to understand because 
you can draw a graph. But first let me give an example, very simple example. An example that 
probably I have already done but never nevertheless for this context let us repeat. 
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Let us consider the power electronic boost converter where you have got a battery, you have got 
an inductor here and you have got a switch here. Here is a diode, here is a capacitor and here is a 
load resistance, this is a load. Now this explanation you should recall. What happens when the 
switch is on and off? When the switch is on then the current through this loop builds up because 
it is a voltage current across an inductor so the current builds up linearly and when the switch is 
off then the whole circuit is connected, the diode is forward biased. The current will flow like 
this and the energy that has been stored in the inductor will then be going to this RC network. 
The energy shifts from here to here, the energy in the inductor then drops. The inductor current 
as a result falls and if the inductor current falls then the L di dt will have a different sense, if this 
is positive and this is negative. This will become positive and this negative. As a result this 
voltage and that voltage will add up which appears across the load. The load sees a voltage that 
is bigger than the input voltage that is the concept of the boost converter. 
 
Often the control of the switch is done by what is known as the current mode control. I am not 
showing the circuit but let me just illustrate the principles in terms of a diagram. Here suppose I 
am drawing the current waveform and this is the zero level and there is some kind of a reference 
value so this is the Ireference. There is also periodic clocks so I am drawing the clocks. You might 
say that okay let me draw the clock instance all through, so that it’s clear. Now at a clock instant, 
the switch is turned on so the inductor current goes up and when it hits the Ireference when it 
becomes equal, this switch is turned off which means it goes like this. Again it turns on, again it 
turns off, again it turns on again it turns off. Let me draw some more. Again it goes but now 
imagine that it does not reach the Ireference before the next clock comes, in that case it goes on and 
then it turns off so on and so forth. That is the kind of switching logic that is followed and this 
red line would be the current through the inductor.  
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Now suppose I want to obtain the discrete time description of such a system. How will you do it? 
Obviously in order to do that we will have to sample it because this is a non-autonomous system. 
There is some kind of an external clock and we have learnt that whenever there is an external 
periodic input it is a non-autonomous system and then the discretization has to be done by 
placing a Poincare section in synchronizing with the external periodic input. That is what we do. 
We observe from this point to this point to this point to this point to this point and so on and so 
forth.  
 
Now it is not difficult to see that if the capacitor is large then the voltage here would be held all 
most constant. If we assume that means if we proceed under the assumption that the capacitor is 
large and therefore this voltage, Voutput and this is the vinput. This is Vout and is more or less 
constant then this will be really a straight line because it is only this part and the straight line will 
have a slope. How much? Vin by L so here the slope is m1 where m1 is equal to Vin by L. Here 
when it drops, it is Vout minus Vin by L so here this slope is m2 where m2 is equal to Vout - Vin by 
L.  In that case if you try to obtain the discrete time description, just recall we have done that 
already. How will you proceed? We will first have to obtain this time. 
 
(Refer Slide Time: 00:27:23 min) 
 

 
 

So is that visible? Yes. So what will do is we will say iL this is the nth time instance so I will say 
in and I am trying to find out in+1 is in plus m1 Ton is equal to Iref which gives me Ton. How much 
is the off time? That is the total clock period T - Ton, so Toff is equal to T - Iref minus in by m1. 
Then what is the final value Iref – m2 times Toff? So in+1 is equal to Iref – m2 Toff which is T - Iref 
minus in by m1. But this is only half of the story because there is also possibility of evolution like 
this which means that it does not reach the Ireference before the next clock. If that is happening then 
this one, in that case if I take this as my in and this as my in+1 then what will be the in+1? In that 
case in+1 can be straight forwardly written as in plus m1 capital T. You can see that there are two 
possibilities. One, where the map will be given by this. Two, where the map will be given by this 
and the critical distinguishing behavior would be one where starting from a point here it reaches 
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exactly at the next clock. Then I will say iborder is… can you say what will be this value? It is 
essentially that value with which I will add m1 capital T, I will reach Ireference so this is Iref – m1 T.  
Here you have the final description of the system. These are the two compartments and this is the 
border line condition. 
  
(Refer Slide Time: 00:30:17 min) 
 

 
 

Let us draw this graph in verses in+1. Somewhere there would be the border line case, say the 
border line case is here. This is iborder.  Below that value, below iborder that means if the initial 
condition is below that, obviously it reaches like this. You have to take this equation, in plus m1 
T. What will be the graph like? The slope of the graph will be 1 and plus m1 T. It will go 
something like this, here the slope is one and it will reach Ireference. This is the border line 
situation where it reaches so if you put iborder here, in this case you see that m1 T cancels off, you 
get Ireference. Finally you get Ireference after that we have to take this equation. This equation is you 
can see that this is a constant, this will be a constant. All parts are constant, only this one is a 
variable part where the slope is m2 by m1 times minus m2 by m1 so here the slope is minus m2 by 
m1 times in. It will be something like this where the slope minus m2 m1. This is the graph of the 
map for this practical system. 
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See the similarity that we had said that a normal piecewise smooth map would be something like 
this. Only in this case after the simplifying assumption that the output voltage is kept constant  
We see that both the sides are linear but nevertheless it satisfies the definition of piecewise 
smooth. We need some kind of a theory for the bifurcation that will happen when the fixed point 
will hit the border. That means when the border collision will take place. 
  
Let’s see when will the border collision take place in this case? Fixed point. Where is the fixed 
point? Simple, draw the 45 degree line so here is the fixed point. Now with the change of the 
graph of the map with the change of the parameter, if it so happens that at some point it changes 
and becomes like this. Yes, then as you change the parameter you can see that there is a border 
collision occurring. We will try to understand the character of that. Now it is not difficult to see 
that the event that will occur exactly at that point is no way related to this character of the graphs 
in this part. It is only related to the slopes here. That means the local linearization in this chunk 
and the local linearization in this chunk.  
 
In fact that is what is normally used. It is to our luck that it is already linearized but in most 
different situations it might not be linearized. In order to understand what really happens, I do 
not need to consider the whole graph of the map. I only need to consider the linearized chunks. If 
you make some coordinate transformation, this piecewise linearized map can be expressed as 
Xn+1 is equal to axn plus mu for xn less than 0 and bxn plus mu for xn greater than 0. That is why 
this form is called the normal form because just by using this, you can exactly understand the 
character of the border collision bifurcation which orbit remains, which orbit exists, which orbit 
would be stabled all that can be understood just by considering this simple map. Let us from now 
onwards consider this simple map. Can you see?  
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What will be the graph of this map? Obviously that will be depend on a and b but it’s not 
difficult to see that it will be… the graph of the map. What is the result of variation of mu? Mu is 
the parameter and that the whole graph of the map goes up and down. You might say depending 
on the value of a and b, the graph of the map is like this here and like that here. As you change 
mu, it goes here and here. This point represents the critical value of mu, if we draw the 45 degree 
line it will be clearer at which the border collision takes place. Just look at the result of the 
variation of mu. Initially when the mu was negative, the fixed point was here. As mu was 
increased this graph goes up, it’s not difficult to see that the intersection with a 45 degree line 
will go closer and closer to the y axis and at this point when mu is equal to 0 then this is the 
border line, the fixed point collides with the border line. Border collision occurs at mu is equal to 
0 and after that a fixed point moves here.  
 
Depending on the value of a and b, we can then identify a different bifurcation that will take 
place. For example in this case what will happen? In this case while mu was negative, the fixed 
point was given by this slope a and when mu was positive, the fixed point is given by the slope b 
and in this case, the way I have drawn a is positive so between 0 and 1 and b is negative. In this 
case we have drawn it as b is greater than minus 1 but less than 0. That is how we have drawn it 
and in that case in the bifurcation diagram what will we see? It is a stable fixed point and in the 
other side also it is a stable fixed point. 
 
If you draw the bifurcation diagram you will see something like this that this is the bifurcation 
diagram that I am drawing, not a picture like this. Here it is xn verses xn+1 but here I am drawing 
mu as a parameter which is being varied and here the xn. You will see that there is a stable fixed 
point existing for negative values of xn, so it will go like this, hit it and then there will be a stable 
fixed point existing in the other side also. It will be like so but notice that the slope will change.  
Stable fixed point remaining a stable fixed point but the slope undergoing a change. This kind of 
events are very often seen, there is a bend in the bifurcation diagram. These are often caused by 
border collision but this is not danger because these are situations where the fixed points remains 
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stable. It’s not difficult to see that such situation which will occur where the a lies between minus 
1 to 1 and b also lies between minus 1 to 1. 
  
(Refer Slide Time: 00:39:52 min) 
 

 
 

We might draw a parameter space with a and b as the axis and we would say that if the 
parameters are chosen within the box given by minus 1 to plus 1 and minus 1 to plus 1 in this 
box then the fixed point will remain as a fixed point. What if I choose a parameter say here, 
notice where the parameter is. The a value will be greater than plus 1 and b value will be less 
than 0 that means it is negative but greater than minus 1. What will be the behavior? Let us try to 
figure it out. 
 
(Refer Slide Time: 00:40:46 min) 
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The a value greater than plus 1 so b value between 0 and minus 1. Now you see at this situation 
there is no fixed point. As it goes up, there will be a time when the graph of the map will look 
like this. A fixed point critically starts to exit but when it has crossed 0, notice what has 
happened. There was no fixed point here but at this point, two fixed points have come into 
existence, one here another here. This fixed point is unstable because the slope is greater than 1, 
this fixed point is stable because the slope is less than 1. It is similar to a saddle node bifurcation 
or a tangent bifurcation.  
 
Only thing is that in this point you cannot really call it a tangent but it has similar characters. 
This a border collision bifurcation so I have taken a greater than plus 1 and b between 0 and 
minus 1. In that situation we are likely to observe no fixed point, first I will designate it with the 
symbol null to two fixed points. There is a fixed point here, it is unstable so let us call it small a 
and this fixed point is stable let us call it capital B. Capital for the stable once in this side, small a 
for an unstable one in this side so this is like a saddle node bifurcation.  
 
In the bifurcation diagram what will you observe? You will observe that in this side where mu is 
less than 0 there is nothing, no fixed point but at this critical juncture two fixed points have born 
one stable, another unstable. This has been called a border collision pair bifurcation because a 
pair is born. In this part you expect a situation. In this part you expect a situation where a pair of 
fixed point are born out of that one is stable so that is what you will actually be able to see. Now 
imagine that you change b to a value somewhere here. What is the situation? The a is greater 
than plus 1 and b is less than minus 1. Let’s see what happens then.  
 
(Refer Slide Time: 00:44:48 min)  
 

 
 

Now the situation is a is greater than plus one, b is less than minus 1, when we have crossed it 
will be like this. Notice now two fixed points are born. In this situation there was no fixed point, 
there was no intersection with the 45 degree line but the moment it has crossed mu is equal to 0, 
you will have two fixed points but both unstable.  
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Will any periodic orbit occur? No, because if any periodic orbit had to occur then it will have 
some iterates falling here and some iterates falling there. For the iterates falling here there will be 
local stretching because the slope is greater than 1. This neighborhood when it maps to here also 
the slope is greater than 1. All the neighborhoods will always expand and therefore you cannot 
have any high periodic orbit that is stable, impossible. Can there be chaotic orbit? A chaotic orbit 
will occur only if the orbit is bounded. Will it be bounded? Notice that any initial condition here 
will tend to go like this. It will go away from here, any initial condition here will tend to go like 
this. It will go towards that therefore there is a possibility of the orbit being bounded because 
from this side it goes to the right. From this side it goes to the left. Obviously it has a possibility 
of remaining bounded. If it is bounded, the behavior would be chaotic. But over the whole range 
there is also the possibility that this point if any iterate falls here, it will in the next iterate go here 
and will come here and in the next iterate if it lands up here in this side then there is no problem 
but if it lands in this side than it goes out. There is a critical value. As you keep on changing the 
values of a and b, there is a critical situation where the orbit may become unstable.  
 
Notice what is the kind of instability. This is a boundary crisis, this was the extremity that means 
the extremity of the attractor and the extremity of the basin boundary they collide and whenever 
we have that the attractor no longer is existing. That means any iterate in this zone will keep on 
oscillating. Finally it will map here at some point and then it will go to infinity that is an unstable 
chaotic orbit. The critical difference between the stable chaotic orbit and a unstable chaotic orbit 
will be where this point maps to a point outside, it will become unstable. If it maps to a point 
inside it will remains stable. I will leave it up to you, to find out the condition under which the 
chaotic orbit will remain stable. You do it before you come to the next class. It’s a very trivial 
trigonometry to be done. We were plotting it here.  
 
In this part we are considering, under some conditions the chaotic orbit will be stable. There will 
be chaotic orbit and under some conditions the chaotic orbit will become unstable and as a result 
there will be no orbit that is stable. I can tell you that you obtain the condition, the condition is 
something like this. It comes to be something like this that in this region you have a stable 
chaotic orbit, in this part there is nothing stable. Let us consider the situation here say I have 
chosen a point here which means that a is between 0 and plus 1 while b is less than minus 1. 
  
The a is between 0 and plus 1 like this and b is less than minus 1 like so. When it goes to the 
other side notice that for mu less than 0, the fixed point exists, when it goes to the other side. 
What is the result? That the fixed point as this mu changes, this whole graph goes up. This point 
moves this way and finally at this point, at mu is equal to 0 this one moves to the other side there 
is a fixed point but this fellow is now unstable. 
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At this border collision the fixed point loses stability, it is no longer stable but here since the 
slope is greater than minus 1, even though it did not go exactly through the minus one point, it 
jumped across the minus 1 value but nevertheless you might imagine that this is something 
similar to the period doubling bifurcation. But the period two orbit whether it would be stable or 
not, if it is a period two orbit there will be one iterate here, another iterate here. Here the slope is 
a, here the slope is b so period two will be stable if ab is less than 1 or you can say mod of a b is 
less than 1.  
 
Now this means that over this whole range, you will not see a period doubling really. You will 
see a period doubling only if the mod of ab is less than 1 and that yields a range something like 
this. In this range it will be period doubling but in this range it will not be, period two orbit will 
be unstable. If the period two orbit is unstable, is it possible to have a period three orbit? Not 
impossible though because there may be two iterates in this side and one iterate bring it back 
here possible. But in that case how would you obtain its condition of stability? The condition of 
stability will be two points to the left a square and one point to the right b, this magnitude has to 
be less than 1. This is for period three. Not only that you also have to find out, you also have to 
worry about whether the period three orbit exists.  
 
In order to find that all you need to do is to, if you are imagining a orbit something like this 1 2, I 
am not going to draw but nevertheless two points to the left and one point to the right. You will 
have to write down the equations as xn+1 is equal to axn plus mu, xn+2 is equal to again axn plus 
mu plus mu, xn+3 equal to now it is in the right side b over this plus mu and this has to be same as 
xn then only the period three conditions satisfied.  
Solve this and obtain the condition for xn that will be the condition of existence of period three 
orbit and this will be the condition of stability of period three orbit. When these two conditions 
are satisfied, then the orbit will actually occur so on and so forth. You can work out the 
conditions of existence of all possible orbits, I will come to that in more details in the next class.  
Thank you.  


