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Frequency Spectra of Orbits 
 

When we were talking about dynamical systems and their dynamical behavior, we are essentially 
talking about wave forms. Depending on whether or not the wave forms are repeated, you said it 
is a periodic or a periodic. But essentially we are working with wave forms. Those of you who 
are coming from electrical, mechanical or physics or like backgrounds you know that whenever 
we encounter in a wave form, one of the things we always like to look at would be its spectrum. 
Probably you all have come across Fourier series, Fourier transform and stuff like that. I am not 
going into that specifically. I am proceeding with the assumption that you know. Normally if you 
have a system with a period one behaviour then like what would the Fourier spectrum be? An 
impulse. 
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My question is that if you have a period one behaviour which could as well be like this then it 
would not lead to just one frequency. Obviously this is a wave form with a periodicity something 
like this and if you decompose that there will be a fundamental and there will be harmonics. But 
the point that I am making is that this would be line spectrum that means very discrete spectral 
components, discretely spaced at the fundamental and its components. This is the frequency axis 
and this is the amplitude for every frequency say A then there would be large magnitude at the 
fundamental frequency and there would be those smaller ones at various frequencies. One would 
normally expect this kind of things. For the sake of our understanding or going further, let us 
confine our attention to the fundamental frequency and things that happens below that.  
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These higher frequency components would understand that they are there but presently let us put 
that out of our attention, let’s concentrate on this. Now suppose as you change a parameter, the 
behaviour becomes period two. What change do you anticipate in the Fourier spectrum? 
Assuming that you recall those ideas that you learned regarding the Fourier spectrum. Can you 
logically tell that this should happen? No, twice the fundamental frequency will that happen? 
Yes, the point is that, earlier the fundamental frequency was related to this time period but now 
the periodicity of the wave form will be double which mean that a new fundamental component 
will appear whose frequency is half. Another component will appear whose frequency is half.  
 
Now the way when we had this fundamental, we had those harmonic components. For this one 
when this is fundamental then there would be those harmonic components also and it is not 
difficult to see that one will coincide with this fellow, coincide with the already existing 
component that was there and there would be the further components also. If it becomes period 
four then obviously a new component will appear that has a frequency that is the fundamental 
frequency at one fourth to the original one. If this is the fundamental component because of the 
systems non-linearity, its harmonics will also appear and naturally there would be components at 
these points. The overall effect of the period doubling scenario is not difficult to see that new 
frequency components appearing whose periods are less than the original fundamental 
frequency. That is why these wave forms are also called sub harmonic wave forms. The people 
who have been in electrical engineering they must have heard this term sub harmonic before 
hearing about period two, period three, period four. Which one are you calling f0, is this one? 
Yes, first fundamental if in period one. If that is called f0 in period two another will appear which 
will have a frequency half the earlier frequency. That is why this is called a sub harmonic 
oscillation. Let us understand them properly. 
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You have one situation where you have one fundamental component so period one. When it 
becomes period two then it will have this as well as this and its harmonic will be coinciding with 
this one. This might be little longer so but nevertheless there will be this. In period four, this will 
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remain and there would be a new intuition of frequency at one fourth which will have 
components at half and three fourth also because they are the harmonics of this frequency and 
there will be one component on this frequency also and so on and so forth. You see as the period 
doubling cascade proceeds, more and more lines appear within the range between zero and the 
first fundamental frequency. Now can you anticipate what will happen, as the systems goes to 
chaos.  
 
All the intermediate frequency levels will be filled means you will instead, at the stage let me 
draw the chaotic spectrum. This is the period two, this is period four and when it goes to chaos 
you will have the whole range filled that means you will have all the place filled that is why 
chaos has the effect of spreading the spectrum. Earlier these were line spectra. Now this is a 
spread spectrum and those who are coming from electronics backgrounds they have heard of 
specific applications of spread spectra and in all these, chaos can be used. For example the 
CDMA cell phones, they use spread spectra technology and now there are specific propositions 
of using chaos generators for this purpose. Chaos is as good as a generator of a spread spectrum 
wave form. In chaos you have a continuous frequency spectrum, this is f axis, amplitude. Yes it 
is possible but that would be a little more tricky thing to discuss for this class. We will leave this 
out. It is not impossible to control the spreading but that requires more rigorous mathematical 
treatment. 
  
His question is, is it possible for two different systems to have the same form of chaotic motion. 
If by form of chaotic motion, you mean the same frequency spectrum. Yes, it is possible but 
actually one system may be electrical system, another system may be a mechanical system. That 
doesn’t really matter because when you bring them to the model, if the model has same kind of 
parameters you will have the same kind of behaviours and therefore they have the same kind of 
spectrum. Now if that is the spectrum, we have one more situation you had already considered 
that is the orbit on a torus. 
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We considered the orbit on a torus, an orbit that goes like this. What would your anticipation be? 
If you observe that kind of a wave form and take a Fourier spectrum what would you get? Two 
frequencies, exactly two. If you observe it, there will be one frequency here, another frequency 
somewhere here. That is one very clear way of distinguishing a quasi-periodic waveform from a 
high periodic wave form or a chaotic waveform, a very clear way of distinguishing. If you 
simply pass it through a spectrum analyzer, you get very distinct two frequencies. (Conversation 
between Professor and a student: Refer Slide Time: 12:43). No. His question is if you get two 
frequencies, is it always quasi periodic? No. It’s not difficult to see that if these two frequencies 
are commensurate. Commensurate means you have learned in school, there is some numbers so 
that these two multiplied with this number you get that number. 
 
If these are commensurate that means their ratio can be expressed as a rational number. Then do 
you understand what will happen. One frequency is related to motion around a big circle, another 
frequency is related to the motion in the small circle. Say this is f1 and this is f2, f1 is related to 
the motion around the big circle and the smaller one that is f2 is related to motion around the 
smaller circle. Then if I ask you, will the orbit come back to the same initial condition after going 
around? It’s not difficult to see that if they are commensurate, it will. For example say f1 by f2 is 
2 by 3, what does it physically mean? It physically means that by the time it goes around the big 
circle twice, it goes around the smaller circle thrice. If you start from a point, after three rounds 
around the big circle, it would come back to the same position. In that case the orbit will become 
periodic. That’s also a periodic orbit even though there are two distinct frequencies. Is that point 
clear now? 
 
Even if it is an orbit on a torus, even if there are two distinct frequencies that does not mean the 
orbit is quasi periodic, it could be a periodic also. A periodic orbit so far we have been dealing 
with periodic orbits not on the surface of the torus but now we also have to consider periodic 
orbit that lie on the surface of the torus. If the frequency ratio commensurate, you have periodic 
orbit. Now what will happen if you have incommensurate? Actually it will not come back to the 
same state, the whole torus will be filled. The orbit will progressively fill the surface of the torus, 
it will never come back to same state, if the ratio is incommensurate and that is called quasi 
periodicity. Now you have learnt one way to understand these behaviours would be to place a 
Poincare section and see the behaviour on the Poincare section. What would it be like, if you 
place a Poincare section and see the behaviour in case of commensurate frequencies? It might 
not be single but a finite number of points, because every time it starts from here and goes 
around it, it comes to somewhere else.  
 
Again after sometime it will fall on the same point, so there will be a finite number of points on 
the Poincare section. If you have quasi periodic orbit what will you see? A ring. You will see a 
ring because every time it starts from here, it falls in another place again it goes, it falls in 
another place, again it goes it falls in another place but ultimately none of these points will fall 
on each other. As a result the whole ring will be filled, you see a ring. It’s also called a drift ring, 
you will see the point drifting along the ring and it will go on doing that way. The signature of 
quasi periodic behaviour is a closed loop on the Poincare section. How does all that happen? Let 
us tackle that question at this stage. Let us come back to our concept of a continuous time 
dynamical system and let’s develop from there. 
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In a continuous time dynamical system your description was x dot is equal to f (x) where x is a 
vector and we are considering three or more than three dimensions so that the period two, period 
three chaotic motions are all possible. Suppose initially you have the parameter such that you 
have got one point that is stable equilibrium point and you have the orbit vector field like this. 
What would your immediate conclusion about the Eigen value would be? The Eigen value must 
be complex conjugate with negative real part and this part I have already done just let me repeat.  
If suppose you change the parameter, vary the parameter and as a result of that the Eigen value 
will move across the imaginary axis to the positive side. What will happen? In the immediate 
neighborhood of it, it will become repelling but that does not mean that away from it, it will still 
be repelling. So away from it, it could be attracting and as a result there would be a limit cycle. 
This is the (birth) (Refer Slide Time: 00:19:44) of the limit cycle that we discussed. This 
phenomenon is normally called hopf bifurcation.  
 
This is obviously a bifurcation because the asymptotic character of the orbit change, there is a 
fundamental change in the character of the orbit so it’s a bifurcation. It’s called hopf bifurcation.  
Hopf bifurcation is actually related in the complex plane. The Eigen values actually move like 
this. This is the real axis, this is the imaginary axis and the Eigen values is like this. At this point 
we have the occurrence of the hopf bifurcation. We have the birth of the periodic orbit and 
thereafter when we try to study the stability of it what did we do? We placed a Poincare section 
and that is how we did it. Thereafter we found it more convenient to study it in discrete time, so 
we say that let us place a Poincare section and now let us study the stability of this. That’s how it 
proceeded. Then we said that now we can locally linearise around that fixed point of the map, if 
the Eigen values are less than unity in magnitude then you have a periodic orbit, this fellow is 
stable and so on and so forth. We were considering the situation where we have the Eigen values 
inside the unit circle and we have already done that, I am not repeating that. The point is if the 
Eigen value of this fixed point of the map, not the continuous time dynamical system of the map, 
at the fixed point are complex conjugate and say they are stationed somewhere like this. 
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This is the real axis and this is the imaginary axis. What would the behaviour be in discrete time?  
In discrete time I have done that. Suppose this is the fixed point then the behaviour would be a 
spiral. It should go through discrete jumps but then progressively the distance between the points 
will reduce and the vector will rotate, the rotation will be given by the tan inverse b by a term 
and the shrinking will be given by the magnitude of the Eigen value. Essentially we get an 
incoming spiral. If say they move like this, what will happen? It will become outgoing spiral so 
again a similar situation is unfolding but in discrete time.  
 
Initially it was an incoming spiral behaviour, I am drawing continuous line but it is not 
continuous really. It is discrete jumps, it was like this and then it became like this. Again we can 
raise the same issue that outside away from this fixed point, you cannot guarantee that it is still 
outgoing. There can still be incoming directions as a result of this there will be a… In this case 
we will not call it a limit cycle because now it is happening in discrete time. We will not call it a 
limit cycle, rather we will say that now what has happened is that we have seen the birth of a 
closed loop in discrete time. What is it in continuous time? A torus in continuous time. 
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Whenever there is a birth of a closed loop in discrete time, you immediately know that there is a 
torus in continuous time. This is how a torus is born in a continuous time dynamical system. 
When we try to understand that we try to understand that in terms of the discrete time behaviour, 
in terms of the birth of a closed loop. But now these closed loop has been born. Quite a natural 
question is that this closed loop has obviously two frequencies and I said depending on the 
frequencies and their ratio, it is either a periodic orbit or a quasi-periodic orbit but physically 
how can two frequencies be there in a system? To get a physical idea you might imagine it this 
way.  
 
One, suppose the system has some kind of a LCR circuit means there would be some 
characteristic frequency and supposing it is excited by a sinusoid which is the different 
frequency. Obviously there are two characteristic frequencies in the system and they will interact 
with each other. It might also be so that there is no external periodic input but there are two parts 
of the system which have their own LCR circuits or may be an electrical component which has 
its own characteristic time constant and there is a mechanical part which has its own 
characteristic time constant because there are springs, masses, frictional elements which are 
similar to LCR. There are two characteristic frequencies and as the dynamic unfolds, there will 
be interaction between these two characteristic frequencies. That is what gives rise to this kind of 
behaviour. 
 
Normally you would expect quasi periodicity to occur in systems which if you look at the system 
description, you should be able to identify what creates the frequencies normally. But there are 
also situations where it may require a lot of insight to find out what exactly is creating the 
frequency but nevertheless there should be that kind of a situation. You have already done in 
mathematics course or in other courses, supposing there is a simple LCR circuit, a linear system 
excited by an external harmonic sinusoidal excitation. What will be the behaviour like? Sinusoid. 
It will be a sinusoidal behaviour. Yes, it will be excitation frequency only.  
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In case of a linear system, the effect of the original systems characteristic time is not all that 
visible but if the system is nonlinear that is not quite so then there is interaction. Then we can 
have more complicated behaviour that all I mean at the moment. In such systems you would 
anticipate the possibility that when you have only the excitation frequency visible then it is a 
periodic orbit. In the state space it is a closed loop, take the Poincare section it is a point but then 
because of the nonlinearity as you change the parameters there might be situation where this 
closed loop might become unstable and as a result an additional loop may develop on the 
Poincare section. It is possible. But then there is something more to it. What is more? Supposing 
there is a frequency f1 and there is another frequency f2 and as I said if this ratio is commensurate 
then you have the periodic orbit. If that is incommensurate you have the aperiodic orbit.  
 
Now supposing I keep f2 fixed and I vary f1, I can do that. What would the anticipation be? In 
order to get a periodic orbit, you have to actually fix f1 with infinite precision because if you 
slightly vary, you will get an irrational number or if you want to obtain a quasi-periodic orbit, 
you have to really fix it at an irrational number very accurately because around an irrational 
number there is always some rational number. That’s a fundamental number theory. The natural 
anticipation would be that in order to get any desired behaviour, you need to fix the frequencies 
very accurately. No, because of the non-linearity. What happens is that if you keep f2 constant 
and vary f1 or keep f1 constant and vary f2, you will find that mysteriously the two frequencies 
get locked for some range of the parameter. Get locked means they get locked into a particular 
ratio, that’s it for long ratio.  
 
As you change the parameter it doesn’t get away very easily and then at some particular 
parameters value, the locking is lost and then you have again quasi periodic behaviour. Again it 
gets locked to some other frequency. This is called mode locking or frequency locking. Very 
interesting phenomenon and completely nonlinear phenomenon, it cannot happen in a linear 
system. This mode locking is a very interesting nonlinear phenomenon. This is called mode 
locking or also frequency locking. Let me just repeat. If you keep on changing the parameter you 
would normally anticipate that you have to fix the parameter very accurately in order to get a 
rational frequency ratio but it’s not so. Mysteriously you will find that for a large range of 
parameters the same ratio remains fixed that means they get locked. If you change it beyond a 
certain range, the locking may get broken. No, presently we are talking about only existence of 
two frequencies. I will come to those issues a little later. How does this physically happen? If 
you want to imagine how it physically happens, I can give you a sort of hand waving arguments. 
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See if you have one frequency somewhere here and if you have another frequency somewhere 
here and then these two are in a rational ratio. Then there should be some kind of a harmonic 
somewhere here, harmonic of this one and there should be another harmonic of this one in which 
whose frequencies will match. As a result of which there should be a resonance between the two. 
That resonance cannot happen if the frequency ratio is incommensurate. If the frequency ratio 
becomes commensurate then there must be some particular frequency out there in the higher 
frequency range where both the components will have some harmonics there. There should be a 
resonance and the resonance itself is a nonlinear phenomenon. That resonance sort of holds on, it 
doesn’t let it go very easily. Only when this is moved by significant amount does this move 
away, otherwise the resonance sort of locks hands and remains there. That is the intuitive way of 
seeing how it happens, sort of electrical way of seeing how it happens, the systems nonlinearity. 
This system has to be nonlinear in order to have any resonance.  
 
Here we are talking about nonlinear system, the systems behaviour has to have some kind of a 
nonlinearity built into it and that produces the force. One side because of the nonlinearity must 
apply a force on the other frequency so that it gets locked. No wait. I am not talking about the 
linear system resonance there it happens only if you excite at that particular frequency. Here we 
are saying that no, we are not exciting at the particular frequency we are moving it, yet it is 
getting locked. That is a nonlinear phenomenon, it cannot happen unless there is a nonlinearity in 
the system but examples of such situations galore. For example you know that there are at least 
two even more actually but two very well-known situations within the solar system where it is 
happening. The earth moon system, you know that you see only one side of the moon. You don’t 
see the other side of the moon. Why? The moon is rotating around it. If earth is rotating around 
its own axis and the moon is rotating around earth then obviously I should see, all sides of the 
moon because moon is rotating. We don’t see, what does it mean? It is actually in the phase 
space, it is the motion on a torus with ratio 1:1 and it’s a mode locked behaviour.  
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There is no guarantee that it was always mode locked. It might be at the time of dinosaurs, it got 
mode locked so that if the dinosaurs could see, they could have seen the opposite side of the 
moon but at the time may be it got locked but there is no guarantee that it was always mode 
locked. It got mode locked at some point of time and we are in a temporal face where it is still 
mode locked. Mercury for example same phase faces the sun and in that particular face, the 
temperature goes to something like 600 degrees. In the other side it’s freezing. The closest thing 
to the sun, the other side that is in the shade it is freezing temperature because of that. Because 
there is only one side that is exposed to the sun. These are mode locking behaviours and such 
mode locked behaviours are very common in experimental engineering situations also. 
  
(Refer Slide Time: 00:37:37 min) 
 

 
 

The total picture is that if you start from an initial condition say, if you look at the bifurcation 
diagram, suppose I am doing the wrong way of plotting the bifurcation diagram that means I am 
talking about a birth of an equilibrium and that equilibrium say I am changing the parameter. See 
I am changing the parameter and here is some kind of a variable that I am plotting. At that point 
of time that equilibrium started to exist, not the fixed point remember I am talking about the 
equilibrium point in the continuous time system. At that point a hopf bifurcation occurred, as a 
result of which what was born?  A limit cycle.  
 
A limit cycle if I now draw then I can only draw the projection on the x component. What will 
you see? Its value will slowly increase so like this. I am talking about this orbit so these are all 
orbit like this and suppose at some point of time that again loses stability. That periodic orbit also 
loses stability, as a result of which what is born? A quasi-periodic orbit. Then that would be 
signified by some kind of a change, I am not the depicting because it is difficult to depict that. 
then within that range where it is a motion on a torus, as you are changing the parameter there 
would be a succession of mode locked behaviours, sandwiched between them would be quasi 
periodic behaviours, mode locked quasi period so mode lock quasi period.  
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You would see that there would be some range where you have quasi periodicity behaviour and 
some range where you have some kind of mode lock behaviour, again a mode lock behaviour 
again a quasi-periodic behaviour, again a mode lock behaviour these are not chaos though. 
Though I am drawing this way because all the points on the loop would be filled in quasi 
periodicity but again there would be some mode lock behaviour. Again it was quasi periodic 
behaviour, so the behaviour would be something like this.  
 
Finally at some stage that gives rise to chaos. Here there would be a range where it gives rise to 
chaos, the torus breaks down. This is called the quasi periodicity root to chaos. We have already 
learnt about a few roots to chaos, we have learnt about the period doubling root to chaos and 
stuff like that, this is the quasi periodicity root to chaos. It has actual history. The history is that 
you must have heard of the names of the famous Russian physicists Landau (Refer Slide Time: 
00:40:37) the famous book almost the bible in physics. This man Lev Landau, in early 40’s he 
proposed a mechanism for generating turbulence. Turbulence means a chaotic behaviour. Now 
we understand that as a chaotic behaviour but how is it produced? His point was that as you 
change the parameters for example in case of producing turbulence, you increase the flow rate 
and beyond a certain flow rate you find turbulence. So increasing the flow rate that is the 
parameter.  
 
Suppose you are increasing the parameter, changing the parameter then he says that beyond a 
certain parameter another frequency component comes in. beyond another parameter, if another 
frequency component comes in, another parameter another frequency component comes in. His 
proposition was that there is a progression of addition of frequency components, finally there is a 
situation where all the frequency components are there and that is turbulence. It is almost the 
same kind of situation as period doubling cascade. His proposition was that it is an accumulation 
of frequency components that finally gives rise to a chaotic behaviour. That preposition, it was I 
should say a conjuncture finally proved to be wrong. Now we understand that the first transition 
that means while from the laminar flow, the first transition accumulation of one frequency 
component is possible. Another frequency component is possible. You can see that addition of 
one frequency component is the first bifurcation, hopf bifurcation creating a limit cycle.  
 
Second one happening on the Poincare section creating a closed loop. That is also an addition of 
frequency component but there after we have problem. When you have a periodic orbit, it is a 
one frequency behaviour. A torus, a two frequency behaviour. Naturally the question is, can 
there be a three frequency torus? The mathematical question (based) (00:43:06) on to that. 
People who are doing experiments they found that they somehow not finding it. Somehow in all 
experiments they are finding that after the two frequency torus, it somehow goes directly into 
chaos. Then when I say these experiments, I am talking about the time frames like 80’s. There 
was a very long span of time when people believed that the Landau mechanism is true but people 
found that we are not getting it. In the 80’s some people did experiments very carefully on 
oscillators where they carefully created one characteristic frequency of one part of the oscillator, 
another oscillator with another characteristic frequency and a third frequency that is an injection 
frequency. Deliberately created a situation where there would be three frequencies. They found 
that if the interaction between the two that means coupling between the two oscillators is weak 
then you do get three frequency behaviour.  
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But if the coupling is strong then the two frequency behaviour directly goes into chaotic 
behaviour but we have never found anything beyond three frequency behaviour. Three frequency 
torus I will not be able to draw because it is a conceptual thing, you cannot draw it on the sheet. 
It’s not possible to draw but essentially the concept is if you break up in frequencies spectrum, 
you will see three frequency components. Then came the theoretical break through where it was 
proved that the three frequency torus behaviour is structurally unstable in the sense that if you 
slightly part of that three frequency torus, slightly part of means either you change the parameter 
or you change the initial condition or whatever, slightly part of it where it goes into a chaotic 
behaviour.  
 
Even though theoretically a three frequency behaviour is possible. That is why it is extremely 
difficult to observe because it is structurally unstable. The mathematical statement says that in 
the neighborhood of every three frequency torus, there lies a strange attracter at an infinitely 
small distance which essentially in physical terms means that even slight bit of random noise 
existing in any system will not allow it to stabilize in the three frequency behaviour. That is why 
you do not see the progression into three frequency, four frequency, five frequency and all that 
going into chaotic behaviour.  
 
Now you understand that the essential mechanism of this quasi periodicity root to chaos is where 
you have a periodic behaviour, period one behaviour then a bifurcation leading to a torus 
behaviour and that torus somehow breaks down. There is some mechanism by which the torus 
itself breaks down and that leads to chaos. How can the torus break down? Torus is a very well 
defined geometrical structure. For mathematician, for a topologist the torus is a very well defined 
concept like if it is a donut, you can take a thread through so if it is a torus then you can take a 
thread like this (Refer Slide Time: 47:00). If you take like this then you cannot take it out 
without breaking the torus and stuff like that. There is very well defined mathematical concept 
by which a torus is defined.  
 
(Refer Slide Time: 47:27) 
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If that somehow breaks down that means some deformities appear in the torus so that it can no 
longer be called a mathematical torus, that is a transition from a torus behaviour to a chaotic 
behaviour that’s another route to chaos. Before concluding today let me give you a name. We 
said that there are two bifurcation appearing on this. One at this point. What happened on this 
point, what is the name? Hopf bifurcation. What happened at this point? It is the similar thing to 
a hopf bifurcation, happening in discrete time. That is why some authors call it also hopf 
bifurcation. I mean this also called a hopf bifurcation, in some books you will find that this is 
also called a hopf bifurcation but more accurately this is called a hopf and this bifurcation is 
either called a hopf or discrete hopf or generalized hopf or there is another name for it, by the 
names of the people who actually discovered this mechanism is also called the Neimark Sacker 
bifurcation.  
 
What is the characteristic of the Neimark Sacker bifurcation? In the discrete time you have got a 
fixed point, you locate the Jacobian. Locate the Eigen values and the Eigen values would be 
complex conjugate and exactly equal to one in magnitude then it is a Neimark Sacker 
bifurcation. Don’t be confused by these two interchanging names in different literature. Same 
phenomenon, conceptually since it is the same as the hopf bifurcation in discrete time, it is also 
called hopf or generalized hopf and Neimark Sacker.  
 
(Refer Slide Time: 00:50:09 min) 
 

 
 

Let us explode the issue of the mode locking a little further. Suppose you have two frequencies f1 
and f2, their ratio is commensurate and say that commensurate ratio is p by q where p and q are 
whole number. F1 by f2 can be expressed as p by q remember when I say p by q, I am not saying 
something like 10 by 15 is equal to 2 by 3 and then I would write 2 by 3. Whenever I say p by q 
in the further discussion, you understand that all the common divisions are taken out. So 2 by 3. 
What does 2 by 3 mean? 2 by 3 means by the time it goes twice around the big circle, it goes 
thrice around the small circle. So what does it mean, on the Poincare plane what will you see? 
Suppose this is the Poincare plane, there is a close loop on the Poincare plane. Suppose I start 
from this point.  
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After this what will happen? It will go into the big circle and after some time it will come back 
on this. Where will it come back? Two thirds of the circle later. If the ratio is 2 by 3, so it will 
come back here, if this is point number one this will be the point number two. Where will it 
intersect the Poincare section again? Again two thirds of a circle later, here. This point returns as 
the fourth point. This is what we will see on the Poincare plane. A 2 by 3 behaviour, f1 by f2 is 2 
by 3 is actually seen as this. What about say 3 by 5 behaviour? Can you draw? F1 by f2 is 3 by 5, 
so in that case suppose you start from here. I should actually call it zero because this is starting 
point. This is 0, 1, 2 and here 3. Here it is zero then after that it will go into the big circle and it 
will come back on this Poincare plane. After how much angle? 3 by 5, three fifth of the circle say 
it is somewhere here. That is point number one.  
 
Point number two is again three fifth of the circle, say somewhere here, two. Again three fifth of 
a circle somewhere here, three. Again three fifth of a circle somewhere here four. Even though 
things are happening, going out that way we are being able to see things simply by looking at the 
Poincare plane and we are being able to compute about the frequencies. Notice what I am mean?  
Meaning that the torus is there suppose I am not looking at a torus, I am only looking at the 
section. Therefore you tend to believe that the other frequency will now go out of my attention.  
This orbit will no longer be seen because I am seeing only this. No, it is still visible to us because 
the way it rotates. The way it rotates that tells us how it goes into the big circle. We will develop 
on this idea further in the next class.  
 
Thank you.  


