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Lyapunov Exponent

The last day we learnt about two measures of dimension, one the box counting dimension and
two the correlation dimensions. These are things to characterize a chaotic orbit also to
distinguish between a non-chaotic orbit with a chaotic orbit but then we have already learnt
while we were talking about the continuous time dynamical systems that one way to characterize
chaos is through the exponential separation of nearby trajectories that means sensitive
dependence on initial condition. The two measures that | have already talked about is they do not
quantify exactly the sensitive dependence on initial condition. They sort of quantify how
distributed are the points of the orbit but then there is another measure of chaotic orbit that
quantifies the sensitive dependence on initial condition and you have learnt that is called
Lyapunov exponent but what was central concept then?
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That if you take two points very close to each other then if the system is chaotic then one would
evolve like this and the other would exponentially diverge on it. The two will evolve in two
different ways, we will not keep hand to hand with each other and the separation therefore will
increase. That’s what we learnt at that time. Now we are trying to put the same idea in discrete
time. Earlier it was a continuous time concept, now we are trying to put the same idea in discrete
time. In the discrete time also then we will have to talk about two very nearby points and how
their separation explodes. Of course here also we need to track of the fact that even though their
separation diverges, really the separation between them do not go to infinity.



Why? Because overall the orbit is within a definite boundary because the chaotic orbit is always
bounded. If both the points are bounded then mutual distance also cannot go infinitely.
Obviously we have to keep track of the issue that their mutual separation is increasing
exponentially but at the same time that cannot go to infinity so that there are also folds.
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Now when we are consider maps essentially we will again talk about a point say X, and another
point say Xo plus some small number epsilon and then in the next iterate if you apply the map to
both these points then they will map to two different places and their separation is expected to
increase. Here was a separation between the two points and that is what it becomes when you
apply it for one iterate. If you keep on applying that this separation, will it keep on increasing?
No obviously not, because after sometime it cannot indefinitely increase of course. We can say
that if you have the distance between xo and Xo plus epsilon to begin with and that becomes the
distance between these two, f(Xo) and f(xp + epsilon). This distance maps to this distance and we
wanted to say that this d of f(xo), f(Xo + epsilon), this fellow is the initial separation times e to the
power lambda. It is an exponential separation, we were talking about exponential increase in
separation, so e to the power lambda times d to the power d (Xo, Xo + epsilon). If you take say two
iterates then you might say twice iterated and if it is n iterated we would say... (Refer Slide
Time: 06:17). Essentially then you get your lambda as, how do you extract lambda from here?
This is n, 1 by n, it is the d of (o), "(Xo+ epsilon) divided by this fellow. This fellow is nothing
but epsilon. The In is here. This would be the concept of the Lyapunov exponent.

Conversation between professor and student: Refer Slide Time: 07:24- 07:30). We are assuming
that the two points, their separation increases and that increases exponentially. You might
question why do you assume that it is exponentially increasing. It might increase any other way
but it is just an assumption. We assume that it is exponentially increasing if that is so then the
exponential (Refer Slide Time: 00:07:59). Now you would realize that even though the essential
concept is that it is not so easy to actually measure it.



Why? Because this distance if you keep on iterating then the distance is no longer really going
apart, so you need to do something else to it. Essentially what we do is since we have to take the
nth iterate of xo as well as the moved one Xy + epsilon, nth iterate and essentially what is
happening? We are looking at how the nearby regions expand. So from one point you take one
step and you see how it expands then you take the next step, you see how it expands then you
take the next steps you see how it expands. Then the rate of expansion average over the whole
orbit is nothing but this. What you are really looking for is the average rate of expansion. The
direction of expansion is different in every place, as you go on from one point to the other the
direction of expansion is different. You can look at it this way.
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That suppose an orbit is going like this and so on and so forth. That means starting from Xo it is
going through these set of iterates. Then if we locally linearise around that and obtain the
Jacobian matrix then that Jacobian matrix its Eigen values will tell me how a particular direction
will expand. Go to the next point, do the same thing you will get again a Jacobian matrix but the
Eigen directions in all those places will be different so that they will be moving but nevertheless
at every place you can find the expanding direction. Average about the whole, you get the
Lyapunov number. Essentially since you can say that the derivative, here what am | doing? Here
I am taking derivative of the nth iterate. For example we have taken the second iterate of some
map, the third iterate of some map and taken the derivative, it is like that. Taking the derivative
divided by the initial separation, taking the derivatives at the two places but the chain rule we can
say that the derivative of the nth iterate is nothing but the derivative at this point times the
derivative at this point, times the derivative at this point and so on and so forth. Then we hence
divide by n to get the average dual (Refer Slide Time: 00:11:31) procedure. In general we define
the Lyapunov number on the average rate of expansion in that way.
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Now let us bring back the concept that if you have a point and you have obtained the Jacobian
matrix at that point then essentially at this particular point, you would be writing that X, is the
point say, applied on it you have to say that the Jacobian that means it’s often written as Df (Xo),
Df is the Jacobian of x,. If you apply this and if you apply not only to the point but also to a
circle around it, what 1 will get? You get an ellipse we have already said that. You actually get an
ellipse, somewhere else it falls as an ellipse. The point maps to a point somewhere here but the
region around it maps as an ellipse and we have already seen that the major axis of this ellipse
and the minor axis of this ellipse are given by the Eigen vectors of this matrix times its transpose,
we have already seen that. You might argue that we can keep on obtaining this and multiplying
this. That might be a procedure provided you are able to obtain the sequence of points, take
Jacobian around them and apply this procedure. It’s possible.

Now if you can do that then the definition of Lyapunov number and exponent would be as
follows. Write down this definition because that will be followed in the later classes. Let f be a
smooth map on R™ dimensional space real space, what is the meaning of the term smooth map?
It is differentiable everywhere that’s all, smooth means differentiable everywhere. Let J, ...
(Refer Slide Time: 14:40). These are the Jacobian matrices and K varies from 1 to m and let ry"
be the longest orthogonal axis of the ellipsoid. Normally it will be ellipsoid, if it is 2 D then we
will say it is an ellipse but normally it will be an ellipsoid, m dimensional ellipsoid. J, N for an
orbit with initial point V. So Vj is the initial point, we have applied the Jacobian, we have
obtained the Jacobian of the nth iterate of that is called J,,

After we have obtained that then the longest orthogonal axis is ry", what is k and what is n? K is
the dimension, it measures the dimension. If it is a three dimensional system then obviously there
will be three directions in which it will measure. The ellipsoid will have three axis and this is the
longest axis of that then r," measures the contraction or expansion near the orbit V. Notice what
we have done.



We have started from a point V,, we wanted to find out how it expands or contracts. The region
around it expands or contracts after n iterates. So what we did? We obtained the nth iterate of the
map, obtain Jacobian of that map and from there we obtained the major axis and the minor axis
of the ellipse and we call this the major axis. If this is the major axis that will measure the
expansion of contraction. Essentially at this stage avoiding the question of changing of the
dimension because we have already taken the n nth iterate so that contains within it, all the
changes and stuff. So that will measure the contraction or expansion near that orbit starting from
Vy in the next n iterations. Then the Lyapunov number of the point V, is defined as limit. If in n
iterations it increases by so much, in one and half iterates how much does it increase? To the
power one by n. That’s why this term is needed. This sort of gives my average rate of expansion
but that is not Lyapunov exponent because the Lyapunov exponent is an exponent, so e to the
power exponential factor has to come in. That is why this is not called the Lyapunov exponent,
it’s called the Lyapunov number. This is the Lyapunov exponent. Conversation between
professor and student: Refer Slide Time: 20:28). We are replacing the chain of rule here. As yet
no. As yet we have said that suppose we are able to somehow derive the nth iterate of the map
and then the Lyapunov number is given by this and then we will say that n goes to infinity.

Obviously you might ask how do you really derive the nth iterate and then let n go to infinity?
We will treat those issues later but this is the definition. Conceptually you need to understand it.
This is the Lyapunov number provided this limit exists. Here around V, we have taken a circle or
sphere n dimensional sphere that is called J,". If you apply J, on N then you will get a ellipsoid.
No, capital N is the n dimensional sphere around V,. So around V, you need directions in all the
directions and then whatever that defines is the starting wall. It might be as well smaller than the
initial sphere, in that case we don’t have chaos but nevertheless we have the number. It might be
contraction, it might be expansion. If it expands then only we will say the system is chaotic but
in a general system, it could as well be contractive, it will be stable that’s all.

(Refer Slide Time: 00:22:42 min)
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Now then the k™, now exponent of Vo we will say hy is equal to In of Ly. The Lyapunov
exponent is nothing but the natural logarithm of the Lyapunov number but as yet we have not
addressed the question that he was asking. How actually do we do it? How actually we do it is a
somewhat different ball game, | will come to that but essential point should be understood. The
concept is that that we take n iterations and then we have a map, so if that is applied on some
point Vy, some ball around V, we get a ellipsoid, the longest axis of that ellipsoid is essentially
given by expansion or contraction or whatever. If it is smaller, its contraction. If it is longer then
expansion. So the extent by which it expands is the Lyapunov number, take the natural logarithm
of that, you will get the Lyapunov exponent.

Yes, here is the question. We have started from the point vy, if it is a typical initial condition then
it is the typical initial condition. What does it mean | will come to that. Then it is the Lyapunov
exponent of the system. But consider that there is a chaotic orbit and there is another stable
periodic orbit with a basin boundaries separating then what is the typical initial condition? Start
from here, you get something, start from here you get something else. Naturally we have to say
that starting from here | got this but supposing there is a unique chaotic attractor in the system
then every point is as good. No, not really because you know that within the chaotic orbit there
are a larger number of unstable periodic orbits. If you are stationed on the unstable periodic orbit,
you will forever remain on the unstable periodic orbit and that fellow is periodic. There are those
atypical initial conditions within the system, if you start from there you don’t really get the right
Lyapunov exponent.

So you have to start from a typical initial condition to get the proper Lyapunov exponent. That is
why it is dependent on vy. Starting from an initial condition somewhere here, you will measure
something else. You might say that okay, if | know the systems definition then I might as well
compute this and say | might as well obtain the long axis, short axis by simply obtaining the
Eigen vectors and Eigen values of AA transpose. We have already seen that, we can do that but
that would be a little bit cumbersome procedure. Nth iterate, it will be even more cumbersome.
So actually it is not done that way, conceptually it is that but actually it is not done that way. But
since we can keep on applying the chain rule and apply at each point and obtain. Therefore there
are some simple systems on which you can apply this concept.



(Refer Slide Time: 00:27:05 min)

For example if | tell you what will be the Lyapunov exponent of this map. Can you say? Imagine
that this loop is 3 by 2 and this loop is 3 by 2. It’s not smooth but smoothness is not all that
important. Smoothness becomes important only in situation where | take a point and then if you
take an air ball, they map differently. But suppose you take initial condition somewhere here
then can you say what will be the Lyapunov exponent of this fellow? At every iterate it will
expand by 3 by 2, wherever it falls so even if you say it is nth iterate, the slope should always be
this. For such systems using that concept it is possible to obtain the Lyapunov exponent straight
away but in general when you have to really compute it, that doesn’t really help much. In that
case we take little different procedure.

(Refer Slide Time: 00:28:32 min)




We have to essentially start from a unit ball N and around the initial condition and then we have
to keep on those matrices. Essentially what we will do? We will say Df (vp) applied on N first
then we have to apply Df (V1) so on and so forth Df (V,.1). All these matrices applied on N
should ultimately give me the matrix that we want and its major axis minor axis has to be
obtained. That is the essential problem. If you start from a standard error ball and then in the first
one it lands somewhere here, in the second one say it lands like this and the third say it goes. So
it sort of goes on expanding, if there is an expanding directions in N iterations you can expect it
to a very long and very thin something, still ellipsoid but nevertheless very long, very thin
something. Still we are not allowing to fold. It will of course fold, so that is another problem we
have to keep track of.

If you do not consider folding, it will become a very long ellipsoid and if you allow folding then
it will fold so that gives us some problem in actual computation. What we will do? We will keep
track of the change in one iteration. In one iteration we don’t expect any folding. So a circle, a
sphere, a spheroid will go into an ellipsoid and there can you obtain the major and minor axis?
Of course you simply apply, you have the system definition in your hand that means you have
the system model. At this point you obtain the Jacobian, you got a matrix and that matrices, the
Eigen vectors and Eigen values will give you the expand and contracting directions. If you want
to exactly obtain this spheroid, all that you need to do is to obtain the Eigen values of AA
transpose. But if you want to simply obtain that from this by one application of v, obviously you
get it get an ellipse but you do not directly get the major and minor axis. That we have already
talked about.

So something is to be done in order to orient our coordinate say this was the coordinate. Now the
coordinate has to transform in such a way that one coordinate is this, another coordinate is that
then we can keep track of how the expanding coordinate changes to this one. What we will
essentially do? How many of you have attended some course on function analysis, Gram-
Schmidt ortho normalization. You have done? Has anybody else done? No. Conversation
between professor and student: Refer Slide Time: 32:40) That is the issue then because | was
anticipating people have done but then done but don’t remember. The average over the class, that
is the concept. Then then will do this?
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Suppose | have defined a sphere with conjugate vectors, let’s say z, z,, zz unit vectors defined
by that is my sphere. Each one then will either expand or contract, ultimately giving a coordinate
system that will not be exactly this. It will be something like this as a result of the
transformation. We need to find out where is the major direction and then we need to
reorthogonalize so that we get back the sphere to take the next step. The procedure for that is
essentially, we define a new coordinate system here y’s that means yi, y», ys such that y; is z;
that means the first coordinate we keep as it is. The other ones have moved in angle, so we need
to somehow bring them back to orthogonal directions. So the way it is done is, y, IS z, — z, dot y;
by yi, this is the norm square times y;. The ys is equal to zz3 minus, here it is z3, y; by the norm of
y1 square times y; minus zz times y, norm of y, square times y, and so on and so forth. What
exactly are we doing?

We are saying first that whatever we took as the first coordinate let it be retained. Second
coordinate now it has moved and therefore it will now have a component, a projection on the
first coordinate and we need to subtract it out so that we turn the axis back to orthonormal
coordinates that is exactly what it is doing. From z, we are subtracting the amount that is actually
the projection on to that. As a result of which you get again orthonormal coordinates. The third
coordinate z3, now this will have some projection on the plane from y; and y, and this fellow has
to be orthogonal to y; and y,. Therefore whatever is the projection on that will subtract so on and
so forth. That is called Gram Schmidt orthogonalization procedure. If you start from a ball then
after every iteration we need to apply this orthogonalization procedure so that we always keep
the axis orthogonal to each other. Else what will happen? Axis will become unmanageable, some
will expand, some will contract and become distorted in every possible directions. This is how
we tackle the problem of turning.



At every stage we are reothogonalizing the coordinates. Then the issue is that every stage then
supposes it was a z1, Z,, zz and now we have orthogonalised and we have turned into... But now
V1, Y2, Y3 are not of the same size (Refer Slide Time: 37:35). Why? Because some directions have
expanded, some directions have contracted so essentially you will not get this. You will get
something like this. You still have a set of orthogonal coordinates and you can keep on applying
it but that will be inconvenient. Why? Because then this will lead to very small numbers and this
will lead to very large numbers after n iterations and as you know in computer science it is a very
established fact that if you are having to deal with numbers of entirely different orders of
magnitude in a same computational procedure then it is going to likely end up in errors.

We always like to operate do all sort of numerical operation with same or close to each other,
size of the numbers. Here we have a problem then. If in one iteration it is going to look like this,
after say thirty iterations one is going to be very long and the number that you have to have to
handle may be ten to the power of four or something and the other one maybe ten to the power
minus three or something, very inconvenient to handle in a computational procedure. What really
done is that after every stage you not only orthogonalise but also renormalize. That means you
divide again to bring it in a circle shape or sphere shape.

(Refer Slide Time: 00:39:15 min)
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In order to do the renormalization we say that there will be new set of coordinates w; which is y;
divided by the norm of... so again becomes a unit vector but the directions are set according to
this. What are we doing? We are saying that we start from a point with a ball around it, after first
iteration it became a... Naturally we had a long axis, | am drawing in two D so that it becomes
clear to you, but it could as well be 3 D or 4 D. In this case the two coordinate systems are like
this but that turn into this. Then we say no, if it becomes like this in the first iteration we have a
measure of Lyapunov exponent that is this axis divided by this axis. But in order to take the next
step we have to again define a circle around it. In order to do that whatever was the actual size,
we divide by the magnitude to get again a unit vector. Now unit the vector w; is this vector and
the orthogonal to it and the orthogonal to it. Next iterate it might again turn like this so that here

10



you will obtain this unit vector, again you will obtain, again you will obtain. Having done that,
you would say what measures then the growth in one step? It was initially y;" that went into, here
it is yi". There has been a growth or decay in the size as we have measured here. Growth in the
decay in the size and that measured the expansion or contraction in that particular iterate.

(Refer Slide Time: 00:41:48 min)
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Ultimately we can say the Lyapunov number is given by simply the average. In the first iteration
whatever was the expansion, second iteration whatever was the expansion, third iteration
whatever was the expansion that is the total thing. There is a Lyapunov number, exponent is...
Firstly you have to take the In, norm of n plus. All these put together divided by n. That is a
computationally realizable, easily realizable procedure for obtaining the Lyapunov exponent.
What exactly did we do? We started from initial condition, took one step. At that point we
locally linearise it, took the Jacobian obtain the Eigen vectors and thereby you obtain the
expanding and contracting direction. When we have obtained the expanding contracting
directions, we take the maximum expanding direction and then maximum expanding direction is
the longest that means it is the big axis of that and then renormalize it and change all the other
axis as orthogonal to that axis. The maximum expanding direction is retained as the principal,
axis one.

Again you make a square, again you take the next iterate. Do the same procedure. In every
particular iterate, particular jump you have some expansion of that principal axis. This taken
logarithm, average about the whole thing gives you the Lyapunov exponent, essential procedure.
You might say that there are different situations where, I may not have the map in hand. For
example if you have the Henon map in hand, there you have the exponent for the map and
therefore at every point wherever it lands, you can take the Jacobian, you can do this procedure
no problem. Therefore 1 would advise you to really try that once but supposing you have got a
continuous time dynamical system which goes on like this and you have taken a Poincare section
and you are obtaining the crossings. You have got only collection of points, you really don’t
have a map. How do you take the Jacobian? You cannot do that, you cannot take the Jacobian

11



really. In that case the same procedure has to be followed. By the way while | was talking about
the continuous time dynamical system and the Lyapunov exponent, did I tell you how to obtain
that from experimental data? Let me just repeat that once again.

(Refer Slide Time: 00:45:49 min)
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In continuous time dynamical system what are the procedure? Starting from one initial condition,
you have got one trajectory. From another initial condition you have got another trajectory but if
you have the data set then you do not have this. Any question? If you have the equations then
you can start from a different initial condition. See how it will works. If you have data set only,
you don’t. Then what do you do? Simple, after all if it is a chaotic orbit it is winding on and if
the orbit is ergotic, it will eventually visit a close neighborhood of that initial condition. That
means while going on, some time it will come here or someplace within a close neighborhood of
this. The moment you have detected it, you know how it evolved next because you already have
the evolution of that. So you have very closely spaced data evolution results here, you also have
the closely spaced data evolution results. So you know how it will works.

After some time again you stop it, renormalize it to this distance and then again scan the data set
to find another point which is within this circle and go on. In case of the map also, you do
essentially the same. Starting from an initial condition, you will go on evolving in case of that
kind of systems where you do not have the map explicitly. That means starting from initial
condition go on evolving you get a point. Again ultimately you get a sequence of points, large
number of points, a data set. In that data set what are you looking for? You are looking for
starting from an initial condition | have to define a error ball, you cannot define a error ball but
you can define a point on the error ball within the error ball. So starting from initial condition
simply sort the data set to find out another point that lies within that one and then you know
where it jump next, you know where this fellow will jump next. You can find the distance. From
this distance and this distance, you can find at least the initial estimate of the Lyapunov
exponent.
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Then again stop here and again define an error ball, sort the data set to find another point on this
error ball, go on doing this procedure. That is how the Lyapunov exponent is actually defined.
Now notice what will be the Lyapunov exponent be, if the system is periodic. If the system is
periodic what will the Lyapunov exponent be? Lyapunov number, its natural logarithm is a
Lyapunov exponent. What do you expect the Lyapunov exponent to be in case of a periodic
orbit? Negative, the Lyapunov exponent will be negative, the Lyapunov number would be...
Lyapunov number the extent by which it stretches or squeezes that should be less than one and as
a result, the Lyapunov exponent will be negative. In a chaotic system what do you expect? In a
chaotic system there has to be stretching in some direction that is the signature of chaos
otherwise it cannot have the sensitive dependence on initial condition. In order to detect what is
the necessity? That at least one Lyapunov exponent should be positive so that is the ultimate
signature of chaos. If it is chaotic at least one Lyapunov exponent should be positive.

Normally the kind of system that engineers have to handle, they are all dissipative systems.
There is always dissipation. Dissipation means if you start from error ball, after some time it’s
size will reduce but then its size wise its volume will reduce but at least in one direction it will be
expanding that is the character of chaotic orbit. There are very rare situations where there are two
directions in which the Lyapunov exponent will be positive, very rare but there exist such
systems where two directions are positive. They are called hyper chaotic systems. In a periodic
system, periodic orbit the Lyapunov exponent will be negative. Largest Lyapunov exponent will
be negative.

Essentially what really matters is not all the Lyapunov exponents but the largest Lyapunov
exponent, if the largest Lyapunov exponent is negative then you have contracting system and in
contracting system means you have periodic orbit. If the largest Lyapunov exponent is positive,
it is a chaotic system or an unstable system. Unstable system means it goes to infinity but
nevertheless if you measure, do this procedure then it will yield a Lyapunov exponent that is
large but it goes to infinity means unbounded. Therefore we leave it out of our attention right
now. What if the Lyapunov exponent is zero, what kind of situation is that? Tthe Lyapunov
exponent zero means two initial conditions will always remain the same distance apart. That is
the physical meaning of the concept Lyapunov exponent zero, same distance apart. Now while
talking about quasi periodicity, | have already done that, this is evolution on a torus.
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You have a torus orbit and if it starts from another initial condition, it also goes the same way
and their relative distance does not increase. That is the situation where you have zero Lyapunov
exponent, at least one Lyapunov exponent being identically zero means it is a movement of
torus. | will stop now, we will continue from here in the next class.
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