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In the last class we have seen the basic mathematical frame work with which we can generate 
fractals and in the end of last class I gave you the IFS that means, a collection of affined 
transformations which when iteratively applied, will generate some of the well known fractals 
for example, Sierpinski triangle the fund and like that and then obviously the question was in 
your mind. I told you that the simple way to actually generate the fractals would be to take a 
collection of pixels.  
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You might start from any image because the initial condition does not really matter, it will 
always converge on to that particular fractal object. So that collection of pixels would be some 
number of pixels this way and some number of pixels that way and naturally each pixels will be 
spanning from a particular real number to particular real number, so this will be in effect like 
boxes. So each pixels is actually like a box so start from the center of the box and see where that 
mapping takes you and identify which box will be filled and again repeat the procedure starting 
from the center of that box. Then it will be a simple procedure by which you can generate the 
fractals. Some of you may feel somewhat uncomfortable to work with pixels, I found that many 
students feel more comfortable with working with numbers so in that case there are few ways of 
doing it. One you might start from just one number means one point then if you apply suppose 
there are 4 of the w’s four of the affine transformation available like in the case of fern if you 
apply each of them how many points you will get? 4, so in the next iterate you will get some 
what 4 points, in the next iterate you can apply the same 4 affine transformations on each of the 4 
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points as a result of which you get how many points? 16 and so on and so forth and if  you do 
this procedure within 3 or 4 iterations you will find that you got the fractal object, all you need to 
do is to plot it. It will take atmost 10 lines of comman in Metlab very simple but the problem is 
that, the more you advance in terms of the iterate of this, the more will be the number of points 
and after some time you will find that the memory of Metlab will crash, you will not be able to 
go further. That is why this problem though very simple but doesn’t really work very effectively 
after some time it will see 1 to 4, 4 to 16 to within 3, 4 iterates you’ll find that the RAM of the 
computer will be formed. One alternative way of doing it is, so this is called deterministic 
algorithm, where you have deterministically applying and seeing the sintex shape. So I have 
given you one algorithm in which the object changes shape and finally deform and deform and 
deform and finally you will get the final fractal object. That means before your eyes you will be 
able to see how the action of the IFS the iterated function system is transforming the object 
finally converging on to that object on to the fractals, but in this way if you are working with the 
points you will not be able to see the transformation that means how the whole object is 
changing and transforming and finally converging on to that you will not be able to see. You will 
be able to see that points randomly falling and finally a shape emerging out of it. If you 
progressively eliminate or delete erase from the computer screen the earlier iterates and keep 
only the last one you more or less able to see the final form factor, but how the shape is changing 
you will not be able to see and it is often instructive to see how the shape is changing and 
converging onto the final one that is why I would propose you to go by this pixel algorithm. 
There is another way of doing. The third way of doing it is for example in the fern image. 
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Just recall how it was, there was one leaf here, there was something here which resemble the 
whole thing. That is how it was, the 4 w’s four affine transformations actually create the four 
parts, but the number of points generated by each part need not be the same means that if you 
start from a point and generate four points from that generate 16 points, the points generated by 
each W will be the same in number that means the number of points falling in this part will be 
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equal to some number falling in this part so on and so forth. That is not always desire because it 
might be so that you want more number of points here than this point because of the particular 
shape of the object which means that you might also assign a probability of an iterate falling 
here, probability of an iterate falling here and so on and so forth. If you do that then the 
algorithm would be something like this, start from any point and keep on applying those iterates 
W1 or W2 or W3 or W4 depending on their own respective probability. So if W2 has a twice 
probability than W1, you will choose W2 with a probability double than the probability of W1. So 
what will happen is that you will get a sequence which will looks something like that start from a 
point and then apply W1 apply W4 then apply W3 then apply W2 then apply W1 then apply W2 
then again apply W2 then apply W3. You might wonder what is generating the sequence that is 
being generated this sequence in which sequence you will be applying, every time you have been 
choosing from these 4 W’s depending on their respective probabilities. In that way the point will 
keep on falling like this and finally slowly we will find the figure in merging order. So the earlier 
one is called deterministic algorithm and this one is called the random iteration algorithm where 
the iteration are being applied randomly depending on some kind of probability assigned to it. 
Yes I will come to that. 
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So I had given these yesterday and there should be the one for the fern. We will also lead to 
assign the probabilities to these four then that means they have to be the p another column. Now 
this column I will now give you for the fern, you write down if you want to write the random 
iteration algorithm you will need two assign probabilities say 0.01 very low probability of this 
one. Explanation why I will come to a little later 0.85 the last 0.070. 
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For the Sierpinski triangle the p’s are 0.33 3.30.33 and these will also be the same actually but in 
order to make it one you need to make it 0.34. They have their equal probability because they 
have three parts in that progressing. So essentially I had told you about three possible algorithms 
by which you can generate this. The first one is called the deterministic algorithm while where 
you are starting with a shape not a point and the shape is changing and finally converging on to 
the fractal and in the other you are actually starting from a point and keeping on applying the 
iterates one after the other, either just in proper sequence in which case you have not applying 
the probabilistic algorithm or you have choosing from which W to apply depending on their 
probabilities. You can easily write the programs for that. So before you come to the next class at 
least I want one of these routines to be written that’s an assignment. One of these routines to be 
written and you should be able to generate the fractals.  
 
Now let us come to the interesting point of how to generate these numbers that is the inverse 
problem is the most interesting problem, all the time i am giving you the numbers and you have 
been thinking where the hell does he gets these numbers. yes the question is quiet obvious. So let 
us attack the inverse problem.  
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The inverse problem is essentially that given a particular fractal object, how I generate the 
iterated function system? First was given an iterated function system how can I generate the 
fractal. Now the problem is given a fractal object how do I generate the iterative system. for that 
this central theorem is called collage theorem. And the collage theorem is essentially a corollary 
of the Banach’s contraction mapping theorem which I proved in the last class. The reason I went 
to the length of proving it was that I will need to use a part of that proof. So let us get back there 
this is what we did in the last class 
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We started with a distance between two points two elements xm and xn and we showed that must 
be less than this. What is this in the right hand side? You have got the distance between the first 
two, this is the starting point, this is after the first iterate x1 the distance between them and then 
in terms of the contractivity fractal we got  the number and we have argued that since lambda is 
less than one therefore this will go to zero now let us start from there. If you start from there and 
if you now set m to be zero and n to be infinity. What you get? In this here set m=0, n equal to 
infinity, the statement immediately leads, lambda to the power of 0 is 1. See what it says, it says 
that if I start from any particular object that means suppose I have got Sierpinski triangle or 
something like that so on and so forth we have already done that then, suppose this is my object 
then i have to choose the transformations in such a way that after the first iterate you get more or 
less the same object. How can you do that? By generating, by writing each of the w’s to make 
parts of the original object. again if you start from a particular given geometrical object here it 
says that you choose your w’s in such a way that this whole affine transformation, whole IF is 
applied get the second one X1 that will be very close to the original one. If that is so that means if 
the distance between the two objects starting point and after the first iterate is very small and if 
the transformation are contractive, then you can always say what is this fellow? X infinity is the 
attractor, start from anywhere, the distance will be smaller than this one. Now let us state this 
theorem in mathematical terms. 
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It says that this is the collage theorem, let (x, d) be a, L is the object that we are starting with, be 
given and let epsilon choose an IFS with contactivity factor. So that the Hausdroff distance 
between the object L and the union of Wn of L is less than epsilon where h is, then this is the 
theorem called the collage theorem. See what it says. Suppose you have given a fractal object 
like L say the fern, say the Sierpinski triangle, say the square be given and now you have to 
choose an IFS choose. We will do that with contactivity factor s so that the distance between L 
the original object and the union of all these applied to the same object L is less than epsilon. 
Then this theorem states that ultimately the distance between Hausdroff distance between the 
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original set and the attractor of IFS will be smaller than this number. Now if you can make 
epsilon zero ultimately you will also be 0 let’s see how to apply this. 
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Suppose I want to generate a square which is not a fractal but nevertheless this can generate any 
image. So let’s say I want to generate a square. So this is my L, now I have to choose the IFS 
that means the w0 w1 w2 so on and so forth in such a way that the contractivity fractal is less than 
one but at the same time after the first iterate that means after having applied these w’s on the 
same set L this should be smaller than epsilon. How can you do that? Simple, you break this 
square into 4 and design the affine transformation such that if first affine transformation 
generates these. The second one generates that, third one generates this and the fourth one 
generate this. Can you do that? Very trivial say this is 0101, from the whole one from the whole 
square, how to write down the affine transformation that will generate this 0.5 0.5 and here could 
be 0 for this one. When you want to generate this one it will be same thing shift that by 0.5 so 0.5 
0 0 0.5 shift it along the x axis. Now you want to generate this, shifted along the y axis this is and 
let me write here. So abcdef this is w4 so all these taken together will define my IFS and then this 
theorem will assort that even if you start with a circle and keep on applying this it will ultimately 
converge on to this square. How to generate the Sierpinski triangle? 
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How to generate this? This will of course be further sub divided but nevertheless point is that 
you notice that the whole we are trying to obtain a particular transformation, affine 
transformation which generates only this part from the whole. So which transformation when 
applied on the whole with generate only this part, the last point. Say one actually so your W1 
would be 0.5 0 0 0.5 and how we will generate this one? What we did actually but the fourth one 
will not be there and that is what makes a difference between a square and Seripinski triangle 
this is what we had now to check. This is what we had given. Now you notice this do you 
understand why numbers? game very simple all that we are doing is that we are asking ourselves, 
which transformation when apply on the whole image will give me part of it and then we 
generate this part and make a collage of it if that collage becomes very close to the original 
image, than we have through. That is what we have doing, how to generate the fern. Let us look 
at the fern image first. Let us look at it.   
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Look at this image of the font can you see that? Here you notice that in this whole image of this 
fern there is a stem, can you see that? there is a part to the right here, there is a part to the left and 
there are many of this parts but it’s not difficult to see that this whole is very self similar to this 
part, is very self similar to the whole fractal. So if we can somehow define the affine 
transformation that will generate this right part, this left part this stem and this whole thing than 
we have through. Now let us come back to this screen here. 
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Here we have a stem, we are something to the left part, we have something right part and we 
have something to… So we will need to find this. let us tackle the first problem, that means the 
whole how can you transform in such a way that means how can it define one affine transform 
that will bring the whole into this. For this since the structure is like this Xn+1 Yn+1= (abcd) (Xn) 
(Yn) + (e f) this structure is like this. So you notice that if I define two points which one maps to 
which point then it defines two equations but there are 6 unknown and therefore we actually need 
to find out 3 points and say that this point should map to this one, that point should map to this 
one and third point should map to third one. If you can define this in three points then we have 
got 6 equation 6 unknown case and we can solve it right, so now let us come back to the to the 
screen. Let me increase the size then it will be clear. Now we are looking at something else. No 
leave it. It is not difficult see that this point should map to this point, the way the fractal is 
oriented there is one end here which is actually mapping to the end here, so you get another 
estimating and the third one is the starting point.  
 
This is starting point of the whole fractal that should map to this one. So this way for this 
particular part, we are able to identify 3 points of the original full fractal object which when 
affinely transform will give the smaller one. Then we get this number. How? all we need to do to 
put that fractal object on the paper and put a graph paper on to that, identify those point as 
numbers and put here then we can solve this that ah IFS will come on similarly we have to do 
this one, this one, this one, this one and is not difficult to see notice you just get back to the 
fractal that we had. the IFS that I gave you last time for the fern, you notice that this is the first 
one can you identify what it means a 0, b 0, c 0 and d only has value which means only one y 
coordinate will be there and that to the whole height will be shrunk by a fractal 0.16 and put here 
right, here zero there is no translation. What does it do? it generate the stem you notice that this 
one is a big one because it has large probability, big one is which one the big part and this two 
are the two smaller one’s, that is how it is been generated and you could also generate. all you 
need to do is to simply put the fern image, graph paper on top of that, identify the points simply 
find which point map to which points, put into this equations solve them and that is how this 
point have got. That is not god gift somebody obtained it clear.  
 
this idea has been extrapolated, the idea is that see the fern itself is the very complicated structure 
very complicated image, is not easy to draw is very complicated structure but still it is 
represented by only this few number something like 24 numbers, if we add this it would be 28 
numbers. So 28 numbers only this much of information necessary in order to codify that 
complicated object. Can we then generalized this idea? that means can we than codify any image 
in terms of such simple numbers that is the basic idea of what is known as fractal  image 
computation. So that has been applied to image computation where the basic idea is that how to 
obtain these numbers which when iteratively apply will automatically generate that. How to do 
that? Notice when we talked about the collage theorem, did we ever really need the concept that 
this individual affine transforms should actually apply on the whole image. We really didn’t 
mean, we could as well apply that to the part of the images to generate part of the image 
ultimately we are make it to collage that’s all and the collage can also be generated from a part of 
the image. if we use the whole image and generate a part then we do not need the information 
regarding which part is it coming from but if we affinely transform a part to a part than, we need 
the information additionally to which part I am talking about but nevertheless it is not necessary 
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to transform the whole image. The idea is suppose you are trying to codify my face. We can, it is 
actually possible to find out the number that will be the IFS for my face, your face and then we 
can start from somebody else face and then apply that you will see the more, it will come to your 
face. It actually happens I mean you can also do that coding the point is that of course I cannot 
use the whole image of my face to generate a part, this part is not definitely the whole image 
transform to be a affined way no is not but then my left cheek is the affined transformation my 
right cheek. A part of the sky is affined transformation of another part of the sky, a part of a bush 
is can be seen as a affined transformation of another part of the bush that means normally in any 
image there is a lot of affined redundance. In any image there is a lot of affined redundance and 
that affined redundance can be made the use of to obtain the ideas. How would you do that? 
Suppose you have got an image. 
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Pretty large image and it has various things, there would be a part of the sky, there would be 
trees there would be bushes, there would be grass, there would be cows, there would be people 
and than our object if than is to look for those affined redundancies. How we can we do that? We 
will divide this image into blocks, these are all blocks. Suppose I start from this block then my 
question is that can this block be obtain from any other part of the image through an affined 
transformation. This when we look for the affine transformation it has to have a contractivity 
fractal less than one and therefore what we look for is a larger block, has to be a larger block. So 
say we search the image and find that okay when this particular part is affinely transform it gives 
this particular collection of this pixels. Again we come here search the whole image to find out 
which part it comes from. normally this routines is written which particular size of this blocks 
say 8 pixels  by 8 pixels block or 16 pixels  by 16 pixels  blocks and then if it is 8 pixels  by 8 
pixels  blocks then we are looking for 16 by 16 pixels  blocks in the whole image from where it 
gives the best possible fit. Notice the theorems says about the epsilon it does not require to be 
exact fit, if it is approximate its fine. So you really want to try to get the fit so for each one ah 
these are the domain blocks for each domain blocks you are looking for the rest of the image to 
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find out which larger blocks when affinely transform gives this block.  If these are square boxes 
there are only a few affined transformation that are possible.          
You can shrink bring it here, you can turn it, twist it, flip it, these are the possibilities. So it will 
be only a small number of collection that can be seen from a lookup table which one is the best 
you find out and then assign there. So for this particular block, you locate the particular source 
and locate that particular transformation that gives here, enough. go to the next one, go to the 
next, go to the next one, ultimately you have codify the image has a collection of numbers which 
represent which affine transformation is to be applied and where is to be applied. Yes, that will 
take a lot of time. That is way that’s take a lot of time because for each one you are searching the 
whole image. That is way this is very competition intensive, the compression stage is very 
competition intensive, what people have done is that since searching for this one and searching 
for this one and searching for this one they can proceed parallel. Normally this is done using 
parallel processing.  
 
So initially they used to be done by parallel processing now parallelized chips are available, 
specially designed chips to do this work.  There is a company called iterated function, the fellow 
whose theorem these are Michel Bernsley he opened a company called iterated systems 
incorporated. So they have made those chips so they are now available and you can codify any 
image just like that, it’s not difficult. Now when you want to retreat the image from the 
information that has been codified what we have to do? Start for any image what so ever and 
then again start from those bigger blocks, you know the transformer that is to be apply you get 
the smaller box and then you get the collage. After you have done so you got the first iterate go 
on applying those iterates, the theorem says that it must converge on to the image that you want.  
for example right here in IIT Kharagpur we had, this is a horrible slow machine so it may take 
hours but nevertheless. Just wait to see some of the results. Sir what about the colors? Color will 
come later. So far we were talking about binary images. Let us first talk in terms of the gray 
scale then will come to color. Now the gray scale can be treated as one depth level, the gray scale 
is actually this is (Not Audible) (00:43:39). 
  
(Refer Slide Time: 00:43:41 min) 
 



13 

 

 
See here is the image of you know who Monalisa and that image was codified here in IIT 
Kharagpur and you start from any arbitrary image in this case a random image and this is after 
the first iteration, this is after 5 iteration, this is after 50 iteration, this is after 250 iteration, you 
get the image back. So this is essentially on the application of the fractal image compression on 
the Monalisa image, done here in IIT Kharagpur. Similarly it can be done in all possible images 
very interesting but it’s a bit computation intensive as I told you, need parallel processing in 
order to do it in a reasonable time clear. Now here you can see that the contains gray scale. Gray 
scale means earlier we have considered each pixel is either 0 or 1, either filled or empty but now 
it will have a gray scale value assigned. then gray scale value can be imagine as either as a depth  
level that means the whole problem because not a 2 D problem but a 3 D problem that’s all no 
further difference really, can be done.  
 
The second way of doing it is that for each pixel we have got a number, earlier it may binary 
zero and one now we have sixty four numbers assigned you to it one of those sixty four numbers. 
Ultimately we have got a 8 by 8 block that we are trying to obtain by affinely transforming from 
a the lager place but here there are sixteen by sixteen pixels, each with a  gray scale value. You 
can apply the affine transformation, when you apply the affine transformation you get gray scale 
values of those obtained 8 by 8 blocks and you can still find out the distance between the two, 
distance between not this distance but the actual a gray scale value the metrics of gray scale 
values in this block and the one that you get by transformation. Thereby you can find out the 
distance is possible to find that is another way. You scan the whole thing so that you get a 
minimum distance is fine. Then it will yield the same thing start from any arbitrary image it will 
converge on to the ultimate thing. There are a few orders that we have provided this computer is 
horribly slow. So it’s taking a long time but nevertheless ultimately it will come you see that. 
 
(Refer Slide Time: 00:46:59 min) 
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So can you see those images see it’s a standard image that is used for in a processing the Lena 
image and here it started from a square and you see the transformation and it ultimately converge 
on to this, convergence actually converge on to the Lena image starting from a white still does a 
same thing, starting from a green and starting by parrot, still does the same thing. So actually you 
can you can see the transformation (Not Audible) (00:47:39 min). 
 
[Conversation between Student and Professor – Not audible ((00:47:40 min))] no the 
decompression  is very fast [Conversation between Student and Professor – Not audible 
((00:47:45 min))] that depends on the speed of the computer. what [Conversation between 
Student and Professor – Not audible ((00:47:50 min))] 
 
Like four hours, doable time. it was some years back when the computers are slow I don’t know 
how much time it will take to this computers but say four linux machines clustered together that 
will do in the short time but once you understand the logic, it’s not difficult to write the code at 
all.  it’s very simple to write the code and do it your selves but since the logic is elegant the 
mathematics is elegant  but nevertheless this has not become the standard in image competition, 
yet the reason is that the discreet cosine transformed that is standard in image competition today 
that is faster when it comes to compression stage and that is why still this is in an experiment 
stage it requires really  good processing power in order to do the coding part that means the first 
if I give you the IFS what will you do? simply start from a arbitrary image, take larger blocks 
and since the information that is available to will have, will say that this particular black will 
transform to there from where to where that should be available in the code and then which 
transform to apply that should also be available in the code so that you transform it, the next one 
you transform it, the next one you transform, ultimately you got a whole image. Again apply the 
same logic, keep on applying the same logic. 
 
So today with this we are coming to a close of the chapter of the factors and then we will go back 
to the study of the nonlinear. essential think that we have to remember, these are all fun i should 
say this are very nice things to do but essentially these are fun and one should do a lot of get a lot 
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of fun out of learning. So this is also lighter side but the relationship between what we were 
studying the nonlinear dynamics and factors should be clear. Firstly while we are talking about 
the Mandelbrot set and the Julia set we had made some points. the point was that the Mandelbrot 
set essentially is a fractal  in the  parameter space  and the Julia set is essentially factor in the 
state space, so when we see a fractal object in the state space while we are studying non linear 
dynamics and chaos series and stuff like that, essentially you will remember that it follows the 
same logic as is followed to generative Julia set and the Mandelbrot set idea also tells you that if 
a system is given by a few parameters for example electrical circuits are given by the  
inductances, capacitances, voltage sources applied that  these are the parameters the variables are 
the voltages across capacitor and the currents the inductances. Now you might also you imagine 
a space of those parameters and based on this knowledge we should expect the state of 
parameters for which you get a particular type of dynamical behavior to be a fractal object. A 
fractal object means or therefore the point is that we should expect fractals both in the parameters 
space as well as in the state space.  
 
 
 
 
 
We will later us see that the basin of attraction in the state space can be fractals that means there 
is an attractor and there is a basin of attraction. The set of initial conditions for which the system 
holds on to that attractor that state of initial condition that can be a fractal and if it is fractal there 
can be fractal fingers from one type of attractor getting in to the basin of attraction of another 
type of fractal. Do you understand the kind of complexity that it can lead to? that means if we are 
in a particular initial condition they can be in the neighborhood a fractal finger of another 
attractor coming in and those things do happen and the idea about those things come from the 
understanding fractals. Most importantly when we talked about that the process of generations of 
chaos, we talked about the horseshoe mapping, snail horseshoe mapping imagine, so we said that 
in the state space of the system there is a snail horseshoe mapping in action. The state space is 
like layered there is a continuous stretching and folding and that could be mimic by this snail 
horseshoe mapping.  
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16 

 

 
 

Imagine that you have got the snail horseshoe mapping that means you take stretch it and fold it 
you then again stretch it and fold it and stretch it and fold it stretch it and fold it ultimately if you 
get a cut here. What do you see on this line, just try to thing this this particular point canter set. 
Ultimately on this line if you slice it then you see canter set and this is how all those ideas about 
fractals become really when in the study of non linear dynamics, why we need to understand 
fractals. We made of need to understand the IFS and all that but the essential idea we do need to 
understand. So that is how the study of fractals becomes important. The other thing is that if a 
system is chaotic, we do expect a fractal object like the canter set to appear in it’s a state space 
and the fractals are given by fractal dimensions. Therefore in the state space of a chaotic system 
we should be able to obtain the fractal dimension to characterize that object. Yes, there is one of 
the ways of characterizing chaotic behavior to obtain the fractal dimension. So that’s all today.  
  


