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Bifurcations in Two Dimensional Maps 

 
In the last class when we are talking about the two dimensional maps we had seen that the 
essential idea is that we are placing a Poincare section and if the original system is 3 dimensional 
the Poincare plane is two dimensional, so we will see things on the Poincare plane. That means 
we will obtain two dimensional maps in this form xn+1 yn+1. 
 
(Refer Slide Time: 00:01:12 min) 
 

 
 

This is some function of xn yn and this is some other function of xn yn. then we said that having 
obtained this the next step would be obtain the fixed point by substituting xn in the left hand side 
that means the fixed point is the one where the xn+1 is equal to xn, yn+1 is equal to yn. If you 
substitute we get a pair of equations two equations, two unknown. We can obtain the fixed points 
and the next step was to obtain the local linearization in the form of the Jacobian matrix. Having 
done that what we obtained is a linear equation xn+1 yn+1 is a matrix time’s xn yn. This matrix is 
the Jacobian matrix. Then we said that the next step is to obtain the eigen values of this matrix 
and eigenvectors and depending on that if the eigen values are real than the eigenvector, there is 
no point in obtaining the eigenvectors. So when we do that and in a next stage we said that it is 
now possible to understand the dynamics in terms of the eigen values and eigenvectors, like we 
managed to give some names. 
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We had said that supposing here is a fixed point then here two eigenvectors, if both the eigen 
values are positive and real and between 0 and 1. So 0 less than lambda1, 2 then the behavior 
would be like this, from here also it would be approaching. So this would be called the regular 
attractor. What would be the behavior if you start from somewhere else? How will it proceed? 
Obviously this will approach the fixed point but how? Again try to recall the logic that we had 
given earlier. This has to be broken up into two components, along the two eigen directions and 
then this distance will progressively reduce as multiplied by the eigen value along this direction 
and this one will reduce as multiplied by the eigen value at that direction. 
 
If say here the eigen value is 0.1 and here it is 0.8, how do you think it will proceed? This one 
will be multiplied by 0.1 therefore it will shrink fast, while this one will be multiplied by 0.8 it 
will shrink low (Refer Slide Time: 04:30). As a result of this it will go like this. So this is a 
regular attractor and if one eigen value is between 0 and 1, the other eigen value is greater than 
one it is a regular saddle. So the behavior would be, if this is the lambda1 direction it is 
contracting, while if this is the lambda2 direction it will be like this. All the time try to figure out 
how the behavior will be if the initial condition is placed elsewhere, not on the eigenvector. You 
should be able to visualize that. 
 
Next fixed saddle because this is less than minus one, it is outside its magnitude is greater than 
unity so this is saddle and this is negative therefore flipped. So how will the behavior would be? 
If this is the regular direction and if this is a flipped direction whose behavior would be like this. 
It will actually go from one side to the other and therefore it will be flipping. It is a flip saddle. 
This is what we have done. Now apart from that can you figure out what other possibilities are 
there? Take any flip attractor of course, flip attractor would be where the eigen directions are 
zero less than 1. So how will the behavior be? In one direction it would be like this, in other 
direction it would be nevertheless coming closer. These are the possibilities when the eigen 
values are real, this is flip attractor.  



3 
 

What happens in these cases? You normally say that it goes out to infinity but remember that 
actually does not happen. Why? Because this is only the local linearization. This is the only the 
local behavior so you might at most scientifically say that this particular set of iterates go away 
from this particular fixed point but you cannot really say that it goes to infinity. We will come to 
that later like what can happen to such systems but let us now tackle the case of complex eigen 
value. So lambda is equal to a ± jb. What will the behavior be? 
 
(Refer Slide Time: 00:08:10 min) 
 

 
 

Say this is our axis and say this is our initial vector x. obviously as a result of the multiplication 
with that matrix, these vector will be operated on by a complex number and the complex number 
can also be written as say lambda real or magnitude angle some theta. So the moment you write 
it like this, you recall your ideas you learnt in the first year electrical circuit course, you 
understand that as a result of multiplication of with this what will happen is this vector will be 
multiplied by the magnitude and it will turn and it will rotate counter clockwise by the angle 
theta. So what is this lambda? Lambda is a square plus b square and the angle is tan inverse of b 
by a. So as a result of this what will happen? If this root over a square plus b square or the 
magnitude of the lambda is less than one then it will become a smaller vector and it will turn by 
an angle theta.  
 
What would be the result of repeated application of this? That means if you are keeping on 
iterating this what will happen? in every iterate it will rotate by theta and it will shrink and as a 
result of which you will get a incoming spiral but remember it is not a continuous motion as you 
had encounter while dealing with the continuous time system, differential equations. This will be 
like a set of points that jumping like this but ultimately… (Refer Slide Time: 00:10:45). Is this 
point visible on screen? So this would be an incoming spiral behavior, likewise if you have the 
root over a square plus b square term, the magnitude of the eigen value greater than unity then it 
would be outgoing spiral. It is obvious.  
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So there two possibilities for this would be incoming spiral for lambda less than one and if it is 
lambda magnitude greater than one then it would be so on and so forth. So these are the two 
additional behaviors. This is the incoming spiral and this is the outgoing spiral. Now notice that 
these nomenclatures pertain to these fixed points. Fixed point has the nomenclature. In these 
cases the fixed points, the one that is around which you have this either incoming spiral or 
outgoing spiral behavior these are called 4 side. That means these each one is a focus. So this 
focus, this specific term is used where the eigen values are complex conjugate. It could either be 
a stable focus or an unstable focus. if one says it is a stable focus, you know that the behavior 
around is a incoming spiral and if one says that we have a unstable focus, you would be 
understanding immediately that one is talking about the outgoing spiral behavior. So we have 
now understood the types of fixed point that can be there. 
 
Now we had said that we are ultimately trying to understand this stability of periodic orbits by 
placing the Poincare section and looking at this. As stability obviously now can be understood in 
concrete terms. What is the stability then? In this cases under what condition was the fixed point 
stable? You are talking in terms of real. If it is complex conjugate then a magnitude has to be 
one. So actually it will bald down on to whether or not the vector itself that means the complex 
number itself is inside or outside the unit circle.  
 
(Refer Slide Time: 00:13:49 min) 
 

 
 

If it is outside the unit circle, it will be unstable but you can now relate the positions of the 
eigenvectors on the unit circle or (Not audible- Refer Slide Time: 14:19) two of them are here 
and here, flip attractor. What will be the behavior if they are here? It is a stable focus incoming 
spiral behavior. What will be if this and this? Saddle. Now we have to remember that this 
stability condition is different from what you had in case of continuous time dynamical system. 
In the earlier case you had the eigen values, the real part would have to be negative but here in 
this case the eigen value itself has to be inside the unit circle. 
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Now if I ask you, in how many possible ways can such a system lose stability? Means essentially 
that will bald down to, in how many possible ways can eigen value exit the unit circle.  It’s not 
difficult to see, there are exactly three possible ways. one say the unit circle is like this and it 
goes like this if possible and another possibility is where you have the unit circle like this and 
one eigen value goes like this and the third possibilities is a pair of eigen values leave the unit 
circle like this. These are the three possibilities, fundamentally different possibilities. Obviously 
it could go this way and could go this way also, there is no fundamental differences between 
them. That is why these are the fundamentally different ways in which a fixed point can lose 
stability. So let us try to understand what happens to each of them but from our earlier concept of 
one dimensional map can we relate. What is happening here and eigen value is becoming minus 
one. What is our anticipation? In case of the one dimensional maps what happens when this 
curve become minus one? Period doubling bifurcations. 
 
All these are bifurcations because in all these cases the fixed point is losing stability, something 
else in gaining stability and so you have bifurcations but in this case you anticipate a period 
doubling. Why? Because of the similarity of the equation with the one dimensional map but 
whether or not that what happens we need to check. In this case eigen value becoming plus one 
what happen then? Tangent bifurcation are we called saddle node bifurcation and a third we did 
not come across because in one dimensional system you cannot have a complex conjugate pair of 
eigen values. So these two we recall what we learnt in 1 d and try to extrapolated in 2 d and try 
to understand what will happen. 
 
Let me write down the name because here we understood that it should be the period doubling. 
We will prove but it is actually period doubling, this is saddle node and this is the special 
situation, I will treat this little later, it is called Neimark Sacker bifurcation. First let us handle 
these two and then we will come to this one. His question is we had seen that pitch fork 
bifurcation also occurs when the eigen value becomes plus one. Pitch work is you recall where 
the bifurcation diagram would look must the same like the period doubling bifurcation only thing 
is that in period doubling what is created a period two orbit while in this case what would be 
created is at two period one orbits both stable. I also said that they are somewhat real situations. 
So this similarity another thing as I told you that it comes sort of intuitive prediction, it might not 
be true. You might argue that no, it should be similar to the pitch fork bifurcation. That is why 
we need to examine each case separately and after having examined, if you find that it is similar 
to the tangent bifurcation case then we will be convinced before that don’t be convinced. Let us 
explore by means of a specific map called the Henon map. 
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This map is xn+1 is equal to A – xn square plus B and yn+1 is equal to xn, 2 d system. So when you 
proceed what will be the first step to locate the equilibrium points? Do this, let this be an 
exercise we do today, so that will trace all the steps that we need to do in order to understand the 
behavior of this system and the first step is to locate the equilibrium points. In order to locate the 
equilibrium point we have to set the fixed point. Let the fixed point be x star so we would write x 
star is equal to A minus x star square plus by star, x star y star is the fixed point and y star is 
equal to substitute it here, you get a quadratic.  
 
Let us proceed by choosing one of this parameters. There are 2 parameters A and B, let us 
choose one of this parameter say let’s say B = 0.4 and A variable and we will be trying to 
understand what happens as A varies. So that this fellow is now 0.4 (Refer Slide Time: 22:00). If 
you substitute what is the equation you get? Let this goes to the left hand side, x star square, 
these two get subtracted so you have plus 0.6 x star minus A is equal to zero. So the x star is half 
minus 0.6 plus minus root over 0.36 + 4A. For the sake of simplicity let’s take 4 out and cancel 
this. So this is equal to minus 0.3 plus minus root over 0.09 +A. Now this immediately tells you 
that so long as A is less than 0.09, the position of the fixed point is you get a complex number. 
Position of fixed point cannot be a complex number and therefore it doesn’t exist. So the fixed 
point doesn’t exist for A< -0.09. 
 
Now suppose we are varying the parameter A and we are varying this way and here is – 0.09 
before that there was no fixed point. Beyond that what will happen? There will be 2 fixed points 
and there locations are given by x star one and x star two by virtue of these (Refer Slide Time:  
24:47) you would say this is also y1 star is equal to -0.3 plus root over 0.09 +A and y2 star is 
equal to -0.3 minus root over 0.09 +A. 
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So these are the two fixed point which means that beyond that two separate fixed points are born. 
Is that point clear? Is not that one is born, two are borne so these two are born. Now we need to 
find out what they are, what kind of behavior do they have, how we will do that? We have to 
take the Jacobian and we have to study each one individually. So this equation you take the 
Jacobian, this is your f1 x, y and this is your f2 x, y. So what will be the first term? First term 
would be minus twice xn. So the Jacobian is minus twice x star, second one is f1 with respect to y 
which is B we have taken it a 0.4. The third one is f2 which respect to x so 1 and this fellow is 
zero (Refer Slide Time: 26:27). In the next step we will try to investigate this and that separately, 
so first substitute this here. So what do you have? Its characteristic portion would be let’s first 
determinant in terms of this, so it would be minus twice x star minus lambda, here is minus 
lambda so minus lambda minus twice x star minus lambda minus 0.4 equal to zero.  
 
So you have lambda square plus twice x star lambda minus 0.4 is equal to zero. So you have 
lambda is equal to minus x star plus minus root over x star square plus 0.4. Fortunately here we 
have a square term, so we can substitute here and make it simpler. So just substitute this one here 
and see what is the result and what are the eigen value in this two cases. First let us assume A is 
equal to 0.09, if A is equal to 0.09 then this term vanishes. So you have 0.3, just put it here and 
see. What is lambda? It was minus 0.3 here, you are substituting this, so this fellow goes to zero, 
minus 0.3; if you put minus zero point three in front there is a minus, how can you get? 
[Conversation between Student and Professor – Not audible ((00:29:18 min))] Don’t give me the 
wrong feed backs, it cannot be negative. 
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(Refer Slide Time: 00:29:27 min) 
 

 
 

So if you substitute this, at A is equal to minus 0.09, lambda is equal to minus plus 0.3 plus 
minus, so one. So this is the point that I was trying to arrive at, you see at that value one of the 
eigen value is exactly one. So does that answer your question now Manjun? so here the eigen 
value was plus one but at the time, the phenomenon that we observed here was that at this 
parameter value two fixed points begin to exist, these two fixed point before that it was not there 
after that they were there (Refer Slide Time: 30:40). Now the next point is when they begin to 
exist that means when they are existing what are they? We have already categorized different 
types of fixed points, which category do they belong to? 
 
In order to choose a value of A slightly bigger than this and a nice choice would be A is equal to 
zero slightly bigger than this. If you choose A is equal to zero, the advantage is that you can take 
a square root. Do it. It would be -0.3 + 0.3 =0, this is equal to y1 star. So one fellow is situated at 
the origin, the other fellow is situated at… (Refer Slide Time: 32:00). So if you have this at the 
state space one is here another here. What are they? For that you will need to substitute them 
here, so when you substitute the position of the first point which is x1 star is zero. If you 
substitute it here you have, for this one… [Conversation between Student and Professor – Not 
audible ((00:33:02 min))] root of 0.4, that’s possible and this fellow is if you put 0.6 here it will 
be 0.36. So 0.6 plus minus root 0.76, is it?  
 
The point I am driving at is this fellow is surely both are within the unit circle and one is outside 
the unit circle the other is inside the unit circle. So this fellow is an attractive node and this is 
saddle, so the two things that have been borne are a saddle and a node that is why it is called a 
saddle node bifurcation. So the meaning of the term saddle node is clear only when you look at 
the two dimensional system but the same phenomenon since that also happens in case of the one 
D system. It’s also called a saddle node but there is no good explanation of the term saddle when 
you talk about 1 D, its either stable or unstable but in case of a 2 D system there are various types 
of unstable things it could be a outgoing spiral, it could be a saddle that’s why when you talk 
about saddle it becomes more clearer. 
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This fellow is stable, this fellow is unstable (Refer Slide Time: 35:10). Which one is stable? This 
fellow is stable and this fellow is unstable and this is flip saddle. Now as you change the 
parameter further what do you expect to happen? there these two fellow will shift in position 
because the position that depended on A, as you change the A this fellow will shift in position 
but since all the time x and y’s are the same therefore all the time their position would be on the 
45 degree line but nevertheless their position will change and also their stability status will 
change which means this (Refer Slide Time: 36:02). Now can you find out here is there was a 
fixed point which was stable, as you change the parameter you do expect at some point of time it 
will lose stability. When will that lose stability, can you find out? Rather simple really because 
all we need to do suppose you want to find out whether that fixed point undergoes a period 
doubling. Period doubling means minus one so all we need to do is put -1 here and find out, 
when does that happen? Can you trace back and do that. 
 
The next question we are asking is if we conjunct here that it loses stability by having one of the 
eigen values reaching minus one then all that we need to do is to find out under what value of the 
parameter A would that happen? So here you put -1, the negative thing will happen and it is 
logical to say that in that case you will have to take -1 here. There are 2 eigen value plus and 
minus, the one with the plus will be more to the positive side than the one to the minus therefore 
if one goes negative then only this fellow can. So you will have to substitute it like this -1 is 
equal to minus x star minus root over x star square. So what is the solution? First you need to 
find out x and from there you need to find A, so x is equal to x star is equal to 0.3 and that tells 
you A is equal to referring back here (Refer Slide Time: 38:33).  
 
So you know that as you change the parameter further at 0.27, the other phenomenon will happen 
where one eigen value reaches minus one. What do you anticipate? It should be period doubling 
but make sure in order to convince yourself what will you need to do? You need to find out the 
second iterate of map and find out its eigen values. Finding the second iterate and finding the 
eigen values by now it should be accustomed because it came in the mid sem and I found that 
some of you could not eliminate those known fixed points that give me some trouble but this 
should not give you trouble. So all you need to do is to find out the second iterate of map which 
is to be obtained this way xn+2 is equal to A - xn+1 whole square plus 0.4 yn+1. Then yn+2 is equal 
to xn+1. In the next step substitute xn+1 yn+1 here, Xn+2 is equal to A minus this fellow square, A – 
xn square plus 0.4 yn square plus 0.4 xn; yn+1 is equal to 0.4 xn, yn+1 is equal to xn. 
 
Now yn+2 is equal to xn+1 which is A minus xn square plus 0.4. So you have got the second iterate 
of the map. Do you? How to find out the fixed point of this?  you would notice that it is getting a 
bit massive because this will give rise to fourth order term but nevertheless since you know that 
earlier two fixed point are still there, therefore the same step eliminate them, find out the fixed 
point, find out the Jacobian of this and find out whether they do exist or not and then if they do 
exist whether they are stable are not? 
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I have shown you how to do it but do it and convince yourself and let us not do it here because 
though this is tactable it will take some what longish time for me to do it. So I will leave you to 
do it. If it comes in the exam you should able to do it, that is a point. So we found a sequence of 
events that happens for this one and in that process we understood two phenomenon that when 
the one of the eigen values becomes exactly equal to one that is when a saddle node bifurcation 
takes place. A saddle node bifurcation means a saddle and a node are borne.  
 
Now suppose you are at a parameter value at which you have a saddle and a node both existing 
and you change the parameter in the opposite direction. What do you observe? they will come 
closer to each other, as they do the eigen values also comes close to each other and finally at that 
particular bifurcation point of the parameter value what will happen is that they will collide and 
disappear and when they collide both the eigen values will become +1. So you don’t really talk 
about the eigen value crossing +1. 
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(Refer Slide Time: 00:43:15 min)  
 

 
 

So this representation is somewhat erroneous, it doesn’t really cross, it doesn’t happen. What 
happens is that this is the unit circle, it goes hit and disappears, but it does cross to the negative 
one. So this event is the saddle node bifurcation, we have to understand that. 
 
(Refer Slide Time: 00:43:58 min) 
 

 
 

Next as we change the parameter further, there were two fixed points. Let’s illustrate them in the 
state space, you have got the state space like so and here is a zero. We had a fixed point here and 
some where -0.6 there was another fixed point. I will change the further, they move and when 
they period doubling bifurcation happen what was the parameter value and what was the 
positions?  



12 
 

You have already calculated x star is equal to 0.3, so by then from zero it has moved to 0.3 and 
whereas the other one move? Never mind, it has moved and it has gone somewhere, did not stay 
there but its eigen value did not cross the unit circle and therefore nothing fundamental to this 
happens to this one. Fundamental thing happens to this one and it became unstable. 
 
As a result of which two fixed points where now borne rather A period two fixed point was 
borne. Where would they be located? Now I told you that you can do that simply by solving the 
forth order equation and finding the location of the fixed points but logically also you can 
proceed. With logic you can predict where will it be. In order to understand that let us understand 
a few others issues. 
 
(Refer Slide Time: 00:45:53 min) 
 

 
 

When we said that we have got a saddle fix point which means where the eigen values are such 
that you have got an outgoing direction, one incoming direction. Now this was the local 
linearization and the eigen vectors are defined by this concept that if you place initial condition 
on the eigen vector, it will forever remain on that eigen vector but that resulted found the local 
linearization. now if you go out of the local linearize zone that means where the local 
linearization is no longer valid then obviously these lines will no longer remains straight lines 
but still you can identifies the lines which have that property that if you start from the point on 
that line, it will forever remain on that line. We have done by that argument in the continuous 
time systems also. Same thing will be applicable here. 
 
So in general expect that these fellows should bend and turn and twist and go anywhere they like. 
There is no reason to believe that they will forever remain in straight lines. While dealing with 
the continuous times systems, I gave some names to them. These were the stable manifold, 
unstable manifold. So this one would be called as the stable manifold and this one would be 
called the unstable manifold. In other words what is the definition of a stable manifold that if you 
take a point on a stable manifold and in further iterates it approaches the fixed point then you call 
it a stable manifold. 
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What is an unstable manifold? If in the reverse iterate it approaches the fixed point because if 
you are starting from here and if it is going away, how do you know that it started there? In order 
to really define it, you have to talk in terms of the reverse. How to actually draw them? It’s not 
difficult to see that in the close neighborhood of the fixed point, the eigenvectors are tangent to 
the manifolds. So the way to draw the unstable manifold for example would be first to identify 
the eigenvector which you can do analytically. Suppose you have identified these are the eigen 
vector then take a point along that, reasonably close to that direction so we know that still 
linearization is valid and then keep on taking iterates. All the iterates must fall on the… but that 
will not allow it to draw it because we have noticed that I have put one point here, another point 
here. How do you know it bend this way? 
 
So in order to do that all we need to do is take a last number of points between the first two 
points and see where they also go and accordingly you can trace the unstable manifold. You will 
be able to trace the unstable manifold to the right or to the left and you will have to do 2 different 
things in order to locate them, with one routines you will be able to locate one to the right 
another to the left but the same cannot be done for this stable manifold. It can be done only if 
because if you take a point along the stable manifold further iterates will go into that and 
therefore how do you know where it goes? This way, in order to do that you will need the inverse 
of the map.  
 
Therefore immediate conclusion is that the stable manifold easily be drawn if the map is 
invertible else it cannot easily be drawn. there are routines, it will have little routines for that but 
nevertheless they are some are complicated tuffs I am not going into that but you will be able to 
write a program to draw the stable manifold and unstable manifold, if the map is invertible. What 
do you mean by invertible? What you mean is that xn yn this gives xn+1 yn+1 uniquely. Now if you 
know xn+1 yn+1 do you know xn yn uniquely, if you do then it’s an invertible map, if you don’t 
then it’s not. Just refer to the situation in one dimension, you have the logistic map given as this. 
Is it invertible? No it’s not, because for every value of xn there is a unique value xn+1 but for 
every value xn+1 there are two values of xn. So it is not invertible. 
 
Similarly, is the Henon map invertible? Just try to work it out and tell me. In this case your 
problem would be, can you find out xn yn in terms of xn+1 yn+1, can you write it down as an 
expression? If you can fine, you are through but if you lead to a plus minus term you are not true 
because it will lead to 2 possibilities. Now this stable and unstable manifolds play very important 
roles in determining the dynamics. Therefore this concept should be very clear otherwise you 
will not able to go-ahead. This will be very clear because many things in dynamics of such 
discreet time dynamical system depend on the structure of the stable and unstable manifolds. 
 
 
 
 
 
 
 
 
 



14 
 

(Refer Slide Time: 00:51:17 min) 
 

 
 

In case you have got a stable fixed point with real eigen values both would be stable manifolds. 
If we have a rippler which means both the eigen values, outside the unit circle but real in that 
case you have both the unstable manifolds. You will have stable and unstable manifolds in case 
you have saddle and that is why again you will find that much complicated and interesting 
dynamics happen in systems where there is a saddle fixed point. That is at the route of chaos I 
will come to that later. So in the next class we will further elaborates on this ideas of the stable 
and unstable manifolds. 


