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Lecture No. # 11 
Intermittency Transcritical and Pitchfork Bifurcations 

 
After the last class some people came to me and asked some questions and I want that to be 
shared on camera. So ask the questions now.  
 
(Refer Slide Time: 00:01:02 min) 
 

 
 

For example if you look at the computer screen. You might notice that this window is larger, this 
window is narrower, this window is narrower and as I showed you yesterday if you zoom any 
part of it you will still see other windows. Now out of this some are wider, some are narrower. In 
general the thumb rule is that lower the starting periodicity of a window, the wider will be the 
width of the window. That means this particular wide window is starting at a periodicity three 
and then it is going through a period doubling cascade through the periodicities of 6, 12, 24 and 
so on and so forth. While here it is another window, if you zoom you will be able to see. 
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(Refer Slide Time: 00:01:56 min) 
 

 
 

This window is period 5. It is higher periodicity, starting periodicity is higher and so it has a 
smaller width. Now why are these bigger or smaller? If I want to explain, it will require some bit 
of calculation which are not necessary at the moment. It will only complicate matters but it is 
because of that. Remember that inside the chaotic orbits when it goes to chaos they are all those 
periodicities ((Not understandable Refer Slide Time: 00:02:31 min)). So if I go back to the 
original one, yes it’s here. So when it goes to chaotic orbit here, can you see the cursor (Refer 
Slide Time: 2:42), if it is somewhere here then the period one orbit has given rise to the period 
two orbit but this fellow is still there. If you want to see the existence of the unstable orbits then 
you can see that. Here the red one is the unstable orbit that continues to exist. At this point the 
stable period two orbit became unstable and gave rise to a stable period four orbit but the 
unstable period two orbit still kept on existing. So they go on continuing all through.  
 
Naturally when we talk about this part here, there are all those unstable periodic orbits inside the 
chaotic attractor and then at this point the period three fellow comes into existence and that goes 
into chaos through the 6, 12 and so on so forth. So all those unstable periodic orbits will be 
existing after this, so on and so forth. Here essentially his question is concerned whether why is 
this wider? The answer is grossly that this is the largest window because this is starting at a 
periodicity three which is the minimum available within the chaotic region. 
 
In fact there exists a theorem that says if we ever observe a period three orbit that means it is 
inside a chaotic orbit, it is inside a chaotic range of parameters. The famous paper by Li and 
Yorke proved this was titled period three implies chaos. So period three is always inside the 
chaotic range of parameter values but before that period one and period two are outside. Any 
other question? [Conversation between Student and Professor – Not audible ((00:04:45 min))]. 
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(Refer Slide Time: 00:04:51 min) 
 

 
 

We have taken a minus xn square. [Conversation between Student and Professor – Not audible 
((00:05:03 min))]. We had obtained first with this a behavior something like this and it keep on 
changing like this. So we had illustrated the occurrence of what is known as the saddle node 
bifurcation or the tangent bifurcation with this, which gives rise to the starting or the birth of two 
fixed points at these two points. 
 
Now after this as you change the parameter a farther that it goes up and up and up, you can easily 
see all that we learnt for the logistic map should also be here because here is the fixed point 
whose slope at some point of time will become minus one. This will give rise to period doubling 
and then if you have convinced yourself that the period doublings nature is the same irrespective 
of the type of the map so long as it is a smooth, one humped map. It will give rise to period 2 to 
period 4 to period 8 to period 16 and so on and so forth. This will also lead to the same 
behaviors. Why did I take this one not the other one? Because this one illustrates the saddle node 
bifurcation better, no other reason just to illustrate. 
 
There was one question regarding whether there can be a trifurcation. Bifurcation is an English 
word that existed prior to discovery of these things. So that has a particular meaning, particular 
connotation. When it came to scientific usage that also thought with it a specific connotation 
which is that any change in the asymptotically stable behavior of the system is called a 
bifurcation even if it is something like this. So if it is something like this you would not call it 
trifurcation, you would call it a bifurcation from a period 1 to period 3 orbit but can it happen. It 
normally doesn’t happen.  
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If the map has certain property for example, if it is a smooth map; smooth means everywhere 
differentiable, if the map is everywhere differentiable such a thing cannot happen but if the map 
is non-smooth, if is not everywhere differentiable we can show that it is possible to have this 
kind of behavior. I will illustrate when and how. [Conversation between Student and Professor – 
Not audible ((00:07:48 min))] Purely imaginary eigenvalues cannot happen in one dimensional 
map. Here we are talking about maps. Are you talking about differential equations? His question 
is when we were considering differential equations and we were considering linearization of the 
differential equations at an equilibrium point. 
 
(Refer Slide Time: 00:07:54 min) 
 

 
 

Suppose we have obtained the eigenvalues and found the eigenvalues to be purely imaginary. 
Then what do we say the behavior would be? It would be something like this. His question is 
how do you know there will be circles, there could be ellipses? What is this axis, what is that 
axis, are they in the same scale? No they are not, because one is the position and the other is the 
velocity or momentum. The units are entirely different so there is no reason to believe that really 
there will be circles. So all you can say is that the behavior will be topologically equivalent to 
circles by changing the coordinates, you can make them circles.  
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(Refer Slide Time: 00:08:22 min) 
 

 
 

There was another question if I remember which is more or less illustrated by what you see on 
the screen now that when it goes into chaos; essentially it has a huge number of periodic 
windows inside. We can visually see the period window starting with the period 3, period 5 and 
here is period 6 but if you look closer, if you zoom any part of this bifurcation diagram, zoom 
that means you expand it with a smaller range of the parameter. For example I can show you a 
bit of it. For example let me show you the part that looks like chaos.  
 
(Refer Slide Time: 00:10:25min) 
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There are more windows. The part that we could not resolve any periodic window, there are steel 
periodic windows. Here you can see it is period eight windows, something that starts with period 
eight and then goes through the double periodicities and so on. So inside there are infinite 
number of such periodic orbits. In fact there are theorems that show and take any range of the 
parameter, you will find that in the neighborhood of that there would be some periodic window, 
may be very high periodic windows but nevertheless there will be. So if you are inside, if you are 
sitting in the parameter space at a parameter value for which the behavior is chaotic, look this 
way or that, you will find periodic windows. 
 
(Refer Slide Time: 00:11:35 min) 
 

 
 

When we ended the lecture yesterday, we were talking about this window. So let us expand it 
and look at it carefully, here is the period three window. At this stage I do not want to see the 
unstable periodic orbits (Refer Slide Time: 12:21). Now let us look at this particular transition 
carefully. What is happening here? You have understood one thing that adds this specific 
parameter value, what happens? There is a saddle node bifurcation occurring in the third iterate 
of the map. 
 
 
 
 
 
 
 
 
 
 
 
 



7 

 

(Refer Slide Time: 00:12:49 min) 

  

 
 

That means if you take xn+3 as a function of xn and plot the graph of the map then we would find 
that graph is undergoing a tangent bifurcation, resulting in the creation of these three stable 
points. What is just to the left of that? Say we are here, take a parameter value somewhere there 
and let’s see what happens. Something like this which is not periodic, which is reasonably 
chaotic but you would notice that it is coming again and again to a behavior say look at this to a 
behavior somewhat close to a periodic behavior. 
 
(Refer Slide Time: 00:13:16 min) 
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In fact if you take values closer then you see the amount of periodic behavior is increasing, as 
you come close to close to this point you will find the range of periodic behavior is increasing 
but it will not stay; not that it will stay in this behavior. As if there is a somewhat intermitting 
bus of periodic windows periodic behavior in the middle of chaotic behavior. The question is 
how does that happen? In fact in many experimental situations you will find that the behavior is 
more or less chaotic, you can see that it is chaotic but suddenly when you capture the wave form 
on the CRO screen you find that it is periodic behavior. What happened? It is just for that small 
span of time for which you did the grabbing of the wave form, at that point of time it was a 
periodic bust. 
 
(Refer Slide Time: 00:14:38 min) 
 

 
 

How does that periodic bust happen? In fact this phenomenon is called intermittency. The 
intermittency is intermittent bust of periodic behavior in the middle of overall chaotic behavior. 
So we are off to try to understand how does that happen? We have already seen that as the 
parameter approaches the value at which the period three orbit comes into existence. 
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(Refer Slide Time: 00:14:50 min) 
 

 
 

Look at the behavior say I will let it run. See it’s the running chaotically but notice what is 
happening? Here there is an orbit that is visited more often and if it is visited, it more or less 
stays there for some time. That is why you see a darker line here. So in order to understand why 
this happens, let us draw the period three window, period three composition. 
 
(Refer Slide Time: 00:15:33 min) 
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 (Refer Slide Time: 00:16:03 min) 
 

 
 

Notice what is happening, these chunks of the graph are coming very close to the 45 degree line.  
Here also it is coming very close to the 45 degree line and as the period 3 comes in to existence 
what happens it crosses the 45 degree.  
 
(Refer Slide Time: 00:16:32 min) 
 

 
 

As it crosses you have this kind of a behavior and therefore that results in the creation of this as 
the additional fixed point but let us consider the situation when it is not gone into that state. 
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(Refer Slide Time: 00:16:43 min) 
 

 
 

When the behavior is if you expand that part, it will be something like this very close but 
nevertheless not quite touching and suppose we start from an initial condition somewhere here. 
So we go to the graph of the map and we go to the 45 degree line and then if you keep on 
iterating it, I will do it in another color so that you can see it clearly. It will go like this (Refer 
Slide Time: 17:28) which means that this narrow passage between the 45 degree line and the 
graph of the map, it will take enormous time to cross the narrow passage, it’s like a bottleneck. 
For a long time it will get stuck there, trying to cross it will move in that direction but it will take 
a long time to cross and after sometime it will cross like this and then it will go away. 
 
So long as it is here if you look at it, it’s behavior will be like a periodic bust and then it will 
again run around and finally if it is injected somewhere here, again it will go in to that periodic 
window. It is not really periodic windows though, it is just an intermittent periodic behavior in 
the middle of chaotic behavior which is called intermittency behavior. It precedes a saddle node 
bifurcation. This kind of a behavior precedes the occurrence of a periodic window. 
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(Refer Slide Time: 00:18:34 min) 
 

 
 

Where it is exactly happening? It is happening here inside the chaotic behavior, it is not here 
because here it is formally periodic period three (Refer Slide Time: 18:44). If you go this way 
then very close to this you will find that. Another thing noticeable is that notice this bifurcation 
diagram, the density of points are not the same everywhere. The density is larger here, larger 
here in this part and the larger here in this part (Refer Slide Time: 19: 10) which means that these 
parts were visited more often than the other parts. Why did that visit? Because of this 
phenomenon, if it is there then it gets locked for some time before it can go away. So that is the 
concept of intermittency which precedes a periodic window.  
 
So as you can see in the whole bifurcation diagram there had been a large number of periodic 
windows and therefore that many number of situations where you are likely to observe 
intermittency but the intermittency will be of the same periodicity as the periodic window that is 
coming. In this part here, you are not yet in the periodic window, you are well inside the chaotic 
behavior but looking at the intermittent busts of periodic behavior you can say that another 
periodic windows is approaching. So that is the concept of intermittency. 
 
Now let us understand somewhat rarer bifurcation that are observed in one dimensional maps. 
We have understood two things, they are very common and so you will have to have a very good 
idea about those two; one the saddle node bifurcation or tangent bifurcation and two the period 
doubling bifurcation but there are also some more which we will discuss now.  
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(Refer Slide Time: 00:20:53 min) 
 

 
 

Let us start with the old logistic equation. We had decided that there are two fixed points of this, 
let us call them x0 star and x1 star. The x0 star was at zero and x1 star was at 1 - 1 by mu. The 
slope of this was dxn+1 / dxn calculated at x0 star was mu and dxn+1 / dxn calculated at x1 star is 2 - 
mu, this we have already done. Notice that when you are changing the parameter and it is say 
passing through one, the value of one. Let’s see what happens. Notice here so long as mu is less 
than one, this fellow is stable and this fellow is unstable and the moment it goes through one this 
fellow becomes unstable and this fellow becomes stable but both of them were existing all 
through.  
 
There is no reason to say that this fellow doesn’t exist. The only way you would say something 
does not exists is, if you have a quadratic kind equation with a square root and inside the square 
root you have a negative number, so you said that it’s yielding a complex fellow which cannot 
happen because I am dealing with a real numbers. So a real fixed point would mean that its 
position is given by a real number. If I get a complex number or imaginary number I know that it 
doesn’t exists but here it’s not so, therefore the fellows exist but their stability status change. If I 
now draw the bifurcation diagram, will it not look something like this. I will plot the zero line 
somewhere here and let’s see what happens and this is say a value of one, so this is x equal to 
zero (Refer Slide Time: 23:42). 
 
So the fixed point that is x0 star was existing and was stable up to this point. After that it 
continues to exist at the same point but becomes unstable, so let’s draw that with red color. What 
about the other one? The other one is given by this position, so at one it will have the value zero. 
So it will start from here and it will move like this and now it is stable. What is its behavior when 
the mu was less, it is unstable but it continues in the same. It is there in the other side also.  
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So you would notice that at this point what has happened, there were two fixed points which 
came close to each other, collided but they didn’t vanish, as it happens with the saddle node 
bifurcation but instead they extends stabilities, while this fellow becomes stable this fellow 
become unstable, earlier this fellow was stable that was unstable. So it is like, this fellow was 
unstable now it is becomes stable this fellow was stable, now it is become unstable they extend 
stability. Such a bifurcation is called a transcritical bifurcation and they are somewhat rare. You 
won’t easily find that in real physical systems but they do happen that’s why I am teaching 
otherwise there has be no reason for me to teach but the frequency of occurrence of this kind of 
situation is relatively small. For example the transcritical bifurcation for this logistic map 
happened only once, while period doubling happens infinite times. 
 
(Refer Slide Time: 00:26:30 min) 
 

 
 

[Conversation between Student and Professor – Not audible ((00:26:32 min))]. No, frequency 
means it happened for this map, only for this parameter value and at no other parameter value. It 
happened only once while period doubling happens infinite number of times. Saddle node 
bifurcation happens infinite number of times but the transcritical happens only once, so you will 
find that somewhat rarely in real physical systems. There is another type let us try to understand, 
that will not be clear from the same map. 
 
 
 
 
 
 
 
 
 
 



15 

 

(Refer Slide Time: 00:27:11 min) 
 

 
 

I will introduce a different map, here it is xn+1 is equal to 1+ mu xn – xn cube. Now I will allow 
you to do this problem. Can you investigate the stability of this? First where are the fixed points? 
In order to find fixed points, you have to say that x star is equal to 1 + mu x star minus x star 
cube, the left hand side is equal to the right hand side. Obviously there is one fixed point at zero, 
so one fixed point at let’s say x0 star is at zero and the other fixed point; there are two other fixed 
points so you have x1 star and x2 star. Let’s call them like this and this is plus root mu and so 
plus minus root mu. So there are three fixed points. 
 
What is the next step? We study their stability and in order to study their stability we 
differentiate this. We essentially study dxn+1 by dxn as evaluated at these three points so this 
fellow is 1 + mu - thrice xn square. So what will be the condition of stability of this fixed point?   
You substitute zero here, 1 + mu is less than one so mu is… [Conversation between Student and 
Professor – Not audible ((00:29:45 min))] 1+ mu should be less than one, mu should be negative 
but greater than minus 2.  
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(Refer Slide Time: 00:30:09) 
 

 
 

[Conversation between Student and Professor – Not audible ((00:30:11 min))] Yes we allow that. 
So we conclude that from mu is equal to minus 2 to mu is equal to zero, x0 star is stable. What 
happens at mu is equal to zero? That means it is going to the positive side, slope becomes plus 
one, notice this plus one thing so at mu is equal to zero this dxn+1 by dxn at x0 star is plus one and 
when that happened this fellow become unstable.  
 
Let us look at the other two fellows. What happens to the other two fellows? Since it is root over 
mu, so long as mu is negative these two fellows are not existing, they are not there because only 
after that they become real. The positions would become real only when mu is positive, so at mu 
is equal to zero they start to exists. What is the stability status, calculate from here and tell me. 
Root over mu is a substitute here. He says that if mu lies between zero and one they are stable. 
So we are considering even that happens at zero plus they are stable and both are stable because 
both will have the same stability status as given by this, plus root mu and minus root mu when 
substituted here will make no difference because xn square. They will have the same stability 
status. 
 
What does it mean? It means that if you plot the bifurcation diagram now, you would notice 
something like this that this fellow I will plot the zero here; minus 2 to 0 this is the zero position 
say, this fixed point was stable. So at this point say i reach mu, zero value and here is the x axis 
(Refer Slide Time: 33:14). At this point what happens? This particular fellow becomes unstable 
and continues at the position zero. What happens to the other one? Notice that they start to exist 
and they are having the value root mu, so it would be one like this, the other like that, looks like 
a period doubling bifurcation but it is not why because at that point the slope here is not minus 
one.  
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In order for a period doubling to occur, it has to have a slope of minus one. Now it is plus one 
and what has happened? It is not that a period two orbit has started to exist, it is that two 
individual separate fixed points have started to exist both period one fixed points. This one is a 
period one fixed point, this one is a separate period one fixed point, they have both started to 
exist and both are now stable. Before this point they both were not existing at all. So notice that 
if these both are stable fixed points, you might ask where will the actual orbit go? That depends 
on the initial condition. 
 
If the initial condition is here, it will be attracted like this. If the initial condition is here, it will 
be attracted like that however if the initial condition is here it will be attracted like that. So you 
will have the orbits going like this, they are both attracting fixed points, they are both stable but 
the behavior would be something like this. [Conversation between Student and Professor – Not 
audible ((00:35:19 min))] No, it’s not a period two because if you take the initial condition here, 
the next iterate will fall here it will not come here. In that sense it is not period two. If it had been 
period two then if you take an initial condition here either next iterate it will come here and then 
the next iterate it will come here and go on flipping like this. A period two orbit is always a 
flipping orbit. It flips from one side of the period one behavior to the other, here it is not and that 
is why it has to be given a separate name and that is pitchfork bifurcation, it looks like a fork.  
 
This bifurcation is also somewhat rare as I showed that I had to introduce this map in order to 
illustrate this because it was not possible to have the bifurcation in the normal logistic map. So 
this map is also somewhat rare. This phenomenon is somewhat rare and it’s not difficult to see 
that it is necessary to have the square term in the derivative which means a cubic term in the 
original map. So only if that has this kind of a structure, you observe this bifurcation else not. So 
this is the concept of the pitchfork bifurcation. So we have come across so far a few different 
types of bifurcation. One period doubling, two saddle node, three pitchfork, four transcritical.  
 
Where does it land us, is it the whole story by no means but this is more or less the whole story 
as far as the first order maps are concerned that means we are considering only first order maps 
and there this is more or less the complete story as far as the local bifurcations are concerned. 
What do you mean by the local bifurcations? Here the prime thing in our hand was that either we 
were looking at the fixed point and we were looking at the local stability as given by the 
derivative, we were looking at only that and that is why these are called local bifurcations. All 
these are called local bifurcations. There are also some events that happen not depending on the 
local behavior but depending on some global behavior, I will come to that later. 
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(Refer Slide Time: 00:38:23 min) 
 

 
 

For example the event did you notice in this bifurcation diagram that here there is something 
happening. There was a period three orbit that went in to period 6 and period 12 and so on and so 
forth, it went on. Here also there is another window but here there is something happening. 
Suddenly there were a chaotic orbit with three chunks here and here (Refer Slide Time: 38:51) 
and suddenly they’re all joined. The question is how does that happen? So these are somewhat 
global phenomenon, this cannot be explained by looking at the local eigenvalues or local slopes, 
the derivatives. So we’ll come to that slowly when time comes. 
 
(Refer Slide Time: 00:39:15 min) 
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Now notice a few things let us go back to the original one. If you were working in the chaotic 
zone that means supposing you have chosen a parameter somewhere here, the behavior is 
chaotic. From theory you would know that there must be an infinite number of unstable periodic 
orbits there. Why because if you look at it this way when this fellow become unstable, the 
unstable periodic orbit still existed, it continuing. What do you mean by the unstable periodic 
orbit? You have come across once the situation of the unstable equilibrium point in the 
pendulum, we did the pendulum equation and there was an unstable point. What was the unstable 
point, like so (Refer Slide Time: 40:16). So slight perturbation it will go down but theoretically 
mathematically if it is there, it will remain there in that sense. In the same sense these fixed 
points are unstable in the sense mathematically if you place an initial condition there it will 
always remain there but slight perturbation it will go ahead. In that sense if they are unstable 
which means that inside the chaotic orbit there are really unstable number of such states which if 
you mathematically place an initial condition on that, it will remain there but they can not remain 
there because they drift away, they go away from there. 
 
(Refer Slide Time: 00:41:05 min) 
 

 
 

How many are there? I will draw some less, I have not shown the chaotic orbit. In the bifurcation 
diagram I have only plotted now the stable and unstable periodic orbits. The blue ones are stable 
and they have been plotted up to the period of 4 and then the unstable periodic orbits. At this 
point the period four orbits starts to exists and that continue, at this point the period eight orbit 
starts exists and that continue so on and so forth, this is period 3 orbit that that continues, so as it 
goes on this keep on multiplying.  
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(Refer Slide Time: 00:42:16 min)  
 

 
 

If I calculate up to a period of 6, you see more. So as it goes into the chaotic orbit there are all 
those red lines means there are all those unstable periodic orbits. Let us calculate it for some 
more. 
 
(Refer Slide Time: 00:42:35 min)  
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The period 10 orbit up to. Already it is becoming so clattered that it’s not difficult to see that as it 
goes more and more into chaotic zone, there are more and more unstable periodic orbits available 
in the system. Each one you might visualize as a pendulum standing on your upside down. The 
interesting thing is that if the pendulum standing upside down it will normally fall but you might 
also hold the finger under that and with some small perturbation, you might keep it vertical. You 
all have dine that with sticks, all these are such things which can be stabilized in that way. So a 
chaotic orbit then allows far more freedom because a lots of unstable but periodic behaviors are 
now available which were not available in the system is stable because the system is chaotic a lot 
of unstable periodic behaviors are now available which can be stabilized the way you balance a 
stick. We’ll come to this issue latter, how to stabilize them and what kind of work we can do 
with that but such flexibility we have in dealing with chaotic systems that you should understand. 
[Conversation between Student and Professor – Not audible ((00:40:24 min))] I said that there is 
a lot of flexibility in the sense that suppose a system is a linear system.  
 
A linear system means its behavior are exactly given by the eigenvalues and that’s it, you can do 
nothing about it. If you want to do something change the eigenvalues that is how the whole of 
control theory works. You put some feedback and that feedback essentially changes the whole 
systems, eigenvalues and that is how it works. If it is a non linear system then you have more 
flexibility in the sense that if something becomes unstable, it does not really immediately mean 
that the system will collapse because some other orbit may become stable. For example here you 
have seen that when the period one orbit becomes unstable, the period two orbit becomes stable 
so it doesn’t collapse.  
 
Now suppose in addition to I am saying that it is not only nonlinear but also I’ve chosen a 
parameter range in which the system is really chaotic. There are some applications where you 
might want chaos, for example spreading the spectrum and stuff like that, I will come to that 
latter but even if suppose you want to behave in a regular periodic way then the question comes 
which periodic? If it is linear you do not have the option because only one thing available to you. 
If it is chaotic you have infinity options, you can stabilize any of them. So you have a lot more 
flexibility in your hand. In that sense I said that dealing with chaotic system is a lot more 
flexible. That is why you might possibly know that wherever you want a lot of flexibility, you 
want to design the system in a sort of unstable way. 
 
For example the big air liners, they have a control system, they will have an auto pilot where the 
pilot goes up and then he leaves it to the autopilot, the autopilot does it. It’s a nice control system 
that has every thing very well set but you can not do that for a fighter pilots. For the fighter 
aircrafts you cannot do that. It has to have very large manure ability and very fast response and 
for that all fighter planes are therefore made open loop unstable and the loop is closed by the 
pilot, holding the joystick. Unless it is unstable you cannot really have that flexibility so that tells 
you some thing that in order to have flexibility you also want some kind of a instability and this 
is this instability. At every point it is unstable but with slight perturbation you can stabilize. So 
far we have mainly been talking in terms of one dimensional maps where you have the 
expression xn+1 is equal to some function of xn. 
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(Refer Slide Time: 00:47:46 min)  
 

 
 

In general you wouldn’t expect this kind of things. This is too simple but still we went into it for 
two reasons. First it gives a nice visualizable way of understanding dynamics because you can 
draw the graph of the map. You can draw those cobweb diagrams thereby understand the 
behavior of orbits but this really is too much simplification you might say, not quite because in 
many systems it has been found that even though the actual system appears to be far higher 
dimensional. For example there is no reason to believe that the dripping faucet experiment will 
lead to a one dimensional system. It’s not one dimensional obviously, if you really want to model 
it, it will lead to a very high dimensional system. 
 
Similarly there are many systems in nature as well as in engineering which if you write down the 
equations accurately they are very high dimensional very complicated things but when you 
actually observe their behavior and plot xn versus xn+1, if you get a nice looking curve what will 
be the conclusion? Even if the actual system may be very high dimensional but the dynamics can 
be model by a low dimensional model. For example this one was Poincare section for the Rossler 
equation. I want to plot large number of points so here it is actually three dimensional system. 
Place a Poincare section you are expecting a two d map to come up yet when you actually plot it 
you find that it is on a lies curve which tells you that even if the actual system is two d in discrete 
time, it can effectively model by a one dimensional map. 
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(Refer Slide Time: 00:50:09 min)  
 

 
 

So in that sense the one dimensional map study is fruitful. You have also seen that in case of the 
dripping faucet experiment you yielded a behavior something like this, I have not brought that 
book today but it was more or less like that xn versus xn+1. Only it had a little bit of like this, 
remember yesterday I showed. this little bit I will tell you that in only that sense it is not exactly 
one dimensional but if you can ignore that part if you can approximate it by this then it is more 
or less one dimensional behavior. Again in that sense the study of one dimensional maps are 
fruitful but in the main, the study of one dimensional maps helps us in understanding this 
bifurcations in very concrete terms, mathematically most of these can be worked out by hand but 
then we have to take the next step. We have to go to the second order systems. 
 
So we now need to study equations of this form xn+1 is equal to function one xn, yn and yn+1 is 
equal to another function of xn, yn. In this case how will we proceed? We will proceed by the 
same way though now we are no longer able to plot the graph of the map because we are 
constraint in our plotting to the 2 d thing and here the space itself is 2 d and therefore I cannot 
plot xn+1 or yn+1, so we cannot plot. We are no longer have the option of plotting the 45 degree 
line and finding the intersection line, we cannot do that. 
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(Refer Slide Time: 00:51:48 min) 
 

 
 

Still can we find the fixed point? Of course we can. How will you find? simply put xn star in the 
left hand side and yn star in the right hand side and then equate them, you will get a pair of 
algebraic equations, solve them you will get the locations of the equilibrium or the fixed points. 
How will you study the stability of the fixed points? We need then some equivalent of the 
derivative in 2 d. Imagine you have the xn and yn and suppose you have plotted the xn+1 here. It’s 
not difficult to imagine that you can plot this way so you have got this horizontal plane xn, yn and 
you have some surface kind of thing and you are trying to find out the local linear behavior say 
at this point I want to locally linearize.  
 
(Refer Slide Time: 00:54:51 min) 
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In case of a 1 d graph xn versus xn+1, a graph like this and this point and you take the derivative. 
The derivative was the local linearization. Similarly you want to take the local linearization here. 
This local linearization here where you are taking both xn+1 as well as yn+1 is given by the 
Jacobian matrix. Probably you have learnt that in the mathematics classes that is given by the 
Jacobian matrix and the Jacobian matrix is expressed as (Refer Slide Time: 54:55).  So here also 
we will take the same root, we will look at the fixed point and look at the local linear 
neighborhood but the behavior in the neighborhood of that fixed point will be given by the 
Jacobian matrix and we will explain on this idea in the next class.  


