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In the last class we have seen that we have discussed mechanism by which a period one fixed 
point in a map gives rise to a period two fixed point. The mechanism was that we had talked 
about the intersection of the 45 degree line with the graph of the map and at some point this 
slope becomes less than minus one and at that point it happened. 
  
(Refer Slide Time: 00:01:12 min) 
 

 
 

What was the result? The result was that this fellow became unstable still it existed but became 
unstable and at the same time an orbit something like this became stable. Do you understand 
what I am doing? I am saying that this point will map to this point and then for the next iterate I 
have to come down to the 45 degree line and come down to the graph of the map and so it forms 
a rectangle meaning that this point will map to this point and this point. What actually is 
happening is that this is the zero to one real line and this point is mapping to this point and this 
point is mapping to this point. That’s what is happening on this real line. 
 
What is it? This is something that is obtained by disceretizing a continuous time dynamical 
system that means we have placed a Poincare section and then we have seen the written maps 
and then we did all that and then we concluded that this is resulting in the destabilization, such a 
mechanism is resulting in the destabilization of a periodic orbit, resulting in a period two orbit. 
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What is happening in the continuous time domain? Continuous time domain earlier it was an 
orbit something like this which is now turning into an orbit something like this because in this 
one, if you place a poincare section you will see a point and in this one if you place a poincare 
section you will couple of points. This one is changing to this one. Now there is a concept in 
mathematics called topological equivalence. Meaning that if you imagine this as a sort of a 
rubber band and in how many ways can you sort of distort it without making a fundamental 
change in it. 
 
For an example if you want to distort it, you can push it here so that this orbit becomes 
something like this, it is possible but in order for this to be turned to this one it is not just pushing 
or pulling, something additional had to be done; meaning you have to take it and you have to 
twist it and then only you get something like this which means that it cannot be transformed into 
this one without by just pulling some part and pushing some part of this orbit. So these two are 
topological equivalent but these two are not. There has been a break of the topological 
equivalence as it came from this one to this one or there are most mathematically rigorous 
definitions of that but I am not going into that, for our purpose it is sufficient to understand that 
we are talking in terms of rubber sheet geometry and the way rubber bands can be turned and 
twisted that suffices in convincing ourselves that here we are talking about the breakdown of a 
topological equivalence. 
 
The change over from a period one to two period orbit involves a breakdown of topological 
equivalence. Now I come to a definition, whenever as you change a parameter there is a 
breakdown of the topological equivalence of the asymptotically stable orbit then the behaviour is 
called a bifurcation. So what did I say as the definition of bifurcation? In bifurcation we are not 
talking about the transient behavior. We are talking about the steady state behaviour only. This is 
a steady state behaviour so is this.  
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So when the steady state behaviour changes from one type to another type; type means there is a 
qualitative change in the behaviour when it changes from here to here, as you change the 
parameter that can always happen or you may say that there was an orbit something like this 
which was a result of an outgoing spiral inside and the incoming spiral outside and it changes to 
say a very longest stuff but the behaviour is more or less the same. This is topological equivalent 
to that one. So when that kind of a change happens we will call it a quantitative change, small 
change preserving topological equivalence but while a change like this happens where the 
topological equivalence is broken we will say it is a qualitative transformation, qualitative 
change and when that happens we have a bifurcation. 
 
(Refer Slide Time: 00:06:56 min) 
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So in essence the last time when we’re talking about the period doubling mechanism we are 
talking about a specific type bifurcation and that bifurcation where period one orbit was giving 
rise to a period two orbit and period two orbit was giving rise to a period four orbit and so on and 
so forth. That is called a period doubling bifurcation. There is another name and that goes with it. 
In order to understand the name we will have to take a relook at this behavior. 
 
(Refer Slide Time: 00:07:57 min) 
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See here was a fixed point and as the slope became larger than or smaller than minus one 
because it is a negative slope then what happened, here the orbit changes to appear something 
like this with the preexisting fixed point somewhere here which means that the orbit actually 
flips between the two sides of the fixed point. Once it is here, another time it is so on and so 
forth. 
 
(Refer Slide Time: 00:08:35 min) 
 

 
 

That is why there is another name for the same one, this is same as flip bifurcation. If you see in 
books or other literature this names just understand that they are talking about the same period 
doubling bifurcation. So let us revisit the period doubling bifurcation fast because we had spend 
enough time on that the last day. 
(Refer Slide Time: 00:09:11 min) 
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What was the parameter value at which it happened? So we have will have to come to a place 
that is very close to say three something like here. If it is say 3.2, so if you start from a point 
somewhere here that this point is the actual preexisting period one fixed point which has now 
become unstable and so orbits spiral outwards and what kind of diagram is it? This kind of a 
diagram, what is it called? Cob web diagram because its looks like a cob web. This kind of 
diagrams where we go from a particular value of the initial condition to the graph of the map, to 
the 45 degree line, to the graph of the map, to the 45 degree line so on and so forth. It takes the 
shape of a cob web and that is why such a diagram is also called cob web diagram and it should 
really cultivate the practice of drawing this cob web diagrams because that allows you to 
understand the behaviour of orbits qualitatively. We have really doing the algebra just imagine 
the algebra of doing this would be rather tedious and time consuming. If you simply do this 
graphically you can understand the behaviour. 
 
Notice one thing as this fellow became unstable something here and there that became stable. If 
you change the parameter to a smaller value you can see that. So it is here, so this becomes 
stable. Now if I ask you what would be the stability status of the period two orbit, what would 
you do? You will plot xn+2 versus xn, find out its fixed points. Drop the ones that are also the 
fixed point of the period one orbit. Find out the ones that are newly appeared and talk about their 
stability in terms of the slope and these are these two fixed points. What is a slope? The slope is 
nothing but the slope here and the slope here multiplied that would be the slope of the period two 
orbit. That is what we have already shown in the last class. So here the slope is negative, there 
the slope is negative and therefore the slope of the period two orbit would be positive. So as this 
fellow becomes unstable, a period two orbit occurs. Period two orbit is stable because at this 
point this slope and at this point, this slope is much smaller. If you multiply them you get a 
number that is smaller than one so it is stable fixed point but the slope is positive. 
 
(Refer Slide Time: 00:12:26 min) 
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It is period two orbit still but nevertheless it has come to the other side. Therefore what does it 
mean? Here the slope has become negative. Here this is positive so product would be negative 
slope, so can you visualize that if you plot the slope then when the period two orbit fellow 
started, its slope was one. As you keep changing the parameter, it was reducing and inevitably at 
some point of time it has become negative and as it goes on inevitably at some point of time it 
will again become minus one. 
 
(Refer Slide Time: 00:12:55 min) 
 

 
 

So the period two orbit will also lose stability through the same flip bifurcation. Continue this 
this argument you will find that the period 4 orbit will also lose stability by the same mechanism, 
period 8 orbit will also lose stability for the same mechanism. When each orbit comes into 
existence its slope is positive and plus one; as you change the parameter further then it goes from 
the plus one towards the minus one thing and then it goes out. Thereby that particular orbit 
becomes unstable. When it becomes unstable do the orbits lose existence? No they are still 
existing meaning that when you look at the bifurcation diagram like this of the same system, 
over the range 2.8 to 4.0 then here in your mind something that you cannot plot directly here but 
in your mind you should look at something like this that at a point, in this case 3.0, this fellow 
became unstable and to period two orbits immersed, it’s nice. 
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So as this one becomes unstable, this fellow continues (Refer Slide Time: 15:05) and after some 
time this fellow has also become unstable and you have the immergence of period 4 orbit and 
still this fellow is continuing and then this fellow also became unstable and again this fellow is 
continuing. As you proceed you can easily see that the lengths for which each of the periodic 
orbits are existing are slowly going down and that would ultimately accumulate if you think that 
as this by this again all these are ratios less than one and there will be an accumulation point. 
That means if you go on to this 1 to 2, 2 to 4, 4 to 8, 8 to 16, 16 to 32 and so on and so forth. It 
will accumulate to infinity but within a finite parameter range. That will happen within a finite 
parameter range that’s exactly what you see here. 
 
(Refer Slide Time: 00:14:52 min) 
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It has accumulated more or less here. Now there is a nice rule to it. The rule is that if you 
consider the range of parameter values for which the period 1 orbit existed and the range of the 
parameter value for which the period 2 orbit existed and if you take the ratio then you get a 
number. Period 1 to period 2 if you do that you will get a number greater than one. Again if you 
take the ratio between period 2 and period 3, you also get a number and as you progress you will 
keep on getting the number and it so happens that number that ratio always converges to a single 
number and that number is you can imagine it like this; limit n tending to infinity, the range mun-

1- mun-2 that means if n is say 3 then I am talking about the parameter value at which 3 that 
means mu2-mu1 and here it is mun – mun-1 this range or if say mu is 3 then you have mu2 – mu1, 
here it is mu3 – mu2 which means the previous one is here and the later one is there in the 
denominator. 
(Refer Slide Time: 00:16:47 min) 
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So this number as n tends to infinity should always converge to the number 4.669201609 so on 
and so forth. You might wonder why? This is a very interesting and famous result by Michael 
Feigenbaum. I will not exactly rigorously prove it here but I can sketch the proof how does it 
come about. 
 
(Refer Slide Time: 00:19:48 min) 
 

 
 

Here am talking about this range of the parameter divided by this range of the parameter then 
this range of the parameter divided by the next range of the parameter. So what will you do? You 
are going ahead, if you are going ahead then let us just blow up this part and see what is there. 
Looks identical. Let’s just blow up this part, identical. Let’s just blow up this part, identical. 
Let’s just blow up this part.  
(Refer Slide Time: 00:20:13 min) 
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Now you understood more or less what is happening. So in the bifurcation diagram, you see what 
is known as self-similarity. If you take a part and zoom, it more or less looks likes the whole and 
that is why, as you go closer and closer, you find the same phenomenon happening at smaller 
and finer and finer scales. 
 
(Refer Slide Time: 00:21:07 min) 
 

 
 

Now why does it happen? When we started looking at the first one, what did we do? We plotted 
the second iterate of the map that’s what we did. 
 
(Refer Slide Time: 00:21:18 min) 
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So this one was the fixed point of the original one and these two are the fixed point that had 
appeared. Now you see here there is a hump and here there is a fixed point that has now become 
unstable like there was a fixed point that became unstable and here this is a point that is now 
stable.  
 
(Refer Slide Time: 00:22:00 min) 
 

 
 

Now as you change the parameter further say the period two orbit also becomes unstable, let’s 
start from a initial condition somewhere like 0.7. 
   
(Refer Slide Time: 00:22:16 min) 
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I want to show it here. It starts from here and it goes like this. Now you can see that this fellow 
has also become unstable. In order to study what will you do? You will plot the period fourth 
iterate of the map. So forth composition xn+4 as a function of… (Refer Slide Time: 22:38). 
 
(Refer Slide Time: 00:22:35 min) 
 

 
 

Notice here it is now having the same kind of behaviour that you saw earlier. Now this fellow is 
stable so if you increase the parameter further, you see here it has become a bit clattered. Let me 
reduce it. Can you see that here again the same phenomenon is happening and at some point, this 
parameter or this particular point will also become unstable and then you will need to look at a 
blow up of only this part.  
 
(Refer Slide Time: 00:23:26 min) 
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Then you will start from a parameter value say 0.9. So this point will become unstable and then 
in order to study its behaviour what will you do? You will again draw the eighth fellow here and 
this fellow has also become unstable and so on and so forth. 
 
(Refer Slide Time: 00:23:52 min) 
 

 
 

Now notice one thing I will reduce the iteration number, so that you can see clearly this part. 
 
(Refer Slide Time: 00:24:03 min) 
 

 
 

Doesn’t it look like the same as the initial logistic map graph? It is basically the same. So what is 
happening is that as you go into higher and higher iterates, you are looking at a same kind of 
graph.  
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Only the individual differences between the graphs are now being sort of ironed out. So you 
might say that this kind of graph would result from an equation like this. 
 
(Refer Slide Time: 00:24:38 min) 
 

 
 

That’s also a one hump map. It might also result from the equation of a parabola, it might also 
result from the trunked equation of hyperbola so on and so forth. Individual graphs are all 
different but you are zooming on to the top part of it. The more you zoom on to a particular part 
of it, the more individual differences of different maps are being wiped off. You are essentially 
looking at closer and closer zooms of only a part. 
 
(Refer Slide Time: 00:25:18 min) 
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That is exactly the Feigenbaum’s argument that’s exactly why this number must be universal. 
That is why you do not get this number, if you take the low n value because if you take 3 and 2 
then essentially you are still seeing the differences between different types of graph of the map. 
The more you zoom closer you eliminate the differences. You essentially come to some kind of a 
universal phenomenon and so this number is true for a wide variety of systems. 
 
(Refer Slide Time: 00:25:33 min) 
 

 
 

Notice the only logical necessity in my course of development was that it must be a one humped 
map, it must just have one hump. So just one maximum so that a graph like this will not work but 
any system that ultimately maps into a one humped map should give rise to the same kind of 
behavior. That was the concept of universality. In fact widely different systems; the systems that 
have no connection with each other have all found to exhibit period doubling cascade and in the 
period doubling cascade this number appears, this number to this extent of accuracy appears. 
 
The mathematical logic is that the more you are going into the cascade, the more you are 
eliminating the difference between the individual functional forms. You are essentially looking 
at this particular part which take a hyperbola, take a parabola, take any type of graph it will 
remain the same and that is why ultimately you will land up in the same number. This number is 
called the Feigenbaum number or Fiegenbaum ratio. They might prove it that this number you 
get involves renormalization  group method that are now very common in mathematics and some 
disciplines in physics that has been used here but for our purpose, since most of you come from 
engineering disciplines it is not all that necessary to go into the detailed proof. Just get an idea 
why it is true. Now how different are the systems in which it has been found to be true? I 
probably talked about the experiment by the Doyne Farmer.  
 
 
 
 
 



17 

(Refer Slide Time: 00:28:17 min) 
 

 
 

Doyne Farmer was a student and he was staying in a hostel which had an attached bathing. So 
they have mostly hostels with attached baths which you are not blessed with but they have. It 
was not to his liking why because at night he found the faucet was a leaky faucet and drops of 
water would fall with a irritating sign tip, tip, tip, tip, tip, tip and all that so he couldn’t sleep and 
if creative guys cannot sleep they do something creative and that’s what he did. what he did was 
he tried to study this tip, tip, tip, tip, tip, tip and he found that depending on the amount of 
opening of the faucet, you can have a completely periodic dips tip, tip, tip, tip.  
 
Change it a bit, it will become tip tip, tip, tip tip, tip, tip tip, tip and then he wanted to find out if 
there is any rule behind all that. So he set up a very elaborate experiment because there was a tip, 
you could put up a micro phone, collect the information and then on the graph it would show like 
a regular peaks. You can find out the time difference between the peaks, estimate the time 
differences, use it at xn and then that max to xn+1 and so on and so forth which means that you 
can draw a graph. He found that for small values of the parameter that means the opening of the 
faucet, it was a period one orbit. I probably have the graphs, I will show you if it is here.   
 
For a small opening all the points collected at one place, this is time n, Tn, Tn+1 collected at one 
place which means that it is a period one orbit, increase a parameter they are collected in two 
places; increase the orbit further, increase the parameter further 4 places and if you change it 
further it was a perfectly chaotic orbit. So it went into same period doubling cascade and if you 
notice when it is chaotic points fall on every part of this graph of the map so this can be taken as 
the graph of the map and it is a one humped graph, inverted nevertheless but one humped graph. 
This completely unmodelable system, you cannot really do a modeling of it. 
 
 
 
 
 



18 

(Refer Slide Time: 00:30:21 min) 
 

 
 

Such completely unmodelable system also had a one humped map and the moment you know 
that there is a smooth one humped map, you know that the Feigenbaum numbers will also valid 
here and it was. So you can do the mathematics on the simple system like logistic map. Derive 
conclusions that would be applicable to completely unconnected system like this. There have 
been experiments, the Feigenbaum number experiment has been also confirmed in very peculiar 
systems. For example there was a leaf cover experiment where he took a very small cylinder in 
which there was a bit of liquid helium.  
 
Why liquid helium? Because he could do the experiment with any kind of substance but liquid 
helium is liquid at a very low temperature and thereby the environmental noise would be 
minimum at that temperature and there was a heating from the below and cooling at the top and 
that would give rise to a set of convective currents and he was looking at the behaviour of the 
convective currents and there was measuring instruments and when the report came he showed 
clear period of doubling cascade and here also low and behold there was a nice one humped map. 
In electrical engineering and mechanical engineering and in all such places we find this kind of 
one humped maps appear and in all there would be a period doubling cascade with this particular 
number as in organizing the whole period doubling cascade. What we are talking about? I am not 
special to this particular map that we are taking, it is general it is universal. That’s why it is said 
to be a universal mechanism of period doubling cascade. 
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Now let’s come to something more. Imagine a map given by, I am using this because here a is 
the parameter because this is simple. It is simpler than the logistic map that is why I took this. 
Can you find out the fixed point of this one? Very simple, because in order to find out fixed point 
you say that the left hand side is equal to the right hand side and then you would say x. so you 
say the fixed points are located. Now you notice that for a this particular fixed point begins to 
exist at a specific value of a. Where is it? So a is equal to minus one fourth is a sort of a critical 
thing below which there is no fixed point above which there is a fixed point. In order to find out 
what is the behaviour here, you take a derivative of it and try to understand how it is behaving. 
So if you take the derivative you will find, what is a derivative; is equal to… (Refer Slide Time: 
35:55).  
 
If you substitute this minus one fourth here, what you have here? Zero and therefore you have 
minus one by two. So minus half, substitute it here, you have plus one. If you put a is equal to 
minus one fourth so that xn star is equal to minus half. Substitute it here, you have dxn+1 dxn is 
equal to plus one. I will write plus one with the reason, I will come to that. So from this can you 
infer the shape of the graph? These were on the computer so without really thinking you could 
see what is happening here but now I am deliberately choosing a different map so that you are 
forced to think, what will be the shape of the map what is happening here. 
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What is happening here is that below a certain value of a, there is no intersection with the forty 
five degree line. That’s the meaning of the non-existence of a fixed point, there is no intersection 
of the 45 degree line, at that particular value there is an intersection and when there is an 
intersection, the point of intersection has slope of one. From this can we not infer the behaviour 
would be something like this that initially it was something like this and then as you the change 
the parameter would be like this and then it would be like this. That’s the only way it can 
happen. Following this what do we expect the behaviour to be? 
 
(Refer Slide Time: 00:38:22 min) 
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Following this there would be two fixed points, if you change the parameter even further there 
will be two fixed points one with plus one and this plus component and the minus component 
and these two fixed point will be here and here. Notice that always one of them will be unstable 
and the other one stable, there cannot be any other way. Always one of them will be unstable and 
the other one will be stable and in the actual system what do we observe? There was no stable 
behaviour earlier, if there is no intersection with the 45 degree line there is no stable behavior. 
Suddenly a stable behaviour is appearing that’s also bifurcation. That is also a qualitative change 
in this asymptotically stable behaviour of the system. Now this bifurcation is happening with the 
graph of the map becoming tangent to the 45 degree line. That is why this is also called a tangent 
bifurcation. This is also called a tangent bifurcation. 
(Refer Slide Time: 00:38:22 min) 
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In books however you will find another name for it more common. The tangent and being able to 
see the 45 degree line applies only to one dimensional maps. If it is 2 D then you cannot really 
draw a graph like this and therefore we cannot really see a tangent or something. So the general 
nomenclature of it is saddle node bifurcation. They are the same phase. Only in 1 D systems, one 
dimensional maps where I can plot xn versus xn+1, only such systems the word tangent 
bifurcations are valid. In higher dimensional system there is no concept of tangent and therefore 
you cannot really call it as a tangent bifurcation, the more general term is saddle node but also in 
1 D this term is also valid. Though you cannot really see a saddle or something like that I will 
come to why this name came, when I treat high dimensional systems but presently just remember 
the name. I may be interchangeably using the word saddle node bifurcation in place of tangent 
bifurcation. So you should not be confused because I am also more used to using this term 
because that is more in literature.  
 
What has happened was in the system there was no fixed point, no stable periodic behaviour and 
suddenly this fellow is stable. That fellow is unstable, this fellow is stable that has appeared. So a 
tangent bifurcation or a saddle node bifurcation results in the birth of a stable periodic orbit. That 
results in the birth of a stable periodic orbit that was not there earlier but whenever there is a 
birth of a stable periodic orbit, you should know that even if only this one is visible. Why, 
because start from any initial condition it will go there not here. Only this one will be visible but 
even if it is there from theory you should know that there is a also an unstable fixed point 
existing. That is very important but why i will come to that later. You should remember the one 
that you can see is not the whole of the story. Whenever there is a saddle node bifurcation in fact 
this fellow is called a node and this fellow is called a saddle in more general context. 
 
So a node has appeared and attracting fixed point is appeared but also a rippling fixed point has 
also appeared. You cannot have anything otherwise. So a tangent bifurcation is associated with a 
birth of an instrument, just contrasted with the period doubling case where there was no birth of a 
fixed point. It was something becoming unstable. At a period doubling bifurcation, the period 
one orbit became unstable but it is still existed. At a tangent bifurcation it ceases to exist. 
Imagine that there was a graph of them of like this and as you change the parameter is 
approaching this way. What will happen? These two points will come close to each other, collide 
with each other and then it will annihilate. It will no longer exist. So it sort of makes a pair of 
fixed point of n. 
 
Imagine a practical system such a thing is happening means that you have a stable periodic orbit, 
you are happy that my unit system is working fine but as you change the parameter such a thing 
is happening. What will happen? They need a catastrophic because at this point suddenly you 
will find that it is no longer existing, something that was there is not only loosing stability it is 
just ceasing to exist, it’s a catastrophic situation. So a saddle node bifurcation seen in one 
direction it is a birth of the fixed point, seen in the opposite direction it is a death of a fixed point. 
 
 
 
 
 
 



23 

(Refer Slide Time: 00:45:16 min) 
 

 
 

Now this also allows us to explain some of the things that you have seen in this bifurcation 
diagram. I have talked about the bifurcation diagram earlier. So you have this period doubling 
cascade and all that are going on but do you see that here is a opening, there is a something 
known as a periodic window. it is not continuously chaotic, in between the chaos is broken by 
some range of the parameter when the behaviour is periodic and for example here I can say that 
there is a one iterate here and the iterate here and the third iterate here so it is a period three 
window. How does this come over, how could this come over? I can see that the value of the 
parameter is slightly greater than 3.8.  
 
(Refer Slide Time: 00:46:11 min) 
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So let us look at the graphical analysis at a parameter value say 3.8 but now I want the first 
compositions to start. 
 
(Refer Slide Time: 00:46:20 min) 
 

 
 

Here ultimately when it has to come to period three orbit, you can see this period three orbit. So 
start from here, it goes to the graph, comes here, goes to the graph, comes here, comes to the 
graph of the map and it looks which means that it is a stable period three orbit. I will note down 
the parameter value for which it happened 3.8283 but I will start from slightly less value. It’s still 
chaotic.  
 
(Refer Slide Time: 00:47:24 min) 
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(Refer Slide Time: 00:47:35 min) 
  

 
 

Now in order to understand it let me plot the period three behaviour the third iterate of the map 
xn+3 plotted as a function of xn. Notice this is the graph. Have you seen that? Now keep noticing 
as I increase the parameter slightly. 
 
(Refer Slide Time: 00:47:58 min) 
 

 
 

Again slightly more, do you see what is happening? these points are coming closer and closer to 
the 45 degree line, even closer to the 45 degree line, 328 now become tangent. 
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(Refer Slide Time: 00:48:28 min) 
 

 
 

So what we are talking about here in this direction, do you notice that the same thing is 
happening here? 
 
(Refer Slide Time: 00:48:38 min) 
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(Refer Slide Time: 00:48:42 min) 
 

 
 

It is becoming tangent so what is actually happening here at the birth of that period three window 
is nothing but a saddle node bifurcation. So if I ask you what created the periodic window, what 
will be the answer? a tangent bifurcation or a saddle node bifurcation through which a new fixed 
point was born but now this new fixed point see if it is I will increase it slightly further, it has 
now crossed. I will make it a little more visible. 
 
(Refer Slide Time: 00:49:30 min) 
 

 
 

I will show only this part, see it is crossed. So the phenomenon that we are talking about here 
now has happened here but obviously it has resulted in one unstable fixed point here. 
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A new pair of fixed point one unstable another stable and this is what we are looking at and this 
is a fixed point in the third iterate of the map, xn+3 is equal to xn which means it is a stable period 
three behaviour. That is what we have seen in the bifurcation diagram. 
 
(Refer Slide Time: 00:50:09 min) 
 

 
 

It has resulted in the birth or it has resulted in the chaotic behaviour becoming unstable and the 
period three behaviour becoming stable because of this. So at that point a new period three 
window appeared because of the saddle node bifurcation.  
 
(Refer Slide Time: 00:50:40 min) 
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Now notice if I expand only this part, it is again the period doubling cascade because what has 
crossed here is also the same thing and as it goes on, you can expect the same thing to happen. 
 
(Refer Slide Time: 00:50:44 min) 
 

 
 
 

 (Refer Slide Time: 00:50:57 min) 
 

 
 

So the period doubling cascade will again appear in this small window and again if you keep on 
enlarging it, you find same thing and all that will again show the same Feigenbaum number. Let 
us clean it and let us start it all over again. 
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(Refer Slide Time: 00:51:28 min) 
 

 
 

Not only the period three, this was the large periodic window of period 3, period 6, period 12, 
period 24 and all that. It is also a period doubling cascade but here you can also see a gap, here 
we can also see a gap. Let us explain and check out what this fellow is. This is period 6. 
 
(Refer Slide Time: 00:51:56 min) 
 

 
 

That is also going through a same period. 
 
 
 
 



31 

(Refer Slide Time: 00:52:08 min) 
 

 
 

If you look carefully then you see other periodic windows here and here. So that as you zoom 
into the bifurcation diagram, you keep seeing small periodic windows, each one created by the 
same mechanism of saddle node bifurcation. Each one ultimately undergoing a period doubling 
cascade, finally merging into the chaotic behavior. So in the whole bifurcation diagram therefore 
you can see not only a period doubling cascade once but infinite number of period doubling 
cascades and another important point is that while you see something as chaotic, in fact there is a 
theorem to prove it that there are periodic windows at every range. For example suppose here 
you might think that this range is very chaotic, let us expand it.  
 
(Refer Slide Time: 00:53:18 min) 
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There is something, you might think that this range is very chaotic let’s see expand it. Let us 
further expand it, further expand it, it is allowing for the expansion but there is a theorem that 
tells at every range there should be some periodic window. So chaos in this case is there but at 
every range in the parameter space, you can expect a periodic window nearby. All that created by 
this saddle node bifurcations. So in the bifurcation sequences, as you change the parameter you 
see a inter play of these two kinds of phenomena, the period doubling bifurcations or flip 
bifurcations and the tangent bifurcations or the saddle node. In the one dimensional maps you 
only see these two types. Try to understand the reason. A bifurcation cannot happen unless there 
is an instability. So all bifurcations are related to instability. 
 
Most of you are from engineering back ground, so it will be easy to understand from that point of 
view. A linear system with which we are so very accustomed, if that becomes unstable what 
happens? The system collapses, state runs to infinity but in a non linear system then there is no 
reason for that to happen. It might go to another stable behaviour. So in a nonlinear system an 
instability results in a bifurcation and instability happens when the graph of the map becomes 
either minus one or plus one when it becomes minus one we have period doubling bifurcation. 
When it becomes plus one we have saddle node bifurcation, this is the only two things that can 
happen.  
 
So there are essentially two different mechanisms of the loss of stability. Though there are more 
names, in books you will find more names of bifurcations. I will come to what those names 
imply but in a sense you can easily understand that there are essential two types, the tangent 
bifurcation or saddle node bifurcation and the period doubling bifurcation. Through this a 
specific period of orbit can become unstable. That’s all for today, tomorrow we will continue 
with it. 


