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A source is also a dynamical system though it doesn’t move physically because the voltage 
across the capacitor, the current through the inductor, etc. change. So that is also a dynamical 
system. In a chemical reaction, you don’t see anything physically changing but there is a 
chemical reaction taking place. You have to mix hydrochloric acid with sodium hydroxide. Then 
there is a change taking place. Is that a dynamical system? Yes. In the sense that, if you dip a 
sensor of each of the constituents say, sodium hydroxide, over time the concentration of sodium 
hydroxide changes and therefore that’s also a dynamical system. Similarly, you will find that 
anything in this world can be seen as a dynamical system. Our body is a dynamical system. Our 
heart is a dynamical system. Our breathing is a dynamical system. So everything that we can 
think of are dynamical system. We have found some specific ways of mathematically defining 
dynamical systems. How are dynamical systems mathematically defined? They are defined in the 
form of differential equations. This I suppose you have learnt in the mathematics class. Why are 
dynamical systems or dynamics-change represented as differential equations. 
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It is because in a differential equation you have the dx/ dt term in the left hand side and that is 
defined as function of x. that is a dynamical system. Here this is saying how x is changing with 
time and that is then expressed in the form of some kind of a function, f(x). Now can you think 
about one dimensional system? Pendulum is not a one dimensional system. It is actually a two 
dimensional system. In order to test how much you remember, we will today at some stage, 
derive this differential equation for a pendulum. but if you write this differential equation like 
this, there are situations for example, you have a voltage source, a switch and then here you have 
say just an inductance. So this will be one dimensional dynamical system but these are very rare. 
Normally, what we do is, given any system we try to define a set of variables which uniquely 
defined the dynamical status of the system. In case of the pendulum, what can you identify as the 
variables which uniquely define? Is it the angle? Just if you specify the angle, does it uniquely 
define? For example the angle is this much, in addition to that, you have to state theta dot. Is it 
going up? Is it going down? With what velocity is it going up? Only when that is given it says, it 
is in that particular state. That is why pendulum is really a two dimensional system. In general, 
we try to define a few variables in terms of which we will define the complete dynamical states. 
that means if these variables are given x with the value 1, y with the value say 1.5, z with the 
value of say 3.9 ultimately, given all these, the unit that uniquely defines the status of the system. 
Then these are called state variables.  
 
The minimum number of variables that uniquely define the dynamical states of a system. In 
general, in mechanical system what are these? How do you define them? We essentially defined 
the different mass points, their positions and their momentum. Similarly, in electrical circuits we 
locate the storage elements. Storage elements are inductance and capacitance and the current 
through the inductances and the voltage across the capacitance uniquely defined the state 
variables. In certain situations, the number of states variables may be less than the number of 
inductance and capacitance in the system. However for this course we will not go into those 
issues. But essentially just remember that this is the definition of state variables. So in trying to 
understand any dynamical system, what we do is we write the variable equations as they are 
called. What does it mean? We write equations like these in terms of the state variables. So in 
that case, x will no longer remain a number.  
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x will become a vector which means if say I have 3 variables in a system I will write dx/ dt is 
equal to something. dy/ dt is equal to something else. dz/ dt is again equal to something else. So 
this will be one function of xyz, another function of xyz and a third function of xy and z (Refer 
Slide Time: 08:21). Given this, the differential equations are completely defined. You have also 
learnt how to solve differential equations. At least you know how to solve a class of differential 
equations. Solving means that either we are able to explicitly write down the solution or we say 
that we cannot do that. But given an initial condition I can always tell where approximately the 
states will go by numerically solving it. That’s how we finally do mostly but nevertheless, when 
we are doing that what are we in essence doing we are starting from an initial condition. That 
means here is my xyz at the initial time =0 and then it is evolving.  
 
Evolving in what? Now the evolution, you normally would have seen something like this. you 
have seen a waveform something like time versus a variable x. similarly there will be a 
waveform of say, time versus the variable y. Similarly there will be a wave waveform for the 
time versus variable z. this is probably what you have already learnt how to obtain. As I told you 
at least for a class of system. What kind of class of system we have learned in all probability? 
We have learned how to do that in linear systems where the right-hand sides are linear functions. 
But in general, as I told you systems are non-linear. In fact all systems are non-linear and we will 
see what linear system means in the context of the general idea of non-linear system. We will see 
that. But in the sense we have this and you can obtain this. So what are we exactly doing? In 
order to understand that, it is necessary for us to understand or grasp the idea of what is known as 
a state space. In this what we do is, here we have the xyz. One of them could be a voltage across 
a capacitor. Another one could be a current through an inductor.  
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If it is an electro-mechanical system, the third one could be the even the momentum of a 
machine. So in general, these are those state variables. In a mechanical system these are related 
to the positions and momentum of the mass points. In electrical system these are related to the 
capacitor voltages and inductor current and in electro mechanical system it could be a jumble of 
all this.  
 
So notice that the moment I have written in this form, we can, for all practical purposes set aside 
the actual system description. Forget about that. What we are talking about is a voltage or a 
position, current or momentum. We can forget about that because we have written down the 
equations and we can go ahead with that. May be at a later stage, when you have understood, it 
will have to translate it back in terms of what happens in the actual system but presently, we’ll 
assume that we have abstracted the system and then we are not able to see the distinction 
between the x, y and z on the same pedestal. They have the same value for us in the differential 
equations and then what we do is we say, “Let there be a space where the xyz are the 
coordinates”. It is quite unlike the space we live in because it is in this space in which we live. 
xyz are the special coordinates. There is also time coordinate‘t’ but here, we are not talking about 
that. We are talking about the voltage being a coordinate. The current being a coordinate. The 
momentum being a coordinate. So that then assuming it is a 2D system. 
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Then x and y are the state variables and such a space is called as state space. Now in that 
background then the differential equations give a meaning. What do the differential equation 
say? It says that if the x, y and z have a specific initial condition. Here I am talking about the x-y 
space. Nevertheless it could be xyz space, an initial condition given that initial condition if you 
solve these equations; we get some kind of an evolution in this space. So the differential 
equations essentially tell how the state point is going to evolve in time in the state space.  
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So from now onwards, all our views will be directed to what happens in the state space and we 
will try to understand visually in terms of visual impression. See these are not things that we 
really see before our eyes. But in the mind’s imagination at the end of the day, after you 
complete this course, you should be able to visualize, “yes. It is happening like that”. If you see a 
differential equation, you have a set of differential equations telling you how the state evolves. 
At every point the state is evolving depending on the set of differential equation starting from an 
initial condition. That is the setting. Now let us see how far this idea takes us till in the language 
of “Subramanyam Chandrashekar” till “the sun melts the wax in our wings”. He ended a chapter 
in his book with this. 
 
Let us see how for this takes us till the sun melts the wax in our wings. By the way, starting from 
here, how do we know where to go next? For example, at this point somehow this point knows 
that it has to go in this direction next. How does it know? It knows from the differential equation 
really because here means a particular value of x,y and z and if you substitute these values of x,y 
and z in the right-hand side you get numbers. You get numbers here. So this equation tells that in 
the next instant, it will move so much in x direction so much in the y direction and so much in 
the z direction and that together will define this vector. If the state point where here instead, 
same thing applies. You would have been able to calculate again by substituting particular 
numbers here. You would have been able to calculate what is dx/  dt, dy/dt and dz/dt which 
means that irrespective of where I am, the set of differential equations tell where I should go. 
This means that if I am here (Refer Slide Time: 17:09) the set of differential equation defines an 
arrow. If I am here the set of differential equation define an arrow. If I am here the set of 
differential equation define an arrow. At every point in the state space the differential equation 
define an arrow. So after you have written down the set of differential equations for any system, 
what I have essentially defined is, in the state space you have defined arrows at every location. If 
I am here I know where to go and here I know where to go. As from here I start, I go on. When I 
reach here, still I know where to go as it goes on. Still this fellow knows where to go and so goes 
on traversing the trajectory.  
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So, essentially the state space is completely defined in terms of the differential equations when 
you have defined the arrows at every point. This means that the differential equations define 
arrows at every point and notice that the state evolves along the arrows as if something is 
flowing and you put a drop on the floor, it flows around. The solution of differential equation is 
something like that. There is a stream and leaves drop on it and it flows along with the rest of the 
flow. it flows exactly like that. So that is why a set of differential equation is also called a flow. 
in literature we will find this word ‘flow’. You will see sentences like “let us define a flow”. It is 
nothing but a set of differential equations. It defines a flow and when a set of differential 
equations are given, it defines a vector at every point in the state space. That is why it is also 
called a vector field. So far the kind of impression that you had was that you were able to solve a 
certain kind of differential equation mainly linear differential equations. You were able to 
distinguish a particular integral and all other things which means that given an initial condition t, 
you are able to traverse for a certain specific set of differential equations. You cannot do it for 
everything. You have learnt in the numerical analysis courses how to solve this differential 
equations numerically. There also you have learnt how to start from initial condition and then 
traversed. But if I ask you what all can this system do, what are the different types of dynamics 
possible for this system? Can you see? No. then what will have to do/ start from all possible 
initial conditions and and go on computing or if it is a solvable differential, equation then do you 
know how how long it will take for you to tell what are the different types of dynamics possible 
for this system.  
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You have to solve it for every given initial condition which means in the solutions you will have 
to calculate this C one C two all that for every single initial condition. But the moment the states 
space and the vector field is pictorially in front of your eyes, you know what can happen. Now 
we will try to do that. For that purpose let us start with one example system. Let’s take this 
example. 
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As we go on with this system, we will try to understand a few other concepts. Now given this 
system, can you draw the vector field? You will be at a loss. So start at the point that is simplest. 
What is the simplest point? It may not be (0,0). See you have to ask in which position in state 
space does the left-hand side vanish. Left hand side means x dot and y dot. x dot and y dot 
vanishing means if it is there, it remains there. These are equilibrium points. So how do you 
locate the equilibrium points? So let’s write where x dot = 0. For this system can you obtain? 
Well this fellow says x dot =0, means y =0. Now y =0 if you put here you get a quadratic 
equation. You need to solve it and then obtain the possible values of x for which it will be zero.  
So there is only one equilibrium point. If you multiply by y, it is it is zero sorry it doesn’t get the 
quadratic here. So here in this case x =0 y =0 is the solution. Now therefore we have this state x-
y state in which x =0, y =0 is an equilibrium point. What we do next is we take a magnifying 
glass and go very close to this equilibrium point look at it. What is the structure of states space or 
the vector field around it? That is the easiest to know because as you zoom closer and closer, the 
non- linearity in the system will slowly vanish. It is like you have got a curve and as you zoom 
closer and closer, it becomes more and more like a straight line. So as you zoom closer and 
closer it will more and more lose its non-linear character and you can you will look at the linear 
neighborhood of this point. So we are essentially zooming into this region. as you zoom if you 
are looking at the the linear neighborhood of that, the way you when you were looking very close 
to this, if this is your y and this is your x then what what are you looking at at this point? How do 
you represent the local linear representation? By dy/ dx. 



8 

 

When you when you are zooming into a two dimensional system and trying to understand the 
location, you still have a 2D equation. You should still have something like this. x dot is equal to 
something which is a linear combination of x and y. so x dot is something x plus something y. y 
dot is equal to something x plus something y. then it becomes a linear equation. What are this 
something’s probably you have learned that. How do you obtain this something from this 
nonlinear differential equation? This has a name. The Jacobian matrix. So the Jacobian matrix is 
essentially nothing but if you are zooming closer and to closer to the equilibrium point, you get a 
local linear representation and that local linear representation. In the neighborhood of any point 
is given by the Jacobian matrix. So what is a Jacobian matrix?  
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Then we will represent everything in terms of deviation from the equilibrium point. In this case it 
so happens that the equilibrium point is at the origin. But in other systems, it might not be so. in 
general we will write the deviation from the equilibrium point as delta x delta y and then this will 
be given as this (Refer Slide Time: 28:03). So this is the Jacobian matrix. So what have we done? 
in obtaining this, we have said how does that deviate from this equilibrium point vary. So we are 
saying that ‘delta x’ - the deviation from the equilibrium point in the x direction varies as this 
delta y varies as that. Can you obtain this for this system? So we will say this is f 1(xy) and this is 
f 2(xy). So the derivative of f1 with respect to x is zero. The derivative of f1 with respect to y is 
one because it is only y derivative of f2 with respect to x is -2xy and -1. So let’s write it. This will 
becomes 0, 1, -2xy-1 and here it is 1-x. also I have something that is containing all these things 
because you are trying to evaluate it at equilibrium point where x and y are zero. So substitute 
these values and then that takes the form 0,1,-1 & 1.  
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Then we will say that now in the neighborhood of this, my differential equations are the 
following. So this is the whole states space. Here is my equilibrium point. I am now zooming 
into this part and here the equations are x dot is y and y dot is –x+y. this is the method of local 
linearization. So the Jacobian matrix is essentially to obtain the local linearization and then when 
we look at this equilibrium point and the behavior around it, it is sufficient to study this 
differential equation. Now those of you who have gone through the course of contour theory and 
courses like that, we realize that in the contour theory studies, we essentially look at only this. 
We always take a magnifying glass and go close and close and say that “I am happy. I have got a 
linear equation and then what do we do? we say that now if we make a system work at the 
equilibrium point, I will make a tacit assumption that the deviations from the equilibrium point 
will never be sufficiently large so that it goes beyond the range where this local linear 
approximation is valid and then we work throughout our life with this equation.  
 
We normally start with a set of equations like this but then it may actually so happen that in 
running in a particular system, it may really go beyond that because of either some kind of a 
failure or some kind of an overloading or some kind of a parameter that you really didn’t foresee. 
Of course that also takes into an account the possibility that you might actually want to use the 
rest of the system. You might actually not want the linear behavior to be used. I will come where 
these are useful. But then here we are. We have a set of linear differential equations given by 
this. Now you can solve it. How will you solve this set of differential equations? To briefly recall 
the essential method of solving differential equations, it says that this is a two dimensional set of 
differential equations. Suppose you do not know how to solve a 2D system of differential 
equations but then you are born with the knowledge of how to solve a one dimensional 
differential equation. So the one dimensional differential equation solution as you know is an 
exponential function. So we know that.  
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In case of 2D, there is a theorem that says that if I can look at a 2D system, just locate any 
possible two solutions then any of the solution is a linear combination of these solutions. We will 
not attempt to prove that theorem because I will assume that you have come across that in your 
differential equation courses. Essentially everything builds on that theorem which says that if I 
look at any two solutions, then any possible solutions starting from any initial condition is 
nothing but a linear combination of that. If it is a 3D set of equations, I need to identify three 
solutions and so on and so forth. That’s what’s work usually with two d so the the the 
mathematicians will say what is a simplest way of identifying a solution in such a system? Now 
the logic is as follows. Probably you have come across in the matrix theory. Here you have a 
matrix. so if I write it in a in a compact form, I will write x dot is equal to A X where X is a 
vector this dot is also a vector if I say it verbally, I will say A when operated on X gives me x 
dot. A is an operator operating on vector x giving another vector x dot. In general the vector on 
which it operates and the vector that you get are different in magnitude as well as direction. But 
then you have learned in your math courses that there exist in 2D system two directions such that 
if the initial vector is along that direction the x dot, the resultant vector is also in the same 
direction. These are called the Eigen directions. Any vector along the eigendirection is 
eigenvector and therefore in the Eigen direction, suppose this is an Eigen direction (Refer Slide 
Time: 37:58) and you take the x vector along that and you get the x dot vector like this, that 
means each has been multiplied by a factor to get x dot. The x has will multiply by number to get 
x term. What is the number called? It’s called the eigenvalue. So the mathematicians would say, 
in solving this let’s see if I can start with an initial condition on this line. Then I know that the 
resultant x dot will be along the same line and therefore whatever it does, its evaluation 
throughout will remain constant to this line. There is a one dimensional equation then. I know 
how to solve it. I can write down the solution. Again I can identify another Eigen direction like 
this. If I state an initial condition along that, I can again write down first order of equation. So the 
final solution is nothing but the linear combination of this and that. That is the essential way of 
solving differential equations. Probably you have all gone through.  
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By writing see the the logic is that here I start from a vector and what I get is also along the same 
line. So A operated on X is lamda X. we essentially do this. Then we say (A - lambda I) X is 
equal to zero. So this fellows determinates should be zero that we obtain a quadratic equation for 
a two dimension system. Solving it we get two eigenvalues. Now the eigenvalues therefore are 
the solutions of a quadratic equation in case of a 2D system. In a 3D system, it will be a cubic 
equation. You need to solve. But then a quadratic equation may have both a real solution as well 
as an imaginary solution. A real solution can be positive or negative. For the purpose of this 
course it will be necessary. So there are various possibilities. in general we can say if we have 
this as the complex plane - the real and imaginary, then the eigenvalues can be on the positive 
real line, can be on the negative real line or anywhere and each case you should at least know 
you should be able to tell what will be the system’s behavior like.  
 
Here is something that is a concept that if the eigenvalues are such, the behavior will be so. That 
you should know by heart. What if the eigenvalues are say here (Refer Slide Time: 44:43)? The 
two eigenvalues are both real and negative. Try to understand the logic. so in a system if this is 
your x and y and say this is one eigendirection and this is another eigendirection and along this 
Eigen direction. Suppose along this we have got an eigenvalue at -1 and along this we have got 
eigenvalue of -3. What does it mean? It means that if the x is along that x dot will be -1 times 
this. ‘Minus’ means it will be in the opposite direction. It will decay its distance from the 
equilibrium point will die down and the more it comes closer the slower is the rate dying down. 
Because x times -1 is the rate. When it becomes very close then it also because very slow. So 
naturally it has to be exponential. You don’t really have to remember. It’s quite logical that it can 
be nothing but exponential. Similarly if it is here along this (Refer Slide Time: 46:53) line, it will 
die down it will die down faster because it’s -3. So it will die down faster along this direction.  
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Now if you got the initial condition somewhere else, then when I say that the resulting solution is 
a linear combination of this solution and that solution, what does it means? It means that you can 
drop a component of this point on this and that. So this vector can be broken up into a vector 
along this and another vector along that. This vector will die down as e -1t and this vector will die 
down at a rate e-3t. As a result, this will finally come closer and closer to the equilibrium point. 
How can you figure out how will it come like this? It cannot come like that. It will die down 
faster in that the direction and therefore it will come like this. If it is here again you drop 
projections and you will see that it goes like this. If it is here it goes like this and if it is here it 
goes like this. 
  
(Refer Slide Time: 00:48:32) 
 

 
 

So you will see you essentially get an evolution like this. Do these arrows make sense? It says 
that if it is here, it will go like this. If it here it will go like that (Refer Slide Time: 49:07) which 
means that it will converge faster on to this eigenvector and then along that eigenvector it will 
approach the equilibrium point. It will decay in a specific way. Is that understandable? So if see 
you can then draw a picture of the whole state space. The moment you look at this state space 
you know all that it can do. So this is the diagram of the vector field. You don’t really need to 
point at every place and then draw the arrow. That’s not necessary. You know the starting from 
such an initial condition, you go like that. If you start from some represented initial condition and 
if you draw the lines along with it, it gives an idea.  
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So if both the equilibrium points are negative and real, it will go like this. If both the eigenvalues 
are real and positive it will be just the opposite. It will be similar only the direction of the arrows 
will be opposite. If an initial condition starts very close to the equilibrium point it will diverge 
away.  Notice the logic you have got this you have got this this direction as the eigendirection 
starts from this initial condition if this is x vector where is the x dot vector? If it is real and 
positives then it will be in the same direction so that it will go further along that outwards. As it 
goes here it again has a vector pointing outwards so on and so forth. So similarly it will go out so 
it will go out. Therefore its vector field picture will look similar only with the arrows pointing in 
the outward directions for lambda – positive.  
 
(Refer Slide Time: 00:51:53 min) 
 

 
 

You have this state space picture – xy. Suppose this is one direction and this is another direction 
and here I have eigenvalue plus one and here it is minus two. What will happen? If there is any 
initial condition exactly on this point, it will diverge. If there is any initial condition exactly on 
this line it will converge. So this is the converging direction and this is the diverging direction 
(Refer Slide Time: 52:35). If there is any initial elsewhere say, here, how will be or big be like? 
Again drop a projection on this and drop a projection on that your argument should be that this 
particular projection should increase. This length should decrease and therefore it should evolve 
as this. If I draw the other side from here it will go like this, from here it will go like that, from 
here it will go like that from here it will go like that.  
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So there exist a very small region in this state space from which it converges everywhere else it 
will ultimately diverge and the state of initial condition on which if it is placed the initial 
conditions placed it will converge. How small is that spatial initial condition of measure zero. 
Out of this two D space it is just a line. Therefore for all practical purpose we will say this 
system is unstable. This is similar to the view of a saddle. If you have a saddle then it if you 
release a ball here, it goes this way, converges and if you release the ball here, it goes this way 
and diverges (Refer Slide Time: 54:30). So it has a structure like a saddle. That’s why this kind 
of an equilibrium point it is called a saddle. Let’s stop here and will continue in the next class.                    
  


