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So, last class we have solved a problem, that is we have to optimise a functional, we 

have to optimise a functional without any constant. That means unconstant optimisation 

problem we have seen how to solve using calculus of variation technique, then we have 

consider that application of calculus of variation to control problems if and we could not 

complete that whole exercise. So, let us recollect what we have discussed in last class. 

Consider a dynamic system described by x dot is equal to f which is a function of the 

variable state, and the control input to the system u t and time. 

(Refer Slide Time: 00:56) 

 

So, this may be a linear function, may be non-linear function which we did it, that a 

dynamic system which can be described by a anathora differential equation. That 

dynamic equation is converted into a first-order differential equation and they are 

coupled each other and that differential equation may be linear or non-linear. So, our 

problem is to optimise this performing index. What is this performing index? One term 

of the performing index is the functional integral of the functional and another is a fixed, 



whether it is terminal cost. That means x time t is equal to t f, this state is x t f is known 

and t is equal to t f, that terminal cost is given.  

So, you have to optimise this performing index in order to find out u 2, u of t control 

input such that that performing index is minimised and it as well as it satisfies the 

dynamic equation. So the control input will dictate the response of what is called state. 

So, we have it performing index, this is index in omitted. So, in index, so this is the 

system input is that we have to design that input such that the performing index is 

minimised. In our case in the sense that this is the integral part of the performing index 

and it is the fixed part of the performing index which is the terminal t is equal to t f. This 

terminal cost is known to us.  
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So, our objective is now that if you see u of t, you find out that u of t that minimises the 

performing index that’s what we have considered subject to the constant 1, subject to the 

constant 1 that our constant is that dynamic equation. This dynamic equation is the 

constant. So, this is a what is called constant optimisation problem, previously we have 

discussed the minimisation of a functional without any constants. But here now we are 

considering the constants and this problem is also known known as Bolza problems. So, 

what we did it that terminal cost, what is the terminal cost that we want to like to push it 

in the integral part of this performing index.  



So, this terminal cost that d of s dt we can write it in this. So, this terminal cost, this is 

the terminal cost will be expressed in terms of integral and that constant term where t is 

equal to 0 and the terminal cost is fixed known. 
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So, using this equation in our original performing index that we get it this one, just we 

put it the terminal cost expression in terms of this and this, that what we have seen in 

earlier slide. So, our problem minimisation of performing index, to minimisation of 

performing index, to that that one minimisation of performance to this one. That 

performing index to this is because we have replaced this thing in terms of integral part. 

And constant part is same as minimisation of the performing index 4, subject to the 

constant x dot is equal to f of x, that constant. So, up to this we have discussed last class. 

So, now this is the constant term. So, minimisation of four is equivalent to minimisation 

of this integral part of that one because constant term, what is this minimisation of that 

one at what point. That what point or what trajectory of u t the function will be minimum 

with constant term also at that value of u star or trajectory, the function will be 

minimised. 
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So, instead of equation 4, we can rewrite the equation 4 then we can write it optimisation 

of equation 4 is equivalent to that of J is equal to this indication of t 0. I am writing the 

same expression except that constant term x of t u of t dt plus t 0 to t f ds x of t, which is 

the function of x and t s terminal cost into dt. So, minimisation of that function is same 

as the minimisation of this objective function. So, before that further derivation we just 

recollect what is called chain rule in differentiation. 

So, let us call we have a function f which is a function of x t, x is the function of x t, y 

also function of time parameter, time t and z of t, agree? We want to differentiate this 

with respect to time t, differentiation of this with t, this is by chain rule dl f dl x into x dot 

dx dt x dot of t plus dl f del y, y dot of p plus dl f dl z, z dot of t z is the function of time. 

So, if we differentiate this z with respect to time t z dot t, so this chain rule I will apply 

here to find out this one. So, say f is the function of xyz and x is the function time t y is 

the function of time t. 

So, differentiation of x with respect to time t is nothing but a partial differentiation of f 

with respect to x, because it is a function of xyz. Keeping yz constant, you differentiate 

this one and then differentiation of x with respect to t. Differentiation of x with respect to 

y keeping x and z constant, then multiplied by y dot. Similarly, differentiation of x with 

respect to z, keeping x y constant, then multiply by z. So, this chain rule I apply it here 

because here s is the function of time x t and t, agree?  



So, this I can write it then J is equal to J dot of this t 0 to t f, then v as it is we write as 

this term. We write as it is this term x of t, this is capital x of t u of t t dt and this we will 

write it by using chain rule. So, this will be a plus t 0 to tf. So, what we will write it? 

Differentiation of ds dt, differentiation with respect to time t because s is the function of 

s t and t. So, what we will write in that one that we will write dl f dl x which is equal to x 

of t into that x dot of t x dot of t. This is capital X plus dl f dl x of this with respect to dt 

and t, differentiate with respect to time t. So, that means it is one that whole thing into dt. 

So, for this portion we have written that one. Now, see what we can simplify that one. 

This expression if you consider, this is equation number 6, again this performing index 

that means this equation 4, minimisation of equation 4 is equivalent to minimisation of 

equation 5 because in equation 4 there is a constant term is there, agree? So, optimise at 

what value of u you will get the maximum or minimum value of the objective function 

without considering, what is without considering the constant term. I will get a same 

stationary point u star of t to optimise this function, agree? So, equivalent it is equivalent 

to say the optimisation of objective function of 4 is equivalent to what is called 

optimisation of objective function 5 subject to constant, same constant x dot is equal to f 

x of t u of t comma t. 
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So, this equation, this by using chain rule we have written this subject to our same 

constant subject to x dot of t is equal to f x dot of t u of t this, this is the subject. So, this 



is the, what is called constant optimisation problem. We know very well how to in static 

optimisation problems also you have seen how to convert a constant optimisation 

problem to a unconstant optimisation problem. Then what we have discussed in calculus 

of variation, our first problem that if you have a functional what is called J, which is the 

integral part of V of x t comma x dot of t comma t dt. Then we know how to mini 

optimise this function.  

So, first our job is to convert problem, what is called constant optimisation problem to a 

unconstant optimisation problem. Our problem is find u such that optimum statutory of 

u, such that this performing index or objective function is minimised subject to this 

constant. And that constant is a dynamic equation so that let us call this is equation 

number 2.  
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So, our job is to convert equation 6 and 7 into unconstant optimisation problem using 

Lagrange multiplier. So, that is what we have discussed earlier that where we can do it. 

Next is what is our modified performing index, when you use the concept of Lagrange 

and multiplier, what is the our modified performing index. So, our J is equal to t 0 to tf V 

x of t u of t t dt plus integration of del s, make a function of time xt. This del x of t whole 

transpose, see this one, that part I am writing, but here you see if you consider x is a, 

consider x is a vector of dimension n cross 1.Than you have to it will be a row vector, 



row vector multiplied by column vector. Then it is a scalar quantity, the whole thing is a 

scalar quantity, agree? 

So, this you have to take transpose, ok? Transpose that one. So, that will be transposed 

into x dot of t plus dl x x of t t del t. This one and this whole is dt, just this equation, this 

and this I club together. I am written in that one, this plus because it is a unconstant 

optimisation problem, constant optimisation problem. Now, I have converted into 

unconstant optimisation problems again. So, Lagrange multiplier is used and that 

dimension is if the dimension of x is n cross n, that dimension will be n cross n and that 

must be a row vector, because the product of this must be a scalar one.  

So, that is equal to f of x, the dynamic equation, the constant equation you can say this is 

t bracket, this is t bracket minus x dot of t and this part is 0. So, I multiply by constant 

what is called our Lagrange multiplier, this is the Lagrange multiplier, lambda a is 

Lagrange multiplier. 

So, this is the equation number I can write the whole thing, if you write in this whole 

thing I can write that is this bracket. This whole thing you bracket its completed here and 

dt. Now, see this performing index of that one is same as before, because this part is 0 

when it is optimise. The function of that is our or objective function, this part will be 

bigger. This must satisfy our constant, it must be 0 that one. So, this I have just written it 

so that is equivalent to t 0 to tf, t 0, this is tf t 0 to tf that I used a another function name 

is Lagrange function. So, that is a function of if you see x t u t then lambda t and t whole 

into dt, that whole this plus, this plus, this plus, this, that whole I am denoting it by l, this 

is this l is called Lagrange function. 

So, let us call this equation number is 8. Now, you see it is now it is our original problem 

what we have considered. We have to optimise a functional without any constant. Now, 

it is becoming same problem. So, we can apply the same technique what we have 

discussed earlier to find the optimal value of the functional subject, there is no constant, 

agree? So, what is the necessary condition? What is the sufficient condition we can 

easily derive? So, for convenience I just will derive this one because l function now is 

different from V. 
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So, let us see this one where l which is a function of x of t u of t lambda of t and t which 

equal to v, the integral part of that equation 8 I am writing. So, that is equal to V function 

of x of t e of t lambda of t and t plus if you see this one plus lambda, this transposed than 

f of x of t u of t then t, ok? 

So, what I did it here, this term integrate part this term and only this part omega I am not 

considering. Only this and this part I have written together, this plus the remaining term. 

So, what is the remaining term is 7 dl x dl x of t of t dl x of t, this whole transpose into x 

dot of t plus dl x which is a function of xt of t differentiation with x respect to times t 

minus lambda transposed x dot of t. So, this is the things, so this, this and this that means 

which is a V and that lambda transpose of x transposed t. This we denoted by a function 

x each which is a function of lambda x ut and lambda t and t, see t this one.  

That means, if you just consider the integral part of the objective function, that plus the 

constant what is x dot is equal to fx f. That constant f right hand side of the constant 

multiplied by a vector, that term I have considered a function which is denoted by h and 

that h is called Hamiltonian function. We will see if you split up this Lagrange function 

into this form, that will be convenient when we apply to a our problems and that problem 

gets description when it is given into a straight paced form. It will be convenient when 

you want to express this thing into a Hamiltonian form and what is the leftover terms, 

this this, this. So, dl x xof t of this dlx xof t whole transposed x dot of t plus dlx x of t dlt 



minus lambda transpose x dot of t. So, this is the game. So, Lagrange equation is nothing 

but a Hamiltonian function plus sum of the differentiation ofterminal cost with respect to 

s transpose x dot plus differentiation of terminal cost with this dt. And then minus 

lambda transpose into x dot is that one is expressing this one. 
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So, once you do this one than I can write. Now, this perturbed at perturbed condition 

what is the value of at perturbed condition, perturbed condition means you see this 

sequence, that J is defined this one when x is perturbed with a xt plus delta xt ut 

perturbed with a ut delta t and t is that one, t is equal to t. So, this trajectory what does it 

mean, our job is to if you see this one we have to look for optimal trajectory of u star, 

agree? Which in turn this performing index will be minimise subject to this constant. So, 

let us call whatever the u star is there u is the optima trajectory around this, u around this 

optimal trajectory, u there is another route of u, there is another trajectory, agree? And 

that trajectory if you consider that trajectory what is the and corresponding functional 

value of the objective function will be one corresponding to that part of trajectory, when 

u is perturbed by u t of delta u of t. Similarly, with the control action of this one, x will 

be also perturbed. 

So, I am writing this one. Now, t 0 to tf and that time t, panel time is t it is perturbed with 

delta tf. Then V and if x star is the optimal trajectory and we are given the partition of 

delta xt. Similarly, which u star is this and perturbed with u star, t u star is the optimal 



trajectory and it is perturbed form the neighbourhood of u star delta u. So, which in turn 

x also will change from optimal trajectory xt to delta xt, and this t plus delta s of this 

delta x whole transposed that and x dot. Because if you see this one, this is the value of 

this one, we find out this value of that one differentiated value with respect to this along 

the trajectory of this one. 

So, this star plus x dot star plus delta x dot of t, this is the that perturbed region perturbed 

trajectory of that one, then what is left? The dl x whole star is there, just that 1 plus this 

term plus lambda of t transpose than f x star of t delta x t plus u of t u star of t plus delta 

u of t, then t, ok? Minus x dot minus this f of x I have written this minus x dot is what is 

x dot x dot star of t plus delta x dot of t. So, this of indication dt, so what I did it, this 

suppose J is the value of the function value. Now, I perturbed u by u plus delta u, 

naturally x will be perturbed x plus delta u, agree? Then we are finding out here what is 

the new objective function when we perturbed, the trajectory u star to u star plus delta u 

and x star to x star plus delta u. 

So, this and that I will integration t 0 to delta t because our final time also that is changed 

to tf to delta tf. Now, this is the objective function value, what is the incremental of 

incremental functional value. So, one can find out this is nothing but a, if you see this is 

nothing but a, I can write it t 0 to tf l p, means perturbed model, perturbed functional l p 

dot of t dt. This whole thing is perturbed p stands for perturbed, the whole thing is this.  

So, this I can write it equal to this delta tf . Now, whole thing I just can write it this, that t 

0 to tf l p dot dt plus tf to tf plus delta tf lp dt. So, it is a perturbed Lagrange function, this 

lp. So, this I can write it nearly equal to if you think of this, this is as it is tf lp dot this dt 

and this is nothing but a lp is a function scalar function and area under this curve from tf 

to tf plus delta f. If you just consider just like this way, it is the trajectory form, this is the 

tf, agree? This is the your tf plus delta tf and this is our lp dot function, this is lp, I am 

plotting this function. 

Now, what is the area under this curve, tf to tf is nothing but this whole thing, agree? So, 

one can write this is nearly equal to find the ordinate of the non-linear function below at t 

is equal to tf. So, find l p this is lp, what is called if you see this is lp and there is a 

another curve is that one. What is that one, this is l dot, this is equal to tf, this and this is 

the t is equal to that is tf to tf plus delta, delta tf. This is a without perturbed Lagrange 



function without perturbed Lagringian function. So, area actually I have to find out the 

area from here to here with a perturbed model is same as I can write it is same as the 

area. Find out the function of the Lagringian function value at t us equal to tf, this 

function that is this ordinate you find out multiplied by delta tf. 

So, this will be approximate because delta t is very close to tf. So, I can write the area 

under this curve is same nearly equal to area under the lp from from t j f to tf plus delta tf 

plus delta tf, again that you can write it. So, that is why I have written nearly equal to 

that one. So, if it is so then I can what is the variation of functional value, variation of 

functional value delta J a. 
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The variation of functional value J a dot minus J a is nothing but t 0 to tf plus delta tf, 

agree? l p perturbed function Lagringian function value, this one J minus t 0 to tf, that 

original Lagringian function without perturbation. This one this we have so that just now 

we have conclude this part, we can write it t 0 to tf lp dot dt and that is nearly equal to, I 

can write it nearly equal to l dot value. The find the value, the value of the Lagringian 

function t is equal to tf into delta tf minus t 0 to tf l dot delta t. So, you club this and this 

club together. So, this nearly equal to t 0 to tf lp dot minus l dot. This dt plus l dot t is 

equal to tf delta tf. So, this we got it that, that one. Now, one can write it this is now as 

before. We have discuss this one again, now what we can write it for this one?  



This nearly equal to if you write more details, t 0 to tf lp is what V lp is that lp function I 

am writing. What is the function, lp is equal to x dot t plus delta x of t u star of t plus 

delta u of t is a function of this and lambda of t of t minus that one I am writing. That is 

minus l function of x star of t u star of t lambda of t of this whole bracket dt, that this part 

in details I have written the function of perturbed input and perturbed output. That we 

have written and then left remaining term is that one plus l x star of t u star of t lambda of 

t t bracket close, find the value t is equal to tf multiplied by tf delta tf.  

So, let us call this equation number is we have given equation number up to 8. So, now 

this equation is equation number 9. Now, see this one, this part if you see the Taylor 

series expansion, then use the what is called chain rule. All this thing as we did in earlier 

we can simplify this two first part of the integration of that one we can simplify. 
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How, what is the final expression will come using, I am just writing it using Taylor 

series expansion and integration by parts by parts rule we obtain. I do not want to repeat 

this one because this we have already discussed when we have considered the functional 

J is equal to 0 to t 0 to tf V function of x t comma x dot t comma t dt. When we are 

deriving that of what is the necessary condition for the functional to be optimised, they 

are we have used that operation. Please refer that derivations than you will get it will 

miller’s equations. 



So, if you take the first variation of that one, if you take the first variation of this, if you 

do the Taylor series expansion and take the first variation of the functional then you will 

get del J is the first variation of the functional. First variation of the functional, that equal 

to if you do the Taylor series expansion and use the what is call integration by parts and 

simplify, then ultimately you will get the first variation. 
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This is the this delta J is the variation of the functional variation, where you variation of 

the functional means when t 0 to tf plus delta tf and perturbed states and inputs are 

perturbed x and in turn x also perturbed. That is denoted by J minus without perturbed 

Lagrange integrant of the that Lagrangian function difference is first, that is variation of 

the functional. Out of these we split up into two parts, that first variation of the 

functional, second variation of functional is there, a third variation functional is there and 

so on. So, we are just concerned the first variation of functional for the necessary 

condition, for the functional to be optimised. So, let us see that one what is the functional 

variation after simplification. 
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It will be t 0 to tf del l dot dl x of t minus d of dt del l dot del x dot of t. So, this you 

compete at optimal trajectory, optimal trajectory this whole transpose delta x t dt plus 

some of the terms are remaining terms are like this del l del u because you will it will 

come from the what you called Taylor series expansion in first order terms, ok? So, this 

star transpose del u of t. So, use a vector of dimension m inputs if you consider, use the 

vector of dimension m inputs in the beginning. If you see what have considered that one 

here, if you just no not this one here, if you say consider our original function x of t ut t x 

u is the number of inputs, that m cross 1 x is the m cross 1. So, the partial derivative of l 

with respect to u if it l is a scalar thing, u is a vector of m cross 1.  

So, this will be a vector, so you have to transpose multiply by delta, then only you will 

get a scalar quantity that. So, this plus del x dot of t whole transpose star delta x of t, ok? 

That is e is equal to tf, that is we have derived this. This by a substitution Taylor series 

expansion and substitution you will get this expression. Then now, see you consider our 

that lambda is 0 to t 0 to tf. I am repeating this one once again here, you have g of t, then 

delta x of t dt is equal to 0.  

So, g of t is the continuous function and it is differentiable each and every point in the 

interval this and delta x is the small change in that variable. Small element integrate with 

respect to time t, that value will be 0 provided if and only if and only if g of t is equal to 



0 at every point over the interval at every point over the interval, over the interval t 0 to 

tf. 

So, if you consider this equation number is 10, ok? 9 we have done it, if you consider 

this as equation number 10, then using I can write this quantity will be 0, provided that 

this quantity is 0. If delta x is not 0, this equal zero. So, our necessary condition just as 

before we did it that this del l del x of t minus d of dt del l dot, del function of this, del l x 

dot capital x dot of t whole, this is equal to 0. What is the dimension of this one l is a 

scalar, I am differentiating with respect to n to respect of x whose dimension is n cross 1. 

So, this dimension will be n cross 1. So, this star indicates that if you solve a differential 

equation, for that one you may need some other boundary condition. Let us say if solve 

this one, than whatever the trajectory you will get it that is the optimal trajectory. The 

star indicates the optimal trajectory of this one. 

So, let us call this equation is equation number 11. So, this part is 0, now you see when 

you made an increment u star to delta u, this is not equal to 0. This is not equal to 0 and 

this is independent of this is the you can write independent control variable. So, this is 

not equal to this part, so this must be equal to 0 in order to make that or dt is there. Here 

if you see the last equation, there will be dt is here, dt here we missed this one. So, this 

equal to will be 0.  
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So, next condition is del l dot del u of t that compete around the trajectory. If we do it 

this will be a 0, whose dimension is m cross 1 because u is dimension is m cross 1, I am 

differentiating with respect to scalar quantity. So, that will be m cross 1, let us call this 

equation is equation number 12. So, we have a, you see when we have a two necessary 

condition this and this necessary condition. So, this is 0, this is 0, only the term is left 

with you with us is that one, another term is left here because I have just another term is 

left here plus, please correct it, plus dot star l dot star t is equal to tf. Find out the by tf 

into delta tf, this is that term. 
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If you recollect that that one we did it that is the this term because this we have done in 

Taylor series expansion, that one Taylor series expansion of that one and that term is the 

this one, that term we missed it here. So, this so first term, second term and third term 

what we have got it due to the Taylor series expansion of this and this we got it up to this 

than what is the leftover term is there. So, our when you use the lemma this and this then 

we got it that what is call this equal to 0 and that equal to del l del l with respect to u to 

transpose. That will be 0, that two necessary condition. In addition to that still delta J, 

first variation of function is not 0. 
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What is the finally leftover with delta J, finally leftover with delta J is equal, nearly equal 

to you can say that delta l dot star put l dot star. Or you can star you can give it here, t is 

equal to tf into delta tf plus del l dot del x dot whole star delta xt, t is equal to tf. That 

means x tf means x is equal to x x tf, t is equal to tf. 

So, that value is I can write it. Now, this if you see this one our figure, let us go back to 

our figure, the optimal trajectory of this one. This is our A, this is our B, this is our T and 

this is our C. So, this is our let us call t 0 and this is our tf and this is our tf, tf plus delta tf 

again and this value is this value is, if you consider these value is and these value and 

that that we have consider delta x tf and these value we have consider delta xf as we 

discuss earlier. 

So, you can write it delta xf, that means from this to this point that my coordinate of C 

and the this distance of that one is delta xf is equal to delta x tf plus x tf plus x a dot x. 

This is capital X, xa dot xa dot, this is our xa of t, this is our x star of t which is equal to 

x star of t plus delta x of t. I just find out the slope at this point. So, this is nothing but 

this slope is x dot, type t is equal to tf multiplied by delta tf. This I can write it that means 

this height plus this tangent at this multiplied at this height is equal to delta x.  

So, this I can write it delta x tf plus what is this one, I can write it delta a dot of this delta 

x dot you can write it delta x dot is equal to x x dot star t plus delta x dot t, whole t is 

equal to tf delta tf. Now, see this is a small quantity very small quantity, this is also small 



quantity, the product of this is you can neglect it. So, we can write it the nearly equal to 

this, we can write it delta x tf is equal to x dot star tf into delta tf. This product is third 

term, you neglect this one. So, this we can write it, now equation what we got it equation 

12 and then let us call this is equation number, that is equation number 13. You can see 

the equation number of 13 is that one.  

Now, use this value xt f x delta xt is equal to tf delta x tf. I can use the value form here 

using in using you can write it from 13 using this expression. That means I will write x 

delta tf is equal to xf minus of that one. So, what you can write it from 13? Form delta J 

is equal to l dot this star t is equal to tf and delta tf plus this one delta l dot x dot of t 

whole transpose star t is equal to tf.  

Now, I am writing x delta tf this is x delta tf value is delta xf minus x dot star tf into delta 

tf. This equal to that this is I am writing is that quantity in place of delta x tf I am writing 

is that quantity, you can see that one just like it. So, this equal to we got it, now you see 

what we can write it delta tf delta tf, if it comes out together than what you can write it. 

See growing that rotation if you symbolise this equation I can write it. 
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Or delta J is equal to l dot minus del dot del x dot of t, whole transpose x dot of t x dot of 

t that whole star, the whole star. Then put t is equal to tf, just I am writing that one. This 

term plus this term into this term I am writing t is equal to. So, first is star I am writing it 

here, you calculate the star than t is equal to tf. Then what is left, delta tf plus what is 



left? Only this term is left, this term, this and this term is left. So, that is I am writing is 

del l del x dot of t whole transpose star t is equal to tf is equal to delta xf, see this is delta 

xf delta xf. 

Now, in order to become this is 0, that means what is the condition that delta J first 

variation. Our necessary condition is if you see is the optimic basic necessary condition, 

delta J must be 0. So, in order to make the necessary condition we got it two condition in 

addition to the two. The third condition is that l, this minus del l del x dot of t whole 

transpose x dot of t, this star evaluate t is equal to tf delta tf plus delta dot delta x dot of t 

whole transpose star t is equal to tf delta xf is equal to J, that means J is equal to 0. 

So, our first variation in order to become first variation of this one, this part is 0, this is 

one necessary condition and that part is 0. This second condition and third part is what is 

call that we got it, that must be 0 and that depends on the our condition. Let us call our 

final time is fixed, tf is fixed, then tf is fixed means delta tf is 0, delta tf is 0. So, this is 

automatically 0, so only an x tf is free, that means delta xf is not equal to 0. It is in order 

to make it 0, this must be 0. So, in other words you can say in others way you can say if 

tf is free and delta xf delta xf is fixed, this is 0. So, this part will be 0 and tf is free when 

delta tf is not delta tf is not 0. So, this must be 0 in order to make this 0. 

So, let us call this equation number is equation number, last equation we have given is 

equation number 13. If you see the 13, last so this is let us call equation number 14. So, 

equation 14, equation 14, equation 14 is the general boundary condition in terms of 

lagrange function. Now, if I summarise this one in order to optimise the our original 

problem, where the terminal cost is there and the integral part of term what is called 

performing index is there.  

In order to minimise that one and subject to the constant x dot is equal to f of x comma u 

of t comma t. Then our necessary condition is first this, you have to solve it once you 

form the Lagrangian function, then you calculate that one or solve this one and also dl dl 

dl with respect to u is equal to 0. You solve this equation using the boundary condition of 

that one and this boundary condition if both the end point, final point that means time is 

free. The x of tf is also free, then you have to assume two boundary condition, you will 

get this equal to 0, this equal to 0, ok? 



So, this indicates the equation number 11, equation number 11, 12 and 14 need to be 

solved. 14 to be solved to obtain the optimal solution to obtain the optimal u star of t and 

hence instead of the because u is an independent variable. That will derive the state in a 

optimal trajectories and hence x star of t. So, this is what we got it natural, I repeat once 

again what is the our problem was here. From the very beginning just see this one ok? 

Next class we will discuss the, what is called that using Hamiltanoin function, how we 

can solve that one problem. 


