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Very good morning. Welcome you all to the NPTEL course on Economic Operation and 

Control of Power System. And today we are going to talk about Optimization 

Preliminaries, means Fundamentals, section 1 of lecture 4. So, importantly when we are 

talking about power system, most of the mathematical representations as well as 

equations, they are not purely linear, sometime they are linear, sometime they are non-

linear. As well as we need to optimize the overall cost of generation to meet the required 

load. So, when you talk about optimally utilize the generations to meet the load, that 

means we need to understand optimization. So, probably the detail of optimization direct 

application to power engineering, we will talk in due course of time. But before that we 

need to understand what is optimization and how that can be applied to economic 

operation and control of power system course. Now, when you talk about optimization, 

let me go back to your plus 2 fundamentals. So, during plus plus 2 we have been taught 

that you know a function is you know to optimize any function, we take a function f of x, 

then we differentiate equal to 0. Then we go for second differentiation and then we 

substitute those values. If it is positive, then that point is minimum. If it is negative, that 

point is maximum. That is what actually has been taught to us during school days. But 

now the scenario is almost same fundamental, but we need to address many more 

complicated problems today. Now, optimization process aims to minimize or maximize a 

certain objective to achieve most optimal, but feasible solutions. Now, you need to have a 

function, which is normally called as objective function. And the objective function could 

be a linear nonlinear function, most likely it is nonlinear and that need to be either 

minimized or maximized. Now, we need to have different limits imposed on the 

optimizing process are called constraints. For example, if I am interested to know the 

generation output of a particular power plant that is P and that value of P must be less 

than its maximum generation and more than its minimum generation. 

 

 So many times I have told you that if there is a cost characteristic, for example, yeah, so 

just what I will do, I'll just demonstrate it. Yeah. So if this is going to my cost 

characteristic and if this is my P minimum and this is my P maximum, so probably within 

this range you have to change your P. So to me, the P max is the maximum limit and P 



min is the minimum limit and hence that is my constraint. So P must be, I can rewrite that 

P must be less than or equal to P maximum and greater than or equal to P minimum. 

 

 All right. So this is the equation is known as my constraint equation. Now, similarly, we 

can also find out the reason bounded by constraint is known as feasible reason, the area 

within which, for example, if a space is given to you, you can identify a zone in which 

my optimal point lies. So that is my reason bounded by the constraint is known as 

feasible reason for the optimizing process. Now, optimal solutions should lie at the 

border of a feasible reason. This ideally they do occupy a point which is mostly at the 

extreme point because you optimize it. Now, local optima is a very common term 

because there are few functions which are keep on oscillating and probably they are not 

convex functions. Let's say if I do talk about a function, all right, which is keep on 

oscillating and in that, if this is my point of operation, the gradient at this point is 

certainly, at that optimal point is going to be zero because it is just a constant point to me 

and the tangent which is different there. So at this optimal point, the differences of any 

function equal to zero, there is no doubt about it. And that is also true at this point, that is 

also true at this point, that is also true at this point. So you find many points where my 

difference is not equal to zero or the gradient is something different. Now, what happens 

if I take the starting point of my optimization is x, then probably it will keep on moving, 

moving, moving and the moment the gradient is zero or the difference is zero, it will say, 

oh, you are reached your optimal and the program exit. So it will tell you the optimal 

point is, this is my x dash is the optimal point. However, there is another optimal point 

which is lying here, all right, so that is not visible to this fellow because the starting point 

has chosen in such a manner that it lie down at this point and accept, oh, this is my 

optimal point. So this is some sort of optimization, but it is known as local optimal.  

 

 But if you find many local optimal points, if you would have started from here, I could 

have got this point. If I would have started from here, I could have got this point. So now 

what is happening, depending upon your starting point, you get an optimization point, but 

which is not necessarily to be optimal. So that is my local optimal. But if you take all the 

local optimals of your function and then take the best out of which, which will give me 

the global optimal. So global optimum is defined as the point whose objective value is 

best among all the points present in the feasible region. And also the constraint functions 

and simple variables limit are lumped under the term constraints. So everything can be 

put in a constraint form. And if the constraints are such that no such reason exists, means 

if I do say that my P is of range A to B, and I'm not getting any solution within that range, 

probably I'll say there is no solution exists, which means that there are no values which 

satisfies all the constraints. So it may so happen. I may tell that, okay, just for an 

example, the range within which you have to find a point probably do not lead to an 

optimal solution. And that is possible. And hence we say there is no feasible solution. 



There is no reason existing to get it optimized. Now optimal problems, you know, they 

are different types. One is unconstrained and the second one is constraint. Unconstrained 

means the whole space is yours and it is a point which is less likely in a practical 

problem. So practical problems are always constrained, but in textbook for our 

understanding we solve unconstrained optimization for learning constrained optimization. 

So before you get into constrained optimization, you need to understand what is 

unconstrained optimization. Now there are different type of unconstrained optimization 

problems when a single variable or could be multivariable. 

 

 And those multivariable optimization problems and single variable optimization 

problems could also be having equality constraint and it can also have inequality 

constraints. Equality constraint means I may say my variable y which is equal to 5 or I 

may say my variable y which is greater than or equal to 5. So now what happens? It could 

be one is equality, the other is inequality, okay. And the function could be f of x which is 

x square plus 3 is a function, okay, which is a nonlinear function. And if I do not have 

any constraint, only I have to optimize this function, then that is my unconstrained 

optimization problem.But if I have to do this and put the variable, for example f of x 

equal to x square plus 3 and x must be less than or equal to 5, so then that optimization 

problem become a constrained optimization problem of single variable. I can also have f 

of x which is x1 square plus x2 square plus 25 where x1 is less than or equal to 3 and x2 

is greater than or equal to 5. So now it is a multivariable inequality constraint 

optimization problem, all right. So you can find many problems of this order. To start 

with as fundamental, what do you understand by unconstrained single variable 

optimization problem? So it is simple. So you have a single variable which is x, all right, 

and the function which is f of x. So first of all what you need to do, you have to 

differentiate and equate to 0. That means if the objective function is f of x, you have to 

differentiate which is f dash x need to be equal to 0, f dash equal to 0. You can see from 

equation number 4.1. But now the question is when you make that equation equal to 0, 

how do I find the minimum and maximum values? That is the question because f dash x 

equal to 0 does not guarantee that you are at optimal point. But even if you are at optimal 

point, it does not once again assure you that are you at actually maximum point or 

minimum point. For example, if I draw a characteristic, all right, now at this point my f 

dash x equal to 0. At this point also that f dash equal to 0. Now my question is this leads 

to a minimal point and this leads to a maximum point, all right. 

 

 So you need to identify. So first condition f dash equal to 0 means you reach to you are 

going to reach to an optimal point, but you need to identify whether there may be no 

more maximum points. Now for that what you need to do, you need to identify whether f 

dash x, f double dash x up to f n x exist and then f dash x, f double dash x up to f n minus 

1 x equal to 0. And the last differentiation that is the nth differentiation must not be equal 



to 0, then the following conclusion can be made. So if the last differentiation that is the 

nth differentiation of the variable x, if it is not equal to 0, that means it is either positive 

or negative. If it is positive, then you are leading to a minimum point and if it is negative, 

then you are leading to a maximum point. However, if n is odd, if however the n is odd 

and then x is a point of inflation, okay, and that is very important because for even 

differentiation you can get maximum minimum, but when n is odd, then the point x is 

leading to an inflation. Let us consider one simple example: 

f(x) = x5 − 5x4 + 5x3 + 5 … (4.2) 

f′(x) = 5x4 − 20x3 + 15x2 = 5x2(x − 1)(x − 3) … (4.3) 

Above equation implies that f′(x) = 0 at x = 0, x = 1 and x = 3. 

Now, f′′(x) = 20x3 − 60x2 + 30x …(4.4) 

At x = 0, f′′(x) = 0...(4.5) 

Therefore, to determine the nature of the point, we have to find f′′′(x): 

f′′′(x) = 60x2 − 120x + 30…(4.6) 

Now, f′′′(x) @ x=0; = 30 ≠ 0 

 

  

 

 Now similarly, if you extend this problem to a multivariable, it is unconstrained but 

multivariable. 

 

 Instead of one variable, you can have multivariables. I will just tell you what is the 

importance. You will be surprised to see it is a course on power system, economic 

operation, control system and we are talking about optimization. My dear friends, when 

you try to solve a problem, there are thousands of generators and those generators, you 

need to find the optimal power output of each generator, all right. 

 

 And they are P1, P2, P3 up to PN. So it becomes a multivariable problem, okay. So you 

cannot optimize one generator and say I have achieved optimized solutions. No. You 

have to optimize not only P1 but you have to also optimize P2, P3 up to PN and hence all 

the power system optimization problems are constrained multivariable problems, 

constrained as well as multivariable. So now we are focusing on unconstrained 

multivariable. 

 

Hence, x = 0 is a point of inflection. 
At x = 1, f′′(x) = 20 − 60 + 30 = −10 < 0. Hence, x = 1 is a relative maximum point. 

At x = 3, f′′(x) = 540 − 360 + 30 = 210 > 0. Hence, x = 3 is a relative minimum point. 



 So similar to unconstrained single variable, you can solve the problem multivariable 

where you have to take the partial differentiation dou f of x upon dou x1 and dou f of x 

upon dou x2 as well as dou f of x upon dou xn need to be made equal to 0, okay. So it is a 

partial differentiation concept and you will also try to understand the sufficient condition 

for minimum or maximum is similar to what we have discussed. Now it says that 

assuming all the partial derivatives of f of x up to the order k to be existing and 

continuous. So in the neighborhood of a stationary point x, if my d of f of x, d of f of x 

equal to 0, all right, but d of f of x is not equal to 0, so this is my rth differentiation and 

this is my kth differentiation, all right. Similar to the first and second differences, this is 

the rth differences and the kth differences, then the following holds good. 

 

 What it says: 

 If k is even, x∗ is a relative minimum if dkf(x∗) is positive. 

 If k is even, x∗ is a relative maximum if dkf(x∗) is negative. 

 If dkf(x∗) is zero, no general conclusion can be made. 

 If k is odd, x∗ is a not an extremum. 

 If dkf(x∗) takes both positive and negative values, then x∗ is a saddle point. 

Now when you talk about constraint optimization, I want your attention here very 

seriously because all our problems in power system that we are going to discuss are 

constraint optimization problems. So the one important part is method of Lagrangian 

multipliers being used to handle constraint optimization I will tell you what is constraint 

optimization, how it has been handled. Now let us say I do have a function f of x which is 

known to me and then I do have some constraints, okay. So f of x is my function, 

objective function and whereas actually constraints, let us say they are actually, you 

know, kind of actually beta of x, okay. So this is objective function and this is my 

constraint. Now when you optimize, you need to have a single function which need to be 

differentiated. 

 

 So what you ideally do, this constraint function beta of x being merged with f of x 

through a multiplier. So you have the objective function f of x plus a multiplier times beta 

of x, okay, become a objective function, all right. So then you are accommodating those 

constraint into your objective function through a multiplier and mostly it is known as 

Lagrangian multiplier, okay. So let us concentrate on a problem of minimizing a function 

of two variables x1 and x2 with one equality constraint. We will then generalize the 

method for any number of variables, okay, to understand first actually two variables and 

one constraint. So what are those variables x1 and x2? So what I am supposed to do, I am 

supposed to minimize a function: 



                      Minimize 𝑓(𝑥1, 𝑥2)                             ...(4.10) 

                 Subject to 𝑔(𝑥1, 𝑥2) = 0                         ...(4.11) 

A necessary condition for (𝑥1
∗, 𝑥2

∗) to be extremum is that: 

                      
𝜕𝑓

𝜕𝑥1
|
(𝑥1

∗,𝑥2
∗)

= 
𝜕𝑓

𝜕𝑥2
|
(𝑥1

∗ ,𝑥2
∗)
= 0                       ...(4.12) 

Hence, the first differential of 𝑓(𝑥1, 𝑥2) at (𝑥1
∗, 𝑥2

∗) is, 

                 𝜕𝑓 = (
𝜕𝑓

𝜕𝑥1
 𝑑𝑥1 +

𝜕𝑓

𝜕𝑥2
 𝑑𝑥2)|

(𝑥1
∗,𝑥2

∗)
= 0                 …(4.13) 

The constraint 𝑔(𝑥1, 𝑥2)=0 is always maintained. Hence, 

             𝜕𝑔 = (
𝜕𝑔

𝜕𝑥1
 𝑑𝑥1 +

𝜕𝑔

𝜕𝑥2
 𝑑𝑥2)|

(𝑥1
∗ ,𝑥2

∗)
= 0                     …(4.14) 

Assuming 
𝜕𝑔

𝜕𝑥2
≠ 0,  can be expressed as, 

                  {
𝜕𝑓

𝜕𝑥1
− (

𝜕𝑔

𝜕𝑥1
/

𝜕𝑔

𝜕𝑥2
)
𝜕𝑓

𝜕𝑥2
}  𝑑𝑥1 = 0                      …(4.15) 

Since 𝑑𝑥1can be chosen arbitrarily, one gets following after rearranging 

                     {
𝜕𝑓

𝜕𝑥1
− (

𝜕𝑓

𝜕𝑥2
/

𝜕𝑔

𝜕𝑥2
)
𝜕𝑔

𝜕𝑥1
}  = 0                       …(4.16) 

 

So, eq 4.16 is a very important expression for two variable constraint optimizing 

equation. So what we will do, do objective function with respect to x1 variable plus 

lambda time, the constraint with respect to x2 variable now equal to 0. So finally, one can 

also rewrite that the equations: 

A quantity λ is now defined as, 

                        𝜆 = −

𝜕𝑓

𝜕𝑥2
𝜕𝑔

𝜕𝑥2

|

(𝑥1
∗ ,𝑥2

∗)

                          …(4.17) 

Using above in (1.25), 

                          (
𝜕𝑔

𝜕𝑥1
+ 𝜆

𝜕𝑔

𝜕𝑥1
 )|

(𝑥1
∗,𝑥2

∗)
= 0                …(4.18) 

  



Again,(1.26) can be written as, 

                 (
𝜕𝑓

𝜕𝑥1
+ 𝜆

𝜕𝑔

𝜕𝑥2
 )|

(𝑥1
∗ ,𝑥2

∗)
= 0                    …(4.19)     

Also, 

                           𝑔(𝑥1
∗, 𝑥2

∗) = 0                          …(4.20) 

Equations (1.27) to (1.29) represent the necessary conditions for  (𝑥1
∗, 𝑥2

∗ ) to be an 

extremum. The quantity 𝜆 is called the Lagrange multiplier. Following function is called 

the Lagrange multiplier. 

                  L(𝑥1, 𝑥2, 𝜆)=f(𝑥1, 𝑥2)+ 𝜆 g(𝑥1, 𝑥2)                  …(4.21)    

Now if you talk about a simple unconstrained optimization problem: 

Minimize: f(x1,x2)=0.25x1
2 + x2

2 

 

Now, Minimize within a linear equality constraints: 

 

Minimize: f(x1,x2) =0.25x1
2 + x2

2 

Subject to the constraint: ω(x1,x2)=0 

Where: ω(x1,x2) = 5 - x1 - x2 



 
 

Therefore, equality constraint simple optimization one numerical example let us solve. 

 

 Therefore, in the graphical method we saw how the solutions are at lying at 4 and 1 but 

now let us solve through Lagrangian multiply. So what has happened what is my 

objective function: 

L(x1, x2, λ)=0.25x1
2 + x2

2 + λ(5 −x1 −  x2) 

∂L

∂x1
= 0.5x1- λ=0 

∂L

∂x2
= 2x2- λ=0 

∂L

∂λ
= 5 − x1 −  x2=0 

𝑥1 = 4 

𝑥2 = 1 

λ = 2 

 

 So there are three differential values. So probably you could see either use Lagrangian 

multiplier or even you from this equation linear equality constraint equations you could 

see that they both are satisfied. So but in power system we will try to solve most of our 

equations through this equation. I will just try to emphasize little bit here in power system 

engineering what happens this x1 and x2 are nothing but majorly my variables P1 and P2. 

P1 and P2 are nothing but the power output of the plant 1 and 2 and it can go as 

maximum as Pm and what are the constraints? Constraint means for example P1 plus P2 

for example equal to 300 megawatt. So I want to meet the total power of 300 megawatt 

out of two generators. So then you can form this equation that P1 plus P2 minus 300 

equal to 0. So that will appear in this zone and the objective function is nothing but my 

cost characteristics which are nonlinear. So they are ideally AP square plus BP plus C 



and similarly it could be P1 square BP plus C or sometime it is P2 square plus BP2 plus 

C. So there are nonlinear equations will come in this zone. So you have cost 

characteristics of the power plant to generate P amount of power how much money you 

have to spend. So my objective function will be now the summation of the cost 

characteristics of cost functions plus lambda time the constraint and that will help me to 

understand what is P1. So once the objective function are known to me, the constraints 

are known to me, I can easily calculate the value of power output of each and every 

power plant and that's why it is important for you to understand what is simple 

optimization with equality constraint with multi variables. All right then you can have 

many more complicated problems. This is just a journey for all of you and additional 

equality constraints which is defined as: 

Minimize: f(x1, x2) 

Subject to: ω1(x1, x2) = 0 

ω2 (x1, x2) = 0 

ω3 (x1, x2) = 0 

L=f(x1, x2) + λ1ω1(x1, x2) + λ2ω2(x1, x2) + λ3ω3(x1, x2) 

∇f +  λ1∇ω1 + λ2∇ω2 + λ3∇ω3 = 0 

Solution:  

 
∂L

∂x1
= 0,

∂L

∂x2
= 0  

∂L

∂λ1
= 0,

∂L

∂λ2
= 0 ,

∂L

∂λ3
= 0  

So I request all of you to get into mathematical optimization sections or any optimization 

textbooks, linear optimization, nonlinear optimization you can focus on to know much 

better on the subjects. So this is how the inequality constraints are being satisfied and 

then what is the inequality constraint. So inequality constraint means you could see now 

previously used to say gi x which is equal to 0 but now we are saying that gi x is less than 

or equal to 0 and then how do you handle it. For example if I say my mVA flow in a 

particular line is less than or equal to 100 mVA, this is the line i. So this is some sort of 

my inequality constraint that also can be incorporated in our optimizing problems. So 

then we talk about good to good conditions and then there are different applications of 

those equality constraints and this is how the problem when we talk about inequality. 

 

 So you could see that this is my objective function and there is an equality constraint as 



well as there is an inequality constraint. So how do you optimize a function which has the 

equality constraint as well as inequality constraint. So you could see the functions which 

is my equality constraint characteristics and then I have the inequality cost function 

characteristics and then I am probably satisfying those both I have to find my optimal 

points. So you can take one numerical example. So what you have done for example if 

this is my objective function and this is my equality constraint, it is the inequality 

constraint so instead of lambda I have added one more variable that is mu. 

 

  

 

 So here the solution, optimal solutions are not easy as similar to your equality 

constraints. So when you get into inequality so there is a iterative method through which 

you will get your value of x1, x2, lambda and I strongly recommend all of you to get into 

wonderful textbooks and the examples of both in Wollenberg and some other optimizing 

textbook to understand both equality and inequality but nevertheless I tried my best to 

make you understand how to obtain those solutions when the nonlinear optimization with 

equality constraints as well as inequality constraints. Thank you very much. 


