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K-Means Clustering Algorithm 

Hello! Welcome to another module in this massive open online course. So, we are looking at K-

Means Clustering which is essentially as we said one of the many algorithms to perform 

clustering that is grouping, a given unlabeled data set. That is large data set without labels into 

meaningful, logistically similar clusters or sets of points. This is known as clustering and this is 

the part of unsupervised learning because we are working with unlabeled data.  
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So, we are looking at the K-Means algorithm and let us continue, K-Means for, we are looking at 

the K-Means algorithm for clustering and remember the idea here is you have the, K is the 

number of clusters and remember we have the points x 1 bar or x 1 bar, x 2 bar up to, we have I 

believe x bar m.  
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This is that number of points and the idea remember is to determine these parameters alpha i j, 

where, which is equal to, that is basically this is equal to 1. If x bar j is assigned to cluster i and 0 

otherwise. So, that is essentially, these are the parameters. These are, we can say the assignment 

parameters that have to be determined.  
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Now we have therefore summation. Let us look at the cost function that we would like to 

minimize for this cluster assignment. We would like to find the cluster assignment such that this 

cost function is minimized. What is the cost function? You want to sum over all the clusters, i 

equal to 1 to K, sum over all the points i equal to 1 to m, j equal to 1 to m, alpha i j x bar j minus 

mu bar i. So, we want to minimize, this essentially distance, if you look at this, this norm of x bar 

j, now you remember mu bar i this is the centroid of cluster i. 

So, what we want to do is, now this is essentially the distance or you can say the norm or square 

of the distance or basically the norm is the distance of x bar j from center of cluster i and 

therefore if you look at this cost function, this, entire this thing is nothing but total square of the 

distance, sum square of distances of all points from centers of the clusters.  

Or centroids of their clusters, from centroids of their clusters, so that is, so we want to find 

essentially it is very intuitive. So, we want to find the optimal assignment parameter alpha i j 

such that these distances, I mean that is the idea, the point is that you want to find this cluster 

such that these clusters are comprised of closed points. 

So, that if you look at the distances of these points from the centroids of these clusters and you 

look at the sum of the squares of the distances that should be as low as possible which essentially 

implies that each of these points is close to the centroid of its own cluster and that is how the 

clustering is performed. And this is performed in an iterative fashion.  
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So, K-Means is an iterative algorithm to basically minimize this cost function. Remember we 

want to minimize, the aim is to minimize this cost function and we would like to perform an 

iterative algorithm. What is the iterative algorithm? Now pick the clusters, start with or we say 

initialize these cluster centroids randomly or uniformly, choose some feasible sort of assignment. 

So, we will start with, remember these are the centroids mu bar 1 mu bar 2 0. These are the 

centroids of the K clusters in the 0 th iteration. 

So, this as usual, this is our iteration index, which is, this is iteration 0 so this is even before the 

iteration begins. So, this is the initialization, these are the K centroids, so we will say initial 

values. These are the initialized, and these are then, and these are also termed as seeds basically. 

So, you have seeded this. So, these are the seed or this is the seed of your algorithm and so on. 

So these are the initial values of the centroid.  

So, we have started with, so this is the, these are initialized randomly and this how we are 

initializing our K-Means algorithm which is essentially an iterative algorithm. K-Means 

clustering. So, this is your iterative algorithm. This is the K-Means algorithm, which is an 

iterative algorithm for clustering. Now let us look at what are the iterations.  



(Refer Slide Time: 09:24)  

 

Now iteration 1, what happens in iteration 1, now what we would like to do is given mu bar i l 

minus 1. So, we have let us say iteration index is l, l equal to 1 to begin with, which implies l 

minus 1 equal to 0. So, we have all these mu bar i l minus 1 or i equal to 1, 2 up to K. Now, 

determine alpha i j the assignment in the l th iteration. This is remember, and to begin with in 

this iteration l equal to 1. So, we have mu bar j, mu bar i l minus 1 that is mu bar i 0. 

And that is technically what has been determined in the previous iteration l minus 1 th iteration 

and to begin with we have all the values mu bar i 0 and now we determine alpha i, j, l. That is 

basically the assignment parameters of all the points in the l th iteration and how do we 

determine that again we have to minimal cost function. 
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This is iteration l and we have to minimize the cost function. Remember we have the cost 

function. Our cost function this is essentially i equal to 1 to K, j equal to 1 to M, alpha i, j norm x 

bar j minus mu bar i l minus 1 square. Now determine these are essentially what we have to 

determine. So, now look at for each point for each point, now for each point j look at what is the 

alpha, let us compute what is this alpha i j for each j. For each j, each point j that is basically 

each j or you can say for each x bar j determine cluster i and for that cluster alpha i j will be 

equal to 1 and for all the other clusters alpha i j will be equal to 0. 



And how do we do this? That is very simple, observed and now note that alpha i j, if you assign 

it to alpha i j remember it is equal to 1 for only 1 cluster, for each j only one cluster 0. So, in that 

sense this is a hard partitioning algorithm what I mean by that is in each iteration it assigns a 

point to only one particular cluster. It cannot assign it to multiple clusters. So, alpha i j equal to 1 

only for cluster and it has to be 0 for all the other clusters for any point, and therefore, now if you 

look at the cost function. 
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For each point that is you look at the summation over all i equal to 1 m for each point. Now we 

are looking at it from the perspective of each point j or you can say x bar of j. This is basically 

we said this is I think n cross 1 dimensional vector. So, we take the sum of the distances from all 

the clusters heads and you can clearly see this is equal to, this is minimized, this is minimum if, 

observe that this is minimum if alpha i, this is minimum when, or this is minimized when, again 

let me write it technically and, minimized when? 
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This is minimized when we assign alpha i tilde j equal to 1 such that i tilde equals the minimum 

of x bar j minus mu bar i l minus 1 square. That is you are choosing from all these distances x 

bar j minus mu bar i l minus 1 that is given all the centroids. You are essentially choosing that 

centroid which is the closest to x bar j. So, you are choosing, you are assigning x bar j to that 

cluster whose centroid is closest to, and naturally if that distance is minimum this whole cost 

function you can see is minimized because all the alpha i j's are 0, you will only have alpha i 

tilde j equal to 1 corresponding to the cluster with the closest centroid. 

And therefore, that is essentially, this is minimized by assigning, so the technical way to see this 

is, although it is very, a little complicated when you look at the mathematics. This is minimized 

the simpler way of saying this is, this is minimized when x bar j is assigned to cluster i tilde such 

that the centroid mu bar i tilde as computed in iteration l minus 1 is closets to x bar j. That is the 

philosophy. 

So, you are assigning x bar j to, you are assigning the point x bar j each point x bar j for that 

matter to the cluster i tilde such that corresponding centroid mu bar i tilde as computed in the 

iteration l minus 1 is the closest to x bar j, that gives us the assignment. 
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That is alpha i tilde in iteration l 1 if i equals i tilde 0 otherwise. So, we are assigning each, and at 

the end of it, therefore now we have obtained alpha 1 l j, alpha 2 j of l and alpha k of l, j for j 

equal to 1 2 remember we have total of m points. So, this is essentially what this gives us. This 

is, you can call this as the first step. 

This is essentially what is obtained in, you can call this as the first step. So, in the iteration you 

have the step one that is given centroids or given centroids determine cluster assignment. Now 

step two will be given the cluster assignment, now we have obtained the cluster assignment. 

Now we will come to step 2. 
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Now what is step two in this iterative algorithm? Let us say step two is given the cluster 

assignment, the reverse given cluster assignment we have to determine the centroids, that is the 

step two. So, we are given the cluster assignment, now determine the centroids and that can be 

done as follows. Now we go back to our cost function which is essentially minimize summation i 

equal to 1 to K, j equal to 1 to m alpha i j l norm x bar j minus mu bar i whole square.  

Now we know these, these are known, now these are known for this, remember we are still in 

iteration l, so this is step two iteration is the same iteration l th iteration. So, iteration index is still 

the same l and now what we have to do is, now determine this. Now we will look at this for each, 



now look at this for each, previously we fixed the point and assigned it to a cluster. Now we will 

fix a cluster and determine the centroid. So, we will have for each i determine the centroid, and 

how do you determine the centroid?  
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Again now consider this as summation over j for each i, so we have j equal to 1 to m, we have 

alpha i l j norm x bar j minus mu bar i whole square and we have to minimize this, which I can 

write as minimize sum j equal to 1 to m alpha i l j, x bar j minus mu bar i transpose x bar j minus 

mu bar i, which now you can also write as minimize j equal to 1 to alpha i l j x bar j minus twice. 



We have minus twice, we can write this as mu bar i transpose x bar j plus mu bar i transpose mu 

bar i and now if you look at this one.  

Now once again we have to minimize this with respect to mu bar i. Now remember we have to 

minimize this whole thing, remember you have to minimize with respect to mu bar i and 

therefore the way to do it is. 
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Compute gradient with respect to mu bar I. The reason is because mu bar, remember the only 

thing that we are saying over here is basically mu bar i is a vector and how do you minimize with 

respect to a vector, compute the derivative with respect to each component of the vector which is 

nothing but the gradient and set equal to 0. And we use the following principles that is if you 

have gradient of mu bar i transpose x bar j this is equal to x bar j and gradient of mu bar i 

transpose mu bar i this is equal to twice mu bar i.  

Therefore, when you look at this now the gradient of this will be, if you look at this term the 

gradient of this will be basically, simply x bar j and the gradient of this term gradient. So, we are 

lighting the gradient so, and the gradient of this term, this will be twice mu bar i. So, essentially 

this implies setting gradient to 0, so we will have summation of j equal to 1 to m. Now the first 

term does not depend on mu bar i, so this gradient will be equal to 0. So, the first term we will 

have gradient 0.  
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So, this will be summation j equal to 1 to m alpha 1 alpha i l of j of each point j into 0 minus 2 x 

bar j plus twice mu bar i this is equal to 0. And this implies, now solving this, this implies 

summation j equal to 1 to m alpha i l of j twice x bar j is equal to twice summation j equal to 1 to 

m alpha i l j, mu bar i and this 2's cancel and therefore what you get is a very interesting solution. 
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This is essentially, if you look at this mu bar i equals summation j equal to 1 to m alpha i l of j 

over summation j equal to 1 to m alpha i l of j into x bar of j and this is the centroids in the l th 

iteration. So, this these are centroids. This completes centroids in iteration l and if you look at 



this you will observe something interesting. Remember alpha i l j equal to 1 or alpha i l j equal to 

1, let me write this a little bit more elaborately or little bit more clearly, remember alpha i l j 

equal to 1.  

This quantity alpha i l of j equal to 1, only if point j belongs to cluster i, this is equal to 1 only if 

point j belongs to cluster i or class i and therefore this implies, that this is, simply what it means 

is we are going to weigh only that, that is for, so for each i you are only going to add 1. If j 

belongs to cluster I. 

(Refer Slide Time: 30:35)  

 

So, this is going to be simply mu bar of i this is equal to summation over all j. Such that if x bar j 

belongs to this cluster i, you will add 1 that is you will add 1 corresponding to all points that 

belong to cluster I, and simply in the denominator, this is simply summation of j, such that x bar j 

belongs to class i, you will have, that is it and you will have x bar of j.  

Which if you look at this, it is simply and this is the l th iteration and this is simply, if you look at 

it the average or the sample mean of all points x bar j belonging to average of all points x bar j. 

that is you take all the points x bar j, which belong to cluster i take their mean or take their 

average that is essentially the centroid corresponding to that. So, step 1 you compute cluster 

assignments, step 2 we compute the centroids based on the cluster assignment and we iteratively 

repeat these things, and these iterations continue and now the iterations continue.  
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So, this is the end of step two, in fact I would also say end of the iteration and repeat, now what 

we do is repeat the iteration, repeat steps 1 comma 2 until convergence, and what do we mean by 

repeat steps 1 comma 2 that that is centroids and cluster assignment do not change. That is what 

happens, if you keep doing this iteratively after certain point the centroids in the clusters 

assignment remain fixed at that point you stop the algorithm and if you look at this, this is a very 

the intuitive way of saying, this is very simple instead of now that we have done all mathematics 

so intuitively it is basic, so intuitively or simplified us put it simplified K-Means. 
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Let us say this is simplified K-Means which is essentially given x bar 1, x bar 2, x bar 1 

determine start or initialize mu bar 0 that is the initial centroids mu bar this is would be K of 0. 

These are the initial centroids, now iteratively, now what are the iterations iteratively, step one 

would be assign each point x j bar, each point x bar j to cluster whose centroid is closest, this is 

the idea.  

So, you look at, so for each point you look at the distances to all the centroids, of each point look 

at the distance to all the centroids, assign it to the cluster with whose centroid is closest. Step 2 is 

simpler. 
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Take all points in every cluster average it. Step 2 for each cluster recompute centroid or each, so 

step 2 is recompute centroid as mean or average of all points assigned to the cluster, recompute 

the centroid and iteratively repeat this, and we repeat these steps until convergence. So, we 

compute, basically assign start with initialization of the centroids, assign each point to the cluster 

with the closest centroid. Take the average of all these points in each cluster to obtain the new 

centroids.  

Again repeat, in the next iteration once again assign the points, each point to the cluster with the 

closest centroid, take the average to compute the centroid keep repeating it, at some point the 

clusters will not change that is, the closest centroid will be the centroid in that particular cluster 

itself and therefore, the average that is the centroid will again be the average of all the same 



points and therefore, things will sort of freeze and not change in fact the algorithm converges 

fairly quickly as you will observe and many have observed. 

It is a very simple algorithm, easy to probably, I mean the math might be seem a little 

complicated but the idea is very intuitive, very easy to understand, probably one of the easiest 

clustering algorithms to implement and therefore very popular in machine learning. So, let us 

stop this here, let us continue our discussion on other applications of linear algebra in the 

subsequent modules. Thank you very much. 


