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Machine Learning Application: Support Vector Machines (SVM) 

Hello, welcome to another module in this massive open online course. So in this module let us 

look at an interesting application of the principles of linear algebra in the context of machine 

learning and this is a very important application termed as SVM, it stands for Support Vector 

Machines which is in, which you can is a very important classifier or a concept in the context of 

machine learning. So let us understand this. 
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So what we want to explore today is this very important classifier termed as a support vector 

machine. Very important, so naturally this is a very important, so the abbreviation is SVM. This 

is a very important application in the context of ML that is as you are already familiar, that is 

machine learning. Now what is a support vector machine? What is the principle of support vector 

machine? Let us try to understand this. 
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So support vector machine does the following job. It is a binary classifier, so you have... if you 

recall what is a classifier? You have two classes of data. You are partitioning it in to two classes 

so you have data which is to be partitioned in to, so this is your class 0 let us say and this is your 

class one. I can denote this by plus 1, by minus 1 we will look at more at this later, and so this is 

basically a partition, right?  

So you are partitioning your data into two classes and this is also, or you are basically 

classifying, this is also basically a binary classification right? You are classifying your data in to 

two types class 0 and class 1. So there is a large amount of data that is available and you are 

performing classification in particular binary because you are classifying it in to two classes 0 

and 1. 
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So this is essentially, you can also turn this as binary classification problem, this is 0 and 1. 

Binary because there are essentially two classes. So this is a binary classification problem. For 

instance example let us take this for instance. Where does this binary classification arise? For 

instance let us say you have a medical detection. 

For instance let us take a look at a medical example in the medical profession. You have for 

instance the detection of presence of absence of a particular ailment. So you have a large amount 

of data let us say in terms of blood test or x-rays or CT scans or so on and from this data you 

want to classify it into two types. Essentially as either any ailment is present or an underlying 

disease is present or an ailment or essentially an underlying disease is absent. 

So that is a very, very important problem, a classification problem in the context and problem in 

the context of medicine, and as you can see that is a very important problem because it has a lot 

of applications and the answer, the response to this problem will be yes or no. If the ailment is 

present or not. So it is binary, 0 or 1. 

It is not, what I mean to say is you have to distinguish it from a continuous regression problem 

where the output value is continuous that is you can take any particular value on the set of real 

numbers or complex and so on. 



In a binary classification problem the output has to be belong to a particular set of discreet 

values. In particular for binary classification it has to be either 0 or 1. That is the output response 

can either be or, it cannot be for instance 1 point 5 or minus 2 point 3, right? You simply want to 

know if the ailment is present or absent. 
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A similar another interesting example for instance in the context of quality control and this is 

very important in manufacturing again for instance another example in the context of quality 

control for instance if the manufactured object, right? If manufactured object to check to, or to 

determine manufactured object, needs the desired quality, to check if the manufactured objects 

needs the desired quality standards for instance, you might fabricate a new car or manufacture a 

new car. 

How do you determine if this car for passes all the, this car is, meets the particular standard that 

has to be ensured by that company, who probably run a rod of tests, acquire a lot of data, put this 

data through an algorithm and the algorithm outputs a value 0 or 1. 0 means probably acceptable 

or 1 means it is not acceptable. 

Now you can see the 0 and 1 itself, by themselves do not mean anything, these are basically what 

you assign. So 0 either, so 0 and 1 can either mean depending on what you assign can either 

mean that we decide it meets a certain set of criteria or does not. So one will automatically be, so 

if 0 denotes certain aspect 1 obviously means the opposite of that. The absence of that aspect. 



For instance if 0 is the presence of disease 1 would mean then the absence of disease and so on 

and so on. 
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The point is now there are many classifiers that can be designed. In particular we are going to be 

interested in the linear class of classifiers because these are interested in linear classifiers, 

because these are easy to determine and easy to analyze. So non-linear are typically much more 

interactive or easy to determine and more importantly also easy to analyze. So this is the linear 

classifier. And the linear classier, the linear classification can be achieved by what is known as a 

hyper-plane what do you mean by a hyper-plane? 
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A hyper-plane is essentially a plane in n dimension that is if I look in n dimensional space, right? 

If I ask the question what is a general that is extension of this, generalization of the notion of a 

plane to n dimensional space that is a hyper-plane and the expression of the hyper plane is given 

as it is characterized by, if you have any n dimensional hyper-plane a 1 x 1 plus a 2 x 2 plus so 

on a n x n plus b equal to 0 which implies, now writing it using our principles of linear algebra, 

writing in terms of vectors. 

Remember that is what linear algebra is about. Developing compact notation, representing it 

efficiently and analyzing is to I can write it as a 1, a 2, a n; x 1, x 2, x n plus b equal to 0 this you 

can call this a transpose. This is the vector x bar. 
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So you can write this as a bar transpose. So this can be written as a bar transpose x bar plus b 

equal to 0. so the expression for the hyper-plane in n dimensions is given by a vector a bar. This 

is essentially a weight vector comprising of the weight a 1, a 2, a n, then the vector of variable x 

1, x 2, x n. a bar transpose x bar, plus b equal to 0. So I can write this as you have a bar which is 

essentially your, weight vector. I can call this as my weight vector or co-efficient vector and I 

have x bar which is equal to x 1, x 2, x n. This is my variable vector, right? And therefore, and b 

is nothing but a constant. 
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So I can write this as a bar transpose x bar plus b equal to 0, this is a constant, this is your n cross 

n 1 variable vector, n cross 1, co-efficient vector or weight vector and so on. And for instance 

now if n is equal to 2 implies this becomes a line. For n equal to 2 this becomes a line in 2D 

space. In 2D we are well aware that so you have for instance let us take a simple example 2x 1 

plus 3x 2 plus 8 equal to 0. This is a line in 2D. 

Now n equal to 3 implies this is our regular plane what we know as simply a plane in 3D, you 

might have learned this in your high school for instance. You have 4x 1 minus 5x 2 minus 3x 3 

plus 9 equal to 0. so this is simply what you have, very much learned earlier this is a plane in the 

3D, in the regular 3 dimensional space and so on and so forth. And the generalization of this to n 

dimensional space is a hyper-plane. 
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So the generalization of this. So the generalization of plane or concept of plane to n dimensional 

space is nothing but your hyper-plane. This is basically the generalization of the concept plane to 

n dimensional space that is essentially to a hyper-plane and what you will see very interestingly. 

It is not very difficult to see is that whenever you have this hyper-plane that is arbitrary n 

dimensional space, you can visualize this for now in 3D, in 2D, a bar transpose x bar plus b equal 

to 0. 

Now it divides this into two regions. Each hyper-plane divides the space, so this hyper-plane, so 

not just this hyper-plane any hyper-plane. So hyper-plane divides space into two regions. So this 



corresponds to the region let us say a bar transpose x bar plus b greater than equal to 0 then 

immediately the opposite one will be a bar transpose x bar plus b less than equal to 0 and this is 

of course your hyper-plane that is a bar transpose x bar plus b equal to 0.  

So these two, so the hyper-plane divides the n dimensional space into two regions. Each of these 

regions is known as a half space. So it is like taking a knife and slicing it, the object into two 

parts. One is which lies to one side and other which lies to another side. One is basically 

characterized by a bar transpose x bar plus b greater than equal to 0, the other one is a bar 

transpose x bar plus be less than equal to 0. Each of these regions I known as a half-space. So 

these two regions these are known as basically, these regions, each is known as a half-space. So 

hyper-plane divides the nD space in two two half-spaces. 

(Refer Slide Time: 16:35) 

 

So hyper-plane, so we have the hyper-plane divides the space. What is the first half space? That 

is your a bar transpose x bar plus b greater than equal to 0, and the other one is a bar transpose x 

bar plus b less than equal to 0, and now you can see I can use this for classification, I can use this 

hyper-plane now to separate my data, such that the data belonging to class 0 lies in one half-

space, data belonging to class 1 lies in the other half-space. That is the idea of the support vector 

machine. 
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So what is the idea of a support vector machine? The idea of the support vector machine is the 

following thing that is if you look at it you have the hyper-plane that is how do you find the 

hyper-plane such that this is your data. So each of these lies in its own half-space. So we design a 

hyper-plane such that it partition the data into two different half-spaces. That is essentially the 

idea behind a support vector machine.  

Support vector machine is to design essentially a hyper-plane that optimally partitions and we are 

going to look more at that. How to optimally partition the data into two different half-spaces. 

That is essentially the idea behind a support vector machine. Support vector machine is to design 

essentially a hyper-plane that optimally partitions and we are going to look more at that. How to 

optimally partition the data into two different half-spaces? 
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So hyper-plane, so what is SVM doing, support vector machine design hyper-plane to partition 

data into two different half-spaces. That is essentially what the hyper-plane is doing. The half-

spaces corresponding to a bar transpose x bar plus b less than equal to 0, a bar transpose x bar 

plus b greater than equal to 0. 

Now let us formulate the problem for this. what is the specific problem? How do we do this? 

Problem which means problem for binary classification. Let us say we have considered the 

points, we consider the points we have m points and this is our training set and we have the 

corresponding classes for these m points, sorry! This is not y bar 1 but these are just 0's and 1's 

so these will be the scalar quantities. 

So each of these are your, this is your training data, again you can think of this as the response. 

So similar to regression problem we can think of this as the responses, output variables, etc. 

these are essentially or explanatory data, explanatory variables, regression variables so on or 

regressors. 
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These are essentially you explanatory variables and each y i, you can see right? Each y i belongs 

to the set either, we can call this as not exactly 0 or 1 we will call this as minus 1 or plus 1 that is 

we denote the classes as let us say class 0, we are going to see, this is going to have a very big 

use. Class 0 y i equal to minus 1 plus 1 y i equal to, or let us say y i equal to plus 1 for class 0. 

It does not really matter as long as you are consistent with the notation. So class 0 we are saying 

y i equal to plus 1 that is the response, corresponding to class 0, if the class is 0 response has to 

be plus 1. If the class is 1 the response has to be responses minus 1. 
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Now let us take a look at it. Therefore now if we look at this, right? Let us say we have our 

hyper-plane, this is our hyper-plane and this is our a bar transpose x bar plus b, this is us say a 

bar transpose x bar plus b greater than equal to 0 and this is let us say a bar transpose x bar plus b 

less than equal to 0 so this is essentially your class. 

Let us say this is your class 1 and this is your, let us say your class 0, now what you can say is 

that for all points that is x bar k, for x bar k belonging to class 0 we must have a bar transpose x 

bar k plus b greater than equal to 0, which also implies. I can now multiply this by y k. y k times 

a bar transpose x bar k plus b greater than equal to 0. 



(Refer Slide Time: 24:27)  

 

So this is for all points of class 0. So y k you can also call this as the class label or class response 

or whatever it is. Now similarly for all x bar k element of class 1 we have a bar transpose x bar k 

plus b less than equal to 0. now again once you bring y k into the picture, remember here y k 

equal to 1 for class, y k equal to plus 1 for class 0 here y k equal to minus 1. 

So once again this means since you are multiplying by a negative quantity you will have y k into 

a bar transpose x k plus b greater than equal to 0 why? Inequality reverses, why? And this is 

important. 
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Look here, inequality reverses, why? Because y k equals minus 1 so that is the thing, so therefore 

the same equation y k into a bar transpose x bar k plus b, greater than equal to 0 can be used to 

represent both the classes, right? Because y k equal to plus 1 for class 0, y k equal to minus 1 for 

class one and that essentially captures both the half spaces. 
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So for both classes the combined equation, both classes combined constraint is y k into a bar 

transpose x bar k plus b greater than or equal to 0, right? Where we have seen y k equal to minus 

1 for class 0 or y k equal to plus 1 for class 0 or y k equal to minus 1 for class 1. 
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Now the point is, now if you look at even this problem, there is a problem, what is the problem 

here? The problem is the following, please look at y bar k is, a bar transpose x k plus b greater 

than equal to 0. Now look at this, this is satisfied for the trivial solution a bar equal to 0, b equal 

to 0. 

Therefore we cannot have this. we will have to twig this a little bit, right? Because otherwise if 

you simply say greater than equal to 0 I can simply say a bar equal to 0, vector a bar equal to 0, b 

equal to 0 then this is always equal to 0 so it trivial satisfies this. 
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So to avoid that we here just have to tweak it a little bit and what we are going to say is that y k 

in to a bar transpose x k plus b greater than or equal to 1. So we will introduce this constant 1 

rather than 0. This is to avoid the trivial solution. What is the trivial solution? 

a bar equal to 0 b equal to 0. So to avoid the trivial solution we will tweak this a little bit so now 

we have the two hyper-planes. What are the two hyper-planes? We have the two hyper-planes, so 

for y k equal to plus 1, that is class 0, this implies, what does this imply? a bar transpose x bar k 

plus b greater than equal to 1. 
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Now for y k equal to minus 1 class 1, this implies a bar transpose x bar k plus b less than or equal 

to minus 1. 
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So if you see now what happens to this is you essentially have, now these two hyper-planes. So 

now you do not have one but you essentially have two hyper-planes so you can say this is your a 

bar transpose x bar plus b equal to plus 1 and this is your a bar transpose x bar plus b equal to 

minus 1. So you have these two hyper-planes and now what you are doing is you are, so you 

have these different classes now.  



Let us say you have this class 0 and you have the class 1 and now you are not just fitting a hyper-

plane but you are separating so this is the separation. So you are maximizing this separation or in 

other words you are fitting a slab. This is essentially known as a, so you are essentially fitting not 

just hyper-plane but you are inserting a slab, a thick partition, like hyper-plane you can think of it 

as a thin partition between these two classes. 

And that such a classifier or a machine always going to be a very fragile, you can see just like a 

thin cloth partition between the two classes, easily broken. Now what you are doing is not 

inserting a thin partition but a thick slab, like think of this as a concrete slab so as that you want 

to very rigidly partition these two into two different classes, so that there is no chance of 

confusion or overlap. 

And therefore the thicker the slab, the more robust is your classifier, the less is your chance of 

error and therefore you want to design your classifier in such a way such that the width of the 

slab, width of this partition is maximized. That is the idea essentially in your support vector 

machine. So what is the central idea in your support vector machine? 
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So this, I call this as the width of the slab. So, what is the aim of SVM? Now let us look at the 

aim of SVM design the slab, right? Design slab with maximum width. This implies robust 

classification or this implies you have a robust classifier, implies least error. We are talking 



about classification error. So the most thicker your slab, the better is your classifier, the more 

robust, is your classifier, the lower is your classification.  

All right so that is essentially the idea behind the support vector machine and how do we actually 

design the support vector machine, that is something that I would like to, in next module so 

please go through this and try to understand this concept at this level and then we will look at it 

in detail at the working of a support vector machine in the next module. Thank you very much. 


