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Linear Dynamical Systems: Matrix Exponential via SVD 

Hello, welcome to another module in this massive open online course. So, we are looking at 

the applications of linear algebra specifically in the context of LDS that is Linear Dynamical 

Systems and autonomous linear dynamic systems. Let us now look at what happens when one 

inserts the Eigen value decomposition or one essentially gets the Eigen value decomposition 

to the picture of the particular matrix. So, let us look at autonomous linear dynamical systems 

and what implications does the Eigen value have, Eigen value decomposition have in the 

context of LDS? 
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So, we are looking at LDS and what we are interested in looking at is; what are the 

implications of EVD that is the Eigen Value Decomposition for LDS? As you will know 

these are linear dynamical systems. So, this is a and this is the EVD which you must well be 

familiar by now. This is the Eigen Value Decomposition.  

Now, let us look at what happens now, we remember the fundamental equation for EVD is 

you have your V bar dot equals H v bar, V bar dot is nothing but d v bar dot by dt and the 

solution of this is interestingly given as this is an autonomous linear dynamical system input 

is 0 solution is given as V bar t equals e raised to the power of you might remember this is e 

raised to the power of t times H into V bar 0 where this is a very interesting quantity. 



This is what we have termed as the matrix exponential. This is what is termed as a matrix 

exponential. Now, let us look at what happens, how can you derive further insights into this 

solution of the autonomous linear dynamical system using the Eigen value decomposition? 

So, let us start with the Eigen value decomposition of this matrix H.  

(Refer Slide Time: 03:18)  

 

 

So, we have H equals U lambda, U inverse. This is, remember this is the Eigen value 

decomposition and remember it satisfies the property H U equal to lambda U where U is the 

matrix of Eigen vectors. Now, let us specifically look at and lambda remember this is the 

diagonal matrix of Eigen values; lambda equals you can write this as lambda 1 lambda 2 so 

on up to lambda m. 



If this is an m cross m matrix, so these is the rest of the entries are of course, these are zeros. 

So, this is basically a diagonal matrix Eigen values and what happens here is that now we will 

form so, this is the m cross m matrix of this is let us say m cross m, U is the m cross m matrix 

of Eigen vectors. Let us say U equals u 1 bar, u 2 bar u m bar. These are the m Eigen vectors. 
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Now, what we are going to do now, observe an interesting probe. Let us see what is going to 

happen to H raised to the power of n. So, because H is a square matrix remember I can 

compute always compute H raised to the power of m that is multiply H with itself n times. 

So, let us look at H raised to the power of n, this simply means that the matrix H is multiplied 

with itself n times.  

Now, substitute the EVD. So, we substitute the EVD, this becomes U lambda U inverse U, 

lambda U inverse so on and so forth U lambda U inverse. Now, you look at this U inverse 

into U this becomes identity and so on and so forth. So, you will have U inverse, you will 

have U over here and so on and so forth and U lambda U inverse and so on and so forth.  

So, naturally all these U inverse U, this will become identity. All U will be left inside are 

these lambdas. So, this will be U. So, this will be u times lambda times lambda times U 

inverse. So, it will be this n times and this is ultimately equal to U lambda to the power of n 

U inverse. So, this is an interesting expansion. So, what you will see is H lambda, H raised to 

the power of n in terms of the Eigen value decomposition has a very simple expression. 

It is simply the Eigen value decomposition is U lambda U inverse H raise to the power of n is 

U lambda is to the power of n U inverse. So, you simply take the matrix of a diagonal matrix 

of Eigen values lambda, raise it to the power of n which means that each Eigen values raise to 

the power of n lambda 1 to the power of n lambda 2 to the power of n and so on and 

multiplied by U post multiplied by U inverse.  

So, and now you can see this is nothing but lambda raised to the power of n will simply be 

lambda raised to the power, lambda 1 raised to the power of n lambda 2 raised to the power 



of n, lambda m raised to the power of n and so on and this will be U inverse. So, this is 

basically your lambda raised to the power of n creating simply taking each Eigen value 

computing its nth power.  
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Let us now look at therefore, what happens to the matrix exponential now, let us ask the 

question what happens to the matrix exponential? Remember them recall the matrix 

exponential e raised to the power of t H that is equal to I plus t H plus t square H square by 2 

factorial plus t cube H cube plus 3 factorial which is equal to I plus t times U lambda inverse 

plus t square H square by 2 factorial that is t square by 2 factorial U lambda square U inverse 

plus t cube by 3 factorial into H cube which is nothing but U lambda to the power of 3 U 

inverse plus so on which now, of course, I the identity matrix also I can write as U times U 

inverse. 

So, net what is this going to be? This is going to be U times there is going to be I plus t 

lambda plus t square by 2 factorial lambda square plus t cube by 3 factorial lambda cube plus 

so on times U inverse and now, if you look at this you will notice something very interesting. 

This is nothing but e raised to the power of lambda t.  

What do we mean by that, this is simply if you look at this this is simply U remember e raised 

to the power of lambda 1 t, e raised to the power of lambda 2 t so on and so forth e raised to 

the power of lambda m t times U inverse and this is nothing but e raised to the power of I can 

call it as t lambda, where lambda is the diagonal matrix of Eigen values.  
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So, therefore, you can write e raised to the t H is U e raised to the t lambda times U inverse. 

So, this is a very interesting property because this tells you what is the matrix exponential in 

terms of the scalar exponentials the scalar exponentials. So, all this is you take the Eigen 

vector matrix U, U inverse and take each Eigen value raise it to the power of e raise to the 

power of t lambda 1, e raised to the power of t lambda 2.  

So, these are scalar matrix. This are not, these are the scalar exponentials. So, you can see 

these are essentially; this is your e raise to the power of lambda 1 t, e raised to the order of 

lambda 2 t, e raised to the power of lambda m t. So, each of these is a scalar exponential. So, 

these are basically the scalar exponentials. So, it gives us a convenient, because we can easily 

evaluate the scalar exponentials.  

We cannot easily readily evaluate a matrix exponential but the scalar exponentials we can 

easily evaluate. So, all you have to do is you take the scalar exponential of the Eigen values, 

construct the diagonal matrix, re-multiplied by U, post multiplied by U inverse that gives us 

the matrix exponential. So, this is essentially a very convenient way to evaluate the matrix 

exponential.  

So, this gives us a much easier, rather than go through the much easier mechanism or you can 

say algorithm to evaluate matrix exponential using the scalar exponentials using the scalar 

exponentials or Eigen values. So, this is a very interesting expression. Now, let us look at this 

further. So, we have already seen H U equal to lambda times, U times lambda that is 

essentially what we have, where U is the matrix of Eigen vectors. 

In fact to be more specific I can call this right Eigen vectors which is what we usually mean. 

So, this is what we mean by default. So, and therefore, this gives me a H of U equal to U 

lambda, this will bring U to the right. So, this gives H equal to U lambda U inverse. Now, 

there is also a notion in which you can define the left Eigen vector.  

So, if you take U inverse on the left, you will have U inverse H equals lambda U inverse. 

Now, if this U inverse you can think of this as comprising of the rows w 1 bar transpose, w 2 

bar transpose, w m bar transpose then what you can see clearly here is each w i bar transpose 

into H equal to lambda i w i bar transpose. So, these rows of U inverse are the left Eigen 

vectors.  
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So, you can so, these are although we will not deal with these frequently these are the left 

Eigen vectors. These are rows of the matrix U inverse. So, by default we will always consider 

the right Eigen vectors but it is also useful to remember this notion of left Eigen vector; that 

is we take the matrix of right Eigen vectors U take the inverse U inverse rows of that will be 

the left Eigen vectors. 

Eigen values are the same. Now, so we have U inverse just to be clear, you have U inverse 

will be w 1 bar transpose, w 2 bar transpose, w m bar transpose which as you can see will 

also be an m cross m matrix and these are essentially the left Eigen vectors. Now, let us look 

at the solution of the LDS. Therefore solution of the LDS becomes or specifically solution of 

autonomous LDS, for simplicity, we will only deal with autonomous LDS where the inputs 

are 0.  

So, the solution of the autonomous LDS is remember V bar t is e raised to the power of t H v 

bar 0 and this is now we can write this as U is to the power of t lambda where lambda is the 

diagonal matrix of Eigen values U inverse times v bar 0 which now if I expand this, so I can 

write v bar t equals U which is the matrix of Eigen left, Eigen vectors or right Eigen vectors 

but we will simply call this as Eigen vectors wherever we need we will explicitly mention 

only the left eigenvector.  

So, e raised to lambda 1 t, e raised to lambda 2 t so on, e raised to lambda m t times now, we 

have U inverse which is essentially your w 1 bar t multiplied by of course, whole thing is 

multiplied by v bar 0. So, this will be w 2 bar t multiplied by v bar 0. So on you will have w 

m bar t multiplied by v bar 0 which now essentially, you can easily see this can be written as 

K equal to 1 to m U k bar, e raised to the power of lambda k t w bar k transpose v bar 0.  

So, you can think of this, each of these as a mode, you can think of each of these as 

essentially you have m modes. So, you can think of this so, this is your v bar t v bar t and so, 

you can think of this as m modes. So, the kth mode is essentially. So, this is essentially your 

kth mode, this is the projection of v bar 0 along w k bar transpose.  

Remember which is the left Eigen vector and this grows, this is you can think of this as the 

growth factor, this is growing as grows as this growth. This is the growth e raised to the 

power of lambda k t and this is the final direction this is along. So, essentially the way you 

can think of this is essentially you are taking v bar 0.  



So, kth mode, it has 3 components first take the projection along the left Eigen vector that is 

your, the right, left Eigen vector that is w k bar 0. Then grow it as e raised to grow it 

exponentially with the rate lambda k which is the kth Eigen value that is e raised to lambda k 

t and finally, which is the direction along with the kth mode is pointing that is U bar k.  
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So, therefore, this is basically project along w bar k, so you can think of this as three steps 

essentially; project the trajectory, project along w bar k transpose, grow as e raised to lambda 

k t and finally, this is the whole thing is along U bar k. So, this is basically your, it essentially 

is your an interesting this thing an interesting way to think about you are autonomous LDS.  

So, you project it along so, the projection along the kth left Eigen vector grows at the rate 

lambda k and pointing along U bar which is the kth right Eigen vector which will also call 

simply as the Eigen vector to avoid any confusion. Eigen vector always implies by default 

right Eigen vector. If it is a left Eigen vector, you will specifically mention it. 

So let me also write that down Eigen vector implies right Eigen vector by default. So do not 

get confused. Now it is (essential) interesting to see when now one can ask the question, 

when is the system stable? When does this v bar t, when does this go to 0 as t tends to 

infinity. So you can see v bar t tends to 0 as t tends to infinity if magnitude lambda k is less 

than 1.  

If magnitude lambda k or lambda k is lambda k is v bar k tends to 0 if or you can say this is 

bounded essentially. This is not, this is essentially bounded if magnitude lambda k less than 1 

implies this is stable, if magnitude lambda k or e raised to or you can say this is stable if e 

raised to, therefore, e raised to lambda k t tends to 0 as t tends to infinity. This implies e 

raised to lambda k t less than 1. This implies lambda k less than 0.  

So, if e raised to lambda k t, if this is essentially, if this quantity is essentially less than 1 or 

essentially the lambda k is if the Eigen value is less than 0 then we can say the system is 



stable. So, these are interesting interpretations that one can derive from the Eigen value 

decomposition. So, interesting things one can derive.  

So, essentially what you can see is that the Eigen value decomposition gives you a very 

convenient mechanism to compute the matrix exponential in terms of the scalar exponentials 

of the Eigen values. So, you simply take the scalar exponential of the Eigen values and pre-

multiply by U post multiply by U inverse that gives you the matrix exponential and one can 

use that in the solution of the autonomous LDS and the solution can be described very 

simply. 

You take the projection along the left Eigen vector of the initial starting point that is v bar 0, 

grow it as e raised to lambda to the kth mode as e raised to lambda k t and finally, this point 

along the direction U bar k, that is essentially a very insightful and intuitive form of 

expressing the matrix explanation.  

So, that I think presents a very interesting application and remember all this relies heavily on 

various principles of linear algebra. Of course, matrices, matrix multiplication, the Eigen 

value decomposition, projections and so on. So, again that shows how matrices can be used to 

efficiently compute the solutions of several complex systems and in this particular example 

the autonomous linear dynamical system which as we have shown has very interesting 

applications even in the context of circuits.  

Remember, we built an example with a surface circuit a simple circuit with two capacitors 

and two resistors and showed how that can be modelled as a linear dynamical system. So, 

essentially this basically can be used as a technique to solve complex systems. So, let us stop 

here and let us continue this discussion in the subsequent modules. Thank you very much. 


