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OFDM System: Circulant Matrices and Properties 

Hello, welcome to another module in this massive open online course. So, we are looking at 

OFDM and OFDM system and the specific application of linear algebra and the modelling 

and analysis of this system. So, let us continue our discussion.  
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So, we are looking at OFDM and where we are left in the last module is the following thing: 

considering an ISI channel with the channel taps h 0, h 1, h N minus 1 where N equals 

number of sub carriers, where N equals the number of sub carriers. What we had said is that 

these are the channel taps and the channel matrix if you look at the OFDM system after the 

cyclic prefix and so on, the channel matrix can be has a very interesting structure.  

So, this will be h 0, h N minus 1, h N minus 2 so on h 1 and then h 1 comes over here h 0 

pushes to the right h N minus 1 also pushes to the right you have h 2 then h 2 comes rotates 

here, you have 0, you have h 3 so on and the last row will be h N minus 1, h N minus 2 so on 

until h 0. 

And what we had said is very interestingly if you look at each row, each row is obtained by 

circularly shifting the previous row at the same time each column is also obtained by 

circularly shifting the previous column and therefore, is a very interesting matrix such a 

matrix is known as a circulant matrix and this is the characteristic feature of OFDM circulant. 



This is the circulant matrix with if you look at the first column, if you specifically look at this 

is the first column, the first column basically comprises of the channel taps. So, how to 

construct this matrix? Simply take the right, the first column as the channel taps h 0, h 1 up to 

h N minus 1 and then each subsequent column you shift it down shifted by 1 and the 1 that 

pushes down you bring it back onto the top of the next column.  

So, the second column will be h N minus 1, h 0, h 1 up to h N minus 2. Third column will be 

h N minus 2, h N minus 1, h 0 so on up to h N minus 3 and so on and let us now look at 

interesting properties of this matrix.  
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Now, what are the interesting properties? The most interesting properties now, there are 

several the most interesting property of this matrix is in fact the property of any circulant 

matrix, property of the matrix H c is that the Eigen vector, this is very interesting; the Eigen 

vectors H c are of the form that is if you look at the kth Eigen vector, I can write this as f bar 

k which is 1 over N times 1 W raised to minus k, W raised to minus 2 k, W raised to 2 minus 

N minus 1 k.  

This is the kth Eigen vector where you remember W equal to e raised to minus j 2 pi over N, 

that is the definition of W. Let me just quickly check how we define W? W equal to if you 

remember W equal to, we have W equal to e raise to minus j 2 pi over N indeed and now, if 

you look at this, this quantity this is nothing but what is this f bar k? If you look at this this f 

bar k is nothing but if you observe this closely this is the kth column of the IFFT matrix. 

This is the kth column of the IFFT matrix and that is the interesting property of this. It is very 

interesting property and remember that is what we said so, it is naturally because it is circular 

that it is gives the impression that it is periodic. So, it naturally it has to have relation to 

sinusoids at complex exponentials and what is that relation? That relation is essentially if you 

look at this Eigen vector f bar k the Eigen vector of this H c is essentially given by the kth 

column of the IFFT matrix, this is the interesting property and let us prove this. 
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So, let us try to see how this is, this is as follows can be seen as follows: if you look at this 

now, first let us realize that the rth column, rth row if you look at the rth row that will be h r 

minus 0, h r minus 1 so on h I can, the only thing I need to do here is I can add modulo N. So, 

this will be h r minus 0 modulo N, h r minus 1 modulo N so on and h r minus N minus 1 

modulo N.  

So, this small N here this indicates modulo N and therefore, if you look at the rth row and if 

you look at the inner product with this that is let us consider, consider the product H c times f 

bar k and let us look at what happens to the rth row in this product. That is output is a vector 

and we are asking the question what is our element of that vector and that will be 1 over N 

summation N equal to 0 to N minus 1 h r minus N modulo N, W raise to minus n k.  

This is once again to remind you this indicates that this is modulo which is equal to 1 over N 

summation N equal to 0 to N minus 1 or now substitute N equal to 0 to, now make r minus n 

equal to m, substitute r minus n equal to m So, m also goes from 0 to N minus 1 this will 

become h m there is no need for modulo N because m anywhere goes to 0 to N minus 1.  

So, modulo m modulo N will simply be m because m is going from 0 to N minus 1. So, 

therefore, this will be h m W raised to the power minus N minus n k. So, this implies r minus 

n equal to m. This implies r minus m equal to n. So, this will be r minus of this is equal to 1 

over N summation m equal to 0 to N minus 1 h m W raised to the power of minus or in this 

case plus m k times this other quantity will be common W raised to the power of minus r k 

and now, if you look at this quantity, this is interesting. 

This is summation, this is nothing but if substitute for W this will be 1 over N summation m 

equal to 0 to N minus 1 h m e raised to the power of minus j 2 pi m k over N times W raised 

to the power of minus r k and if you look at this quantity this is nothing but the FFT or the 

DFT coefficient of the channel taps. This is nothing but the in fact this is the kth DFT 

coefficient.  

In fact, there is a kth DFT coefficient of the channel tap. So, I can write this so, this is 

essentially your H of k. So, this is basically your H of k times 1 over N W raised to the power 

of so, if you look at H c times f bar k and if you ask the question, what is the rth element that 

is what is our element of this? That is simply the H k that is the kth DFT coefficient H k 

times 1 over N W raised to minus r k. This is the interesting aspect.  



So, H k where H k, remember what is H k? H k is the kth DFT quotient that is summation m 

equal to 0 to N minus 1 h m e raise to minus j, e raised to minus j 2 pi m k divided by N. That 

is if you take the channel taps into the kth DFT coefficient that is what it is. Now, write all 

this, so therefore, if you write H c times f bar k. 
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So therefore, write all the elements H c times f bar k equals H c. This will be H k or this will 

be H k times 1 over N. What are the elements? 1 first element will be W, each element is W 

raised to minus r k. So, W raised to minus k, W raise to minus 2 k so on, W raised to minus N 

minus 1 k and in fact, if you look at this now, interestingly if you look at this, this is nothing 

but essentially the vector f bar of k. So, that is the interesting thing. So, essentially you have 

the relation H c of f bar k equals 1 over N are equals. In fact, H k times f bar k.  



So, this is the form A x bar. If you look at this, this is similar to A x bar equal to lambda x 

bar, where x bar equals the you know very well now, x bar equals Eigen vector lambda, 

equals the Eigen value. So, this implies that in this f bar k, this is the Eigen vector of H c and 

this DFT coefficient is the Eigen value. So, that is the interesting aspect of this.  

So, the H k is that is a DFT coefficient, the Eigen vectors are the columns of the IFFT matrix 

and Eigen values are given by the FFT or the DFT of the channel taps. So, this is the 

interesting property of the circulant matrix.  
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So, H c has the following very interesting property. H c Eigen vectors equals columns of 

IFFT matrix and Eigen values equals the DFT coefficient. Eigen values are the DFT 

coefficients of the channel taps and this also implies that the Eigen value matrix, implies the 

Eigen value matrix if you look Eigen value matrix, this is equal to simply the column of the 

matrix which contains the IFFT columns of the IFFT matrix.  

So, this is simply the IFFT matrix. So, this is the Eigen, I am sorry this is the Eigen vector 

matrix and Eigen value matrix lambda, the Eigen value matrix is contains the DFT 

coefficients. So, this is the Eigen value matrix, this is the Eigen value matrix. So, this is the 

Eigen value matrix basically contains the DFT coefficients and we know what is Eigen value 

decomposition? 

The Eigen value decomposition of a square matrix is nothing but the Eigen value matrix, I am 

sorry the Eigen vector matrix times the diagonal matrix of Eigen values times the inverse of 

the Eigen vector matrix. Eigen vector matrix is the IFFT matrix inverse of the Eigen vector 



matrix is nothing but the inverse of the IFFT matrix which is nothing but the FFT matrix and 

that essentially completes this analysis.  
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So, you have now very interestingly if you look at it, H c any matrix let me write the general 

property. This is can be written as the product of Eigen vector matrix times diagonal matrix 

of Eigen values, Eigen values times inverse of Eigen vector matrix which in this case implies 

H c equal to Eigen vector matrix is the IFFT matrix, F IFFT times the diagonal matrix of 

Eigen values which contains the DFT coefficients times F IFFT inverse.  

But F IFFT inverse equals FFT. So, therefore, this is writing it explicitly. F IFFT times your 

H 0 up to H N minus 1 times F FFT. Let us see and this essentially, so if you look at this this 

is the Eigen value decomposition. Let me write this thing once again H equal to F IFFT times 

H 0, H 1 up to H N minus 1 times FFT and this is essentially the what we call as the EVD.  

This is the Eigen value decomposition of H c which is now. So, for the circulant matrix in 

fact for any circle in matrix Eigen value decomposition is given by the IFFT matrix times the 

diagonal matrix of Eigen values which are nothing but the DFT or FFT coefficients of the 

channel taps followed by the FFT matrix and in fact, let us also write the formula for the 

Eigen value you have lambda k equals H of k which is basically summation m equal to 0 or 

you can write it as n equal to 0 to N minus 1 h of n e raise to minus j 2 pi k n by N.  

So, this is your kth Eigen value and this is your matrix lambda that is the diagonal matrix of 

Eigen values. So, this is essentially the interesting aspect or this is the most interesting 

property of the circulant matrix and now, what we are going to do is we are going to use this 

matrix in the OFDM system model and we are going to simplify the OFDM system model 

and observe something very interesting and that is what we are going to do in the next and the 



final module. So, let us stop here and we will continue this discussion in the next module. 

Thank you very much. 


