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Time-series Prediction via auto-regression (AR) model  

Hello, welcome to another module in this massive open online course. So, let us continue our 

discussion on optimal estimation and let us look at another interesting extension of this and 

this is to the concept of, what we call a self prediction or what essentially auto-regression. 
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So, I am going to explain more about this, what we want to discuss or talk about is essentially 

the concept of auto-regression as you are familiar regression essentially is prediction. So, 

auto-regression, auto is essentially self prediction using the quantities in fact the past values 

of the quantities as we are going to see, this auto means the self itself and regression is 

essentially prediction or approximation and this belongs to an important class of techniques 

that is essentially your linear prediction so, this essentially is based on the theory of linear 

prediction or linear estimation. 

Which is essentially also used in linear predictive coding, which is again used in speech 

processing and so on so, there are many applications for this which, processing is also used in 

for instance compression so on and so forth so, what is auto regression? 
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As I have already said auto-regression is essentially the regression formed from the past 

sample of same process and where you see this most often is in the context of a time-series 

that is data gathered sequentially in time those linear prediction is best suited for a time-series 

or the analysis of time-series. 
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So, auto-regression what, we call as AR auto-regression this is best suited for time-series 

analysis and what is time-series? 

This time-series is nothing but, data gathered sequentially in time, so time-series is basically 

data that is gathered sequential in time for instance you have the data x0, x1, xn, so on and so 

forth, so this forms your time-series and this is your time index and this for instance this n, 

this is essentially the time index. 

And, so you have time-series and essentially regression that is formed using the past samples 

of this time-series, that is essentially auto-regression that is prediction using the past samples 

where is this useful? 
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Now, this time-series typically occurs many places such as for instance you have some 

quantity that is varying with respect to time and this is your x of n and this can arise for 

instance in your stock price or the amount of rainfall or parameters such as, temperature, etc. 

So, these that is when you measure these things, that is the stock price day after day, when 

you tabulate the stock prices list the stock prices day after day as a series day 0, day 1, day 2 

so on so, that becomes a time-series similarly, the amount of rainfall the temperature on a 

particular day. 

So, it occurs very, very frequently that is wherever you are taking samples of the quantity in 

time. And naturally the question that we are interested in is at this point, if you are at this is 

the current point, how to predict the future values of the time-series the point is you might 

have already guessed the best prediction of the future can be obtained using the past samples 

or the immediate past samples and that is essentially what we would like to regress on that is 

regress on the past samples and that makes it the auto-regression. So, the best prediction can 

be obtained using past samples, this implies auto-regression. So, what is auto regression? 
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Auto-regression is essentially you form the prediction that is x hat n using the past samples 

regress based on past samples of the same process. So, this is if you look at this what we are 

doing is we are regressing, we regress using the past samples of the same process and we 

form the best estimate of x n, form best, obtain the best estimate of x n and this is essentially 

your autoregressive model. 

And in fact, you are using L past samples so remember this implies, this becomes L
th

 order, 

so this becomes an L
th

 order AR model if you are using 1 past sample like xn A1 times xn 

minus 1 that mean, that is the first order model and A1 xn minus 1 plus A2 xn minus 2 that 

becomes a second order AR model we are using L past samples. That is the L
th

 order AR 

model. 
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Now, the idea here is what are the regression coefficients, how to determine which are 

essentially nothing but the, which are nothing but the regression coefficients and these as we 

know can be determined by using the LMMSE we once again come back to the LMMSE 

principle that is, if we call the quantity to be predicted as xn and then, we denote by x bar this 

is the quantity to be estimated and x bar these are the known this is xn minus 1 xn minus 2 so 

on xn minus L. 
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Then, the optimal regressor as we know, is given a bar transpose this is the cross covariance 

of xn bar x so this is the cross covariance times R x bar x bar inverse this is your optimal 



regressor, this is the best regressor that minimises the mean squared error, this minimises the 

MSE and we know that from the LMMSE principle, so that is we want to predict or if you 

want to estimate x bar then the optimal regressor is Rxy Ryy inverse and this is basically 

guaranteed by the LMMSE principle. 
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Now, let us look at these quantities the question that we want to ask is what are these 

quantities Rx n x bar and what are these quantities Rx bar and for that we will need some 

property on this time-series x0, x1, x n plus 1 so on, we will assume that this is what is 

known as a WSS that is wide, this is a wide sense stationary time series that is we will 

assume this is a wide sense stationary time series. 
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Which essentially implies that if you look at the correlation that is x of n minus i times x of n 

minus j this only depend on i minus j that is the lag between these two samples this is an 

important property of wide sense stationary time-series that is if you look at auto correlation 

between two different samples x of n minus i into x of j or you can also write it as x of i times 

probably it is better to write it this way x of i times x of j this is simply x of i minus j depends 

only on the lag, on the time difference, depends only on the time difference between those 

two is two samples that is we will get two samples x of n and x of m, ask what is the 

correlation? 

The correlation is Rxxn minus m it does not depend on n and m but only the rather that 

difference n minus m so this is essentially a very important property a characteristic, a very 

important property of WSS, very important property of wide sense stationary random 

process. 
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Now, let us ask the question what is Rx bar x bar, this is essentially expected value of x bar x 

bar transpose, which is expected value of x0, x1, up to xn minus 1 times, I am sorry, this has 

to be xn minus 1 xn minus 2 xn minus L times the transpose xn minus 1 xn minus L.  

Now, if you expand this and write it you will realise that this becomes expected value of for 

instance, here you will have x square n minus 1 x square n minus 2 xn minus 1 xn minus 2 xn 

minus 1 into xn minus 2 and so on and interestingly if you look at it you will see all the 

diagonals expected value of x square n minus 1 x square n minus 2, expected value of x 

square n minus 1, expected value is Rxx 0 because, the time difference is 0 x n minus 1 into 

xn minus 1. 



Similarly, expected value of x square n minus 2 expected value will once again be Rxx 0 

expected value of xn minus 1 into xn minus 2 time difference is 1 therefore, expected value 

will be Rxx 1. 

So, if you look at it all the diagonals will have similar elements, the main diagonal will be 

Rxx 0, the diagonal with offset of 1 will be Rxx 1, diagonal with offset of 2 will be Rxx 2 and 

so on. So, for instance expect, if you take the expected operator inside and write this expected 

value of this and this if you look at the expected value of these quantities for instance, if you 

look at the expected value of these quantities expected value equals Rxx 1 similarly, here the 

expected value of this quantity equals Rxx 1. 
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So, if you look at this because, of the wide sense stationary nature of the random process Rx 

bar x bar will look like all the diagonals will be Rxx 0, Rxx 0 and 1 offset will be Rxx 1, Rxx 

1 and this will be Rxx 1 and this will be Rxx 2 so on this will be Rxx of, if I m not mistaken, 

this will be Rxx of L minus 1 so on, so this will be Rxx of 0 this will be Rxx of L minus 1 

and if you look at this, all the diagonal entries if you look at this all, so if you look at this all 

the diagonal principle diagonal so, all the principle diagonal entries, all at offset of 1 diagonal 

offset of 1 these are Rxx 1 and 0, so this has a banded structure. 

So, you will have the diagonal is Rxx 0 then the diagonals with or offset the sub diagonals 

you can see which are offset of 1 sub and super diagonals which are offset of 1 they have Rxx 

1 the diagonals that are offset of 2 from the main diagonal they Rxx 2 and so on and this 



matrix is this is a very interesting structure such a matrix is known as a TOEPLITZ matrix so 

this matrix is known as TOEPLITZ. 

So, if you look at x x vector of x bar x bar Hermitian this has a TOEPLITZ matrix each 

diagonal principal and sub diagonals, diagonals are constant, the diagonals are essentially 

constant that is if you look at any diagonal all the values on the diagonal are the same. 
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And, now we want to find this, the other matrix that is Rxnx bar that is expected value of xnx 

bar transpose, which is expected value of xn minus 1 so on up to xn minus L and this is equal 

to your basically your, you can see this is essentially your Rxx 1 Rxx 2 Rxx L which implies 

that your a bar transpose, this is your a bar transpose is Rxnx bar times Rx bar x bar inverse, 



which is essentially Rxx 1 Rxx2 Rxx L times inverse of this auto correlation matrix which is 

Rxx 0 all the diagonals are Rxx 0 Rxx 1 Rxx 1 Rxx0 Rxx 1 Rxx 2 so on and then you have 

the inverse of this matrix. 

So, this is essentially your optimal self-regressor, optimal self-regression or basically your 

auto-regression coefficients, which minimise the mean square error. So, these are the best 

regression coefficients, which minimise the mean squared error hence, can be used for your 

prediction essentially also your forecasting in the stock market kind of application you would 

like to forecast the stock price in the next day or the next couple of days and so on and 

thereby, bet appropriately or thereby investor properly. 

So, this is a lot of applicants in fact, even coding compression, if you can predict the next 

values of the signal then, the remnant what is the difference between the prediction and the 

actual signal, this is what is known as the innovation and then, one can actually compress 

only the innovation so, there are many applications actually. 
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And the prediction error now one can ask the question as a scientist it is not just enough to 

come up with a prediction but it is also important remember to characterise the prediction 

error because what determines the quality of the prediction is a prediction error because 

anyone can come up with a predictor. 

Now, what determines the quality of the predictor, is the prediction error so therefore you 

cannot just simply give a predictor but also the predictor and that is the regressor and what is 

the regression error going to be because that determines the quality and hence that will in turn 

determine whether this quality or this level or this regressor is acceptable or not because 

without that one is totally in the dark about what is the nature or what is the quality of the 

prediction. 

So, that is an important, so this determines the quality of the regressor and thanks to the 

element missy principle, we already know that is your error sigma square this is in this case 

because, this is a scalar quantity so the prediction the covariance itself will be the variance. 

So, this will be Rxnxn minus Rxn x bar Rx bar x bar inverse x bar times Rx bar xn, now 

Rxnxn this is Rxx 0 minus Rxn x bar, now this quantity if you look at this Rxn and x bar Rx 

bar x bar inverse this is nothing but, a bar transpose so this a bar transpose Rx bar xn that is 

expected value of x bar this is Rxx 0 minus a bar transpose expected value of x bar into xn 

this is Rxx 0 Rxx 1 Rxx sorry, this is Rxx 1 because the first value is x minus 1 Rxx 2 so on 

Rxx L and therefore, this is essentially given sigma e square regression error is Rxx 0 minus 



a1 Rxx 1 minus a2 Rxx 2 minus 1 minus aL Rxx L. And therefore, that completes our auto-

regression. 
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Now, let us look at a simple example to understand this as usual because when we do simple 

examples, we tend to understand things better so, always, always support or enhance your 

understanding, we are trying to work out a simple example, like that always helps in 

significantly improving your understanding. 

So, let us look at a first order AR model the simplest, consider a first order AR model 

although simple, this is used very frequently, this is simply termed as AR 1 that is AR 

subscript 1 model and of course AR model of order n you can determine denote using ARn 



so, AR 1 model, which means you are trying to form the prediction x hat of n equals beta 

times xn minus 1, what is beta? 

And the answer to that is beta equals your well, Rxnxn minus 1 times all these quantities are 

scalars so I am simply reusing scalar quantities, not using matrices to represent these Rxn 

minus 1 xn minus 1 inverse which is Rxx remember it depends only on lag Rxx 1 times Rxx 

0 inverse, which is nothing but, Rxx 1 divided by Rxx 0 
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So, therefore your optimal prediction that is x hat of n this is simply Rxx 1 divided by Rxx 0 

into this is essentially your first order auto-regressor, this is essentially your first order AR 1 

model that is your x hat n equals Rxx 1 divided by Rxx 0 times x n minus 1. And now, one 

can ask what is the modelling error or what is the regression error? 

This is essentially your Rxx 0 minus a1 times Rxx 1 remember this is your a1 equals beta so, 

this is going to be your Rxx 0 minus Rxx 1 divided by 0 times Rxx 1 which is essentially 

equal to Rxx 0 R square xx 1divided by Rxx 0, so this is essentially your regression error, this 

is essentially your regression error for this first order AR model. 

So, essentially that completes our discussion of the AR modelling that is auto-regression, 

which is a special case of regression. Essentially, we are trying to regressed using the past 

samples of the same process and we are using the property that these samples are wide sense 

stationary. 



So, essentially the correlation that is what we call as the ACF function that depends only on 

the lag, that is the expected value of xn minus 1 xn minus i into xn minus j is Rxx i minus j. 

So, that completes this discussion which I have already said is very important as many 

applications in forecasting, coding, compression, etc. So, please take a look at this again we 

will come back, we will discuss, continue our discussion of other similar concepts in the 

subsequent models. Thank you very much. 


