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Least Squares (LS) solution, pseudo-inverse concept 

Hello. Welcome to another module in this massive open online course. In this module, let us 

start looking at another very important topic in linear algebra and that is of the least squares 

solution. 
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Alright? So, this is another very, very important concept that has many significant implications. 

This is what is called as the least square. It is often abbreviated simply as the LS, LS for least 

square. This is known as the least square solution. Now, to understand this, consider the system 

of linear equations. Let us say we have this system of linear equations, so  

[

𝑦1

𝑦2

⋮
𝑦𝑚

] = 𝐀 [

x1

𝑥2

⋮
𝑥𝑛

]. 

This is our system of linear equations where 𝐀 is naturally an 𝑚 ×  𝑛 matrix. 
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So, you can write this as 𝐲̅ = 𝐀𝐱̅, where 𝐲̅ is 𝑚 ×  1 vector, 𝐱̅ is 𝑛 ×  1 and 𝐀, therefore 

naturally, which maps the 𝑛 ×  1 vector 𝐱̅ to the 𝑚 ×  1 vector 𝐲̅, and is an 𝑚 ×  𝑛 matrix. Now 

point here is, we have seen if 𝑚 = 𝑛 and 𝐀 is a square matrix. 𝐀 is a square matrix only then 

you can talk about the inverse but even then, it is not guaranteed. Any square matrix need not 

be invertible. Only if 𝐀 is not singular then 𝐀 is invertible, the inverse exists. 
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Then the solution is given as  𝐱̅ = 𝐀−1𝐲̅. 

This is the solution, if 𝐀 is invertible, only if 𝐀 is invertible. But however, now you see in this 

system, if you look at this, what is m, m is equal to the number of equations or number of 

observations. So, 𝑚 equal to number of equations. You can also think of this in a practical 

system as the number of outputs.  

In your wireless communication system, 𝐲̅ are the number of outputs or observations. And what 

is 𝐱̅, these are the number of unknowns, or the number of transmit symbols or the number of 

inputs. In your practical multiple-input multiple-output wireless communication system that 

we have seen before, 𝑥1, 𝑥2, . . , 𝑥𝑛,these are the transmitted symbols. Now if 𝑚 is greater than 

𝑛 then there are more equations. 
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However, if 𝑚 is strictly greater than 𝑛, then there are more equations than unknowns. That is 

number of observations greater than number of inputs, speaking in terms of a linear system as 

an input-output system, number of outputs is greater than the number of inputs. In such a 

situation, we call this, this is known as an overdetermined system. This is termed as an 

overdetermined system.  

Such a system of linear equations where the number of equations 𝑚 that is the dimension of 𝐲̅ 

is greater than the number of unknowns 𝑛, that is the dimension of 𝐱̅. This is known as an 

overdetermined system. Now what can we do now. No, naturally 𝑚 is greater than 𝑛. 𝐀 is not 

square. This implies that of course invertibility of 𝐀 is out of the question because, we talk 

about invertibility only if 𝐀 is a square matrix and that too if 𝐀 is not singular. So now how do 

you solve this system? So, what is the solution? 
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So, what then is 𝐱̅ or how do you determine 𝐱̅. First of all, can you determine 𝐱̅, I think that is 

the more important question. The first thing, even before how to determine 𝐱̅? I think the more 

relevant question is can you determine 𝐱̅? Does not 𝐱̅ exist to satisfy this? That is an important 

question. And you will see if you look at that system again consider this 𝐲̅ equal to, you write 

this in terms of this column, 

𝐲̅ = [𝒂̅1 𝒂̅2 … 𝒂̅𝑛] [

𝑥1

𝑥2

⋮
𝑥𝑛

] = 𝒂̅1𝑥1 + 𝒂̅2𝑥2 + ⋯+ 𝒂̅𝑛𝑥𝑛. 

This span, if you look at this, this is a linear combination. So, if you look at the matrix A, this 

has 𝑛 columns, and because this 𝐲̅ is a linear combination of 𝑛 columns of the matrix A, implies 

this spans an 𝑛 dimensional subspace. 
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Implies 𝐀𝐱̅ spans an 𝑛 dimensional subspace. This spans an 𝑛 dimensional subspace at most, 

if the columns are linearly independent. But, let us say for simplicity, let us assume that 𝐀 is 

full rank, the maximum rank because 𝑚 greater than 𝑛 implies that the maximum rank is 𝑛. 

However, 𝐲̅ belongs to an 𝑚 dimensional space. It can be any vector in an 𝑚 dimensional 

space, implies so if you look at this 𝑛 dimensional subspace, if you call this as 𝐶(𝐀), that is the 

column space span by the columns of 𝐀.  

If you call this as  𝐶(𝐀), and what is 𝐶(𝐀)? 𝐶(𝐀) equal to column space of 𝐀, which is an 𝑛 

dimensional space. Now solution exists. Now it is easy to see when does a solution exists. 

Solution exists only if this 𝐲̅, which can lie general, anywhere in this 𝑚 dimensional space, the 

solution exists only if 𝒚̅ belongs to this 𝑛 dimensional subspace that is a column space of 𝐀. 

Otherwise, the solution does not exist. 
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Otherwise, solution does not exist, else this has no solution. That is, you cannot determine an 

𝐱̅ which satisfies the condition 𝒚̅ = 𝐀𝐱̅  because any 𝐀𝐱̅ has to lie in the span of the columns 

of 𝐀 and 𝒚̅ lies outside this 𝑛 dimensional subspace. 
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Now therefore, if you cannot determine a 𝒚̅ then what is the best thing you can do? Now you 

can ask the question as an engineer, in particular, we do not give up when we cannot find an 

exact solution, because we do not give up, what is the best. Many times, in life we cannot find 

the exact solution, then what is the best that we can do? 

Now you would like to ask, fine, you cannot find the exact solution 𝒚̅ = 𝐀𝐱̅. That does not 

mean that you have to give up. What is the best that you can do and the best that you can do is 

find an 𝐱̅ such that 𝒚̅ is approximately equal to 𝐀𝐱̅. So now you change from exact to 𝒚̅ is 

approximately equal to 𝐀𝐱̅. So, it is a novel concept, if you cannot determine an exact solution, 

determine an approximate solution. And we want to find the best approximation. 

Remember, naturally as engineers and smart people in general, you would like to determine 

the approximate, I mean any solution is an approximate solution. I mean you can give 𝐱̅ equal 

to 0, 0, the all 0 vector. So, we just randomly generate a vector but you would like to find the 

best possible approximation. Therein lies the ingenuity. So therefore, now we would like to 

find the approximate solution but what do we mean by approximate solution, we would like to 

qualify this and we would like to find the best possible approximation. Not any approximation, 

but the best possible approximation. 
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What do we mean by the best possible approximation, that is if you look at 𝒚̅ = 𝐀𝐱̅  and call 

that as 𝒆̅, that is 

𝐞̅ = 𝐲̅ − 𝐀𝐱̅. 

 this is the approximation error. Then we would like to minimize the approximation error but 

remember this 𝐞̅ is a vector so I cannot minimize the approximation error. It does not make 

sense to say we are going to minimize a vector. We can minimize the norm of this vector, the 

length of this vector or minimize the norm of the approximation error which is essentially 

minimize norm of 𝐞̅. 
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That is the problem that we want to formulate, which is essentially also similar to saying 

minimize the ||𝒆̅||2, which is equal to minimize 𝒆̅𝑇𝒆̅. So, we would like to minimize the ||𝒆̅||2. 

That is if you look at this quantity that is nothing but  

min||𝐲̅ − 𝐀𝐱̅||
2
 

and this is known as the least squares problem. Find the vector 𝐱̅ such that the error 𝐲̅ − 𝐀𝐱̅, if 

you look at the norm of the error and square of the norm of the error, that is the least. Therefore, 

this is known as the least square problem. So, this is a very popular problem in entire signal 

processing, machine learning, data analysis. I mean, whatever you look at it and this is basically 

known as a, this is a very fundamental problem this is essentially the least square problem 

which is essentially the title of our module. This is in case you are wondering what is the least 

squares problem. This is the least squares problem (LS) and now we want to find the solution 

to this problem that is the least squares solution.  
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Naturally, this is an optimization problem so let us first simplify the objective. So 

||𝒆̅||2 = 𝒆̅𝑇𝒆̅ 

= (𝐲̅ − 𝐀𝐱̅)𝑇(𝐲̅ − 𝐀𝐱̅) = (𝒚̅𝑇 − 𝐱̅𝑇𝐀T )(𝐲̅ − 𝐀𝐱̅) 

= 𝐲̅T𝐲̅ − 𝐱̅T𝐀T𝒚̅ − 𝐲̅T𝐀𝐱̅ + 𝐱̅T𝐀T𝐀𝐱̅. 

The terms 𝐱̅T𝐀T𝒚̅ and 𝐲̅T𝐀𝐱̅ are equal, note that these two quantities are transpose of each 

other. These two are equal because they are the transpose of each other. So, you can write this 

as 

𝑓(𝒙̅) = 𝐲̅T𝐲̅ − 2𝐱̅T𝐀T𝐲̅ + 𝐱̅𝐓𝐀𝐓𝐀𝐱̅. 



                             

. 

So, this is essentially going to be the objective function or this is the simplified version of the 

objective function. Now we have to find the minimum. Now we have to find the 𝐱̅. which 

minimizes this objective function, alright? The task is very simple. Find 𝐱̅ which minimizes 

𝑓(𝐱̅) and the way to do is a very straightforward procedure which is known as the Karush–

Kuhn–Tucker (KKT) framework. 
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So, to minimize, this is like an optimization problem which you are all familiar with 𝑓(𝐱̅)  

compute the gradient with respect to 𝐱̅ and set it equal to 0 to find what is known as the 

stationary point or in this case it will of course be a minima. Because this is unbounded. You 

can clearly take this as close to infinity as possible. So, this is essentially the concept when you 



find a stationary point, this is going to be a minima. So, you set the gradient equal to 0, this is 

known as a KKT Framework, Karush–Kuhn–Tucker Framework, a very standard framework 

in optimization and it is very intuitive. Essentially for a scalar function, what you are doing is? 

you are computing the derivative and setting it equal to 0, except now that 𝐱̅ is a vector so you 

have to compute the partial derivative with respect to each component of 𝐱̅, i.e.,  𝑥1, 𝑥2, … , 𝑥𝑛, 

and set it equal to 0. So that is what this is. 

(Refer Slide Time: 21:20) 

 

If you look at this, this implies that ∇𝑓(𝐱̅) is nothing but the vector of partial derivatives, that 

is 

𝛻𝑓(𝐱̅) =

[
 
 
 
 
 
 
 
𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2

⋮
𝜕𝑓

𝜕𝑥𝑛]
 
 
 
 
 
 
 

= 𝟎 ⇒
𝜕𝑓

𝜕𝑥𝑖
= 0, ∀ 𝑖. 

 

Which basically implies that you are setting the partial derivative with respect to every 

component of 𝐱̅ equal to 0. Derivative at the optimum point, derivative with respect to every 

component of 𝐱̅ is equal to 0. 
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Let us see how to do this. Consider, let us look at some properties of the gradient operator. If 

you have a constant vector 𝐜̅ then 

 ∇(𝐜̅𝑇𝐱̅) = ∇(𝐱̅𝐓𝐜̅) = ∇(𝑐1𝑥1 + 𝑐2𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛) = [

𝑐1

𝑐2

⋮
𝑐𝑛

] = 𝐜̅.  
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And now if you look at the quadratic function 𝐱̅𝐓𝐏𝐱̅,  the gradient with respect to 𝐱̅, for instance, 

∇(𝐱̅𝐓𝐏𝐱̅) = (𝐏 + 𝐏T)𝐱̅ = 2𝐏𝐱̅, 𝑖𝑓 𝐏 = 𝐏T, 

which implies basically that 𝐏 is a symmetric matrix. 

Let us come back now to our objective function. Now let us use these properties. So, 𝐱̅T𝐀T𝐲̅ is 

what we are calling as a linear. Now, 𝐱̅𝐓𝐀𝐓𝐀𝐱̅ this is the quadratic, second order term and 𝐲̅𝐓𝐲̅ 

is a constant term. 
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And in fact, if you look at our objective function, 𝑓(𝐱̅), you will notice something interesting. 

This is essentially equal to 

𝑓(𝒙̅) = 𝐲̅T𝐲̅ − 2𝐱̅T𝐀T𝐲̅ + 𝐱̅𝐓𝐀𝐓𝐀𝐱̅. 

So overall this is a quadratic expression. And therefore now if you find the gradient of this that 

is the gradient of 𝑓(𝒙̅) that is equal to  

∇𝑓(𝒙) = ∇(𝐲̅T𝐲̅) − 2∇(𝐱̅T𝐀T𝐲̅) + ∇(𝐱̅𝐓𝐀𝐓𝐀𝐱̅) 

= 𝟎 − 2𝐀T𝐲̅ + 𝐀𝐓𝐀𝐱̅ = 𝟎 ⇒ 𝐱̅ = (𝐀𝐓𝐀)−1𝐀𝐓𝐲̅. 

It is basically, you can easily see that 𝐀𝐓𝐀 is symmetric. 
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This is basically your least square solution. So, this is a very interesting solution. 

And of course, here we are assuming that 𝐀𝐓𝐀 is invertible. If 𝐀𝐓𝐀 is invertible which is not 

very difficult to show that this exists. This is true if 𝐀, we will not prove this explicitly, is full 

column rank which is that is this implies that 𝑟𝑎𝑛𝑘(𝐀) is equal to 𝑛. 𝐀𝐓𝐀 is invertible, 

whenever the matrix 𝐀 is a full column rank. It has a rank equal to the number of columns that 

is 𝑟𝑎𝑛𝑘(𝐀) is equal to 𝑛, i.e., the number of columns. 
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Now, this is a very interesting solution. Let us look at the solution. This is a very interesting 

solution. We have the least square solution. The problem is the least square problem, and 

(𝐀𝐓𝐀)−1𝐀𝐓𝐲̅  this is essentially termed the least square solution. This is essentially termed the 

least square solution or basically as you also know we call the least square abbreviated as LS 

so this is basically termed as the LS solution, alright? 

And (𝐀𝐓𝐀)−𝟏𝐀𝐓, this matrix, this is an interesting structure so if you look at this matrix which 

is this (𝐀𝐓𝐀)−1𝐀𝐓. This has a very important meaning. This is termed as the pseudo-inverse. 

This is the pseudo-inverse of 𝐀. This (𝐀𝐓𝐀)−1𝐀𝐓 is often denoted by 𝐀†, the symbol †, this is 

what is termed as the dagger. 
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This (𝐀𝐓𝐀)−1𝐀𝐓, and this is termed as pseudo-inverse because this has a very interesting 

property, because, now remember if 𝑚 > 𝑛, then 𝐀 is not invertible. But if you look at matrix 

(𝐀𝐓𝐀)−1𝐀𝐓, and multiply it with 𝐀 on the left 

(𝐀𝐓𝐀)−1𝐀𝐓𝐀 = 𝐈. 

So, this acts as an inverse, more specifically it acts as a left inverse of 𝐀, hence it is termed as 

pseudo-inverse. So, if 𝑚 > 𝑛, strictly speaking, 𝐀 is not invertible but this matrix is acting as 

an inverse. It is appearing as if it is an inverse of 𝐀 but it is not really an inverse of 𝐀. You can 

clearly see because it does not satisfy any properties of the inverse.  

For instance, if you multiply it on the right, any inverse, if 𝐀𝐁 is a square matrix which is 

invertible, and if 𝐀𝐁 is identity then 𝐁𝐀 also has to be identity. But, in this case, if you multiply 

(𝐀𝐓𝐀)−1𝐀𝐓 on the right of A, you will not get the identity. So, in fact that is a very interesting. 

So, this is only a pseudo-inverse because it appears to be like an inverse, acts like an inverse. 

So, this quantity essentially acts like an inverse. That is why this is termed as a pseudo-inverse. 

It is not an inverse. It acts like an inverse. Because note that 𝐀 is not invertible if 𝑚 > 𝑛. This 

is always important to remember because if 𝑚 > 𝑛, 𝐀 is not a square matrix 
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In fact, if you look at 𝐀, this is an interesting structure, if 𝑚 > 𝑛, it has more height than width, 

more rows than columns. This is often termed as tall matrix; it looks very cylinder and tall. 

This is often termed colloquially in linear algebra; it is often termed as a tall matrix. In 

engineering and linear algebra this is often known as a tall matrix because it looks like a tall 



matrix, more rows than columns. This is some, take it with a pinch of humor. This is not 

something that you use in a formal paper but it is something that is termed as a tall matrix and 

also because it only gives the identity when it is multiplied on the left. You note that 

(𝐀𝐓𝐀)−1𝐀𝐓𝐀 = 𝐈, that is, it is multiplied on the left, gives and that is why this is termed as a 

left inverse because on the right it does not give identity. 

And in case you are more interested, another interesting fact that you will also realize that this 

left inverse of 𝐀 is not unique. If 𝑚 > 𝑛, then left inverse is not unique. The pseudo-inverse is 

one of the left inverses. So, there might be some confusion especially if you are seeing this for 

the first time because there is an inverse and there is a pseudo-inverse, but it is very simple. 

The pseudo-inverse as the name implies is not an inverse. If 𝑚 > 𝑛 then this is only a pseudo-

inverse. 

Now the interesting point is if 𝑚 = 𝑛 and 𝐀 is invertible, then pseudo-inverse reduces to the 

inverse. For square matrices again you might be confused which one to use? should I use the 

pseudo-inverse? or should I use the inverse? Does not matter. For a square matrix, if the inverse 

exists, pseudo-inverse equals the inverse and that you can also see in a straightforward fashion. 

So, it is a very interesting concept, a very powerful, very important concept, arises everywhere, 

signal processing, machine learning, engineering, communication and all fields of engineering.  

In fact, there is hardly any field of science engineering, probably business, management, even 

probably human, economics, wherever you have data, wherever you analyze data, wherever 

you are fitting data, anywhere, probably even in politics. Well. wherever you have data and 

you are trying to fit data, this is the problem that always arises and we are going to see several 

applications. One of the most important profound and fundamental applications, I would say, 

in entire linear algebra. So, let us stop here. Please go through this once again to understand 

this thoroughly. Thank you very much. 


