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Hello, welcome to the another module in this massive open online course. So, in this module let 

us look at another interesting application of linear algebra in the context of machine learning this 

is basically termed as Eigen faces. 

(Refer Slide Time: 0:28)  

 

So, let us look at another application this is essentially you can think of this as an extension of 

PCA to face recognition. So, this is a very popular and significant algorithm. This is an 

application in the context of as I already told you machine learning or essentially what is the 

abbreviated as ML. And this is basically you can think of this as extension of PCA for face 

recognition applications. So, this is an application specifically in the context of face recognition 

this is termed as Eigen faces. And what do we mean by this Eigen faces. 
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What is the procedure for this Eigen faces algorithm? Let us consider a typical face image for 

instance one can say a typical I am drawing a carriage here, a typical face image comprises of 

pixels you can think of this as basically comprising of so this is a image of my cartoon image of 

a face. And this comprises of essentially each of these is a pixel. So, this is basically a face 

image, a frontal face image and let us say there are mc rows of pixels. Let us say there are mc 

rows of pixels. And there are, there are mc columns and there are mr rows of pixels in this facial 

image.    
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So, you have in the face image mc equal to number of columns of pixels mr equal to number of 

rows of pixels. And therefore, total number of pixel this is given as mc times mr. mc into mr let 

us call this as m, m is the total number of pixels. So, now each image xi each image now you see 

each image can be represented by the matrix which contains a pixel value. So, each image can be 

represented by the matrix. So, the ith image can represented by a matrix Xi, this is essentially the 

ith image. This contains of size as I told you mr cross mc this will be of size mr. Where mr is a 

number of rows mc is the number of columns mr cross mc so each image xi is essentially a 

matrix. 

So, an image is essentially a 2 dimensional signal which contains certain number of rows, certain 

number of column which contain basically the pixel values. So, let us see these columns are xi1, 

xi2, xi mc these are the columns. So, this is the ith image xi xc this is a matrix of pixel value. 

This is mr cross mc and it must be clear but let me write it this is the matrix an image is a matrix 

of pixel values. And if you look at this, these are the columns. Columns of pixel values there are 

mc column size of each column mr cross 1. So, each column in this is basically of size mr cross 

1. 

So, if you look at in image what we are saying is let us take a simple example let say we have a 

256 cross 256 image is basically has 256 rows and 256 columns which means essentially matrix 

of say 256 cross 256 it has 256 rows and 256 columns of basically pixel values. So,, you can 

arrange this as a matrix comprising of 256 columns each column has 256 elements. The reason 

we are doing is because now we want to form a vector. 
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So, from this xi from xi which is the ith face which corresponds to basically ith face in you think 

of this as you are training data set. ith face or ith face in your set. ith face in image set. Let us 

think of it that ith face in the image set. So, you can now from xi obtain vector x tilde i by 

stacking the columns that is we have x tilde i. You stack the columns of xi one below the other. 

So, you have xi1, xi2, stack the columns one below the other or one above the other. You have 

mc columns each is of size m cross 1. So, you are basically stacking the columns.  

So, this also be fairly easy to understand this is a standard operation. This is also known as the 

vec operations so what you are saying is xi tilde and mathematics is also known as the vec 

operation. So, you take a matrix and stack its columns to obtain a vector. And naturally this x 

tilde i is going to be it contains basically you have mc columns each of size m. So, this is going 

to be mc into mr cross 1 vector but mc into mr equal to 1. So, this is going to be mr cross 1 and 

this is going to be a vector of essentially all remember that is going to be your vector of pixel 

values.   
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And consider now m images. So, we are going to be so we are obtaining this vector from the 

image which is essentially a matrix of pixel values. We are obtaining this vector of pixel values 

and now we are going to illustrate the procedure for face recognition. So, now let us say you 

have m images in your face set, your face image set or facial image set. So, you have X1, X2, up 

to Xm and corresponding to this so these are the face images.  

So, these are your facial images and corresponding to these you have x1 or x tilde 1, x tilde 2 so 

on and x tilde m which are the corresponding vectors. And then, now what we do is, how the 

question we want to ask is given a new image, a new face given or given an image, given a facial 

image x, given a new facial image x tilde. How to recognize this? That is essentially how to map 

it to your existing session that is which face does this correspond to? Does it correspond to x1, 

x2? Which one of the existing face is does this correspond to.  

So, we have an existing a vast database. So, let us think you have this database of faces and now 

you have a new face. Let us say this belongs to some person you want to identify, now to which 

facial image in your database does this new face correspond to and see that clearly this has a lot 

of applications and lot of whenever you want to identifies some person. The, you want to identify 

an unknown person from an image of his or her face you call upon this algorithm. So, and this is 

vast applications you can imagine. So, this is your, you can think of this as essentially or 

database, your database of facial images.  
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Now the Eigen faces algorithm proceeds as follows remember we are talking specifically about 

the Eigen faces algorithm. So, we will talk about the procedure for the Eigen faces. So, we will 

talk about the procedure for Eigen faces as follows. So, what we do is similar to PCA I hope all 

of you remember the principle component analysis algorithm that we have describe before. You 

form the mean vector of these facial images. So, you have this 1 over n this should be n. this is 

the size of your database. So, you have 1 over n summation i equal to 1 to n xi tilde this is the 

mean you can also remember they are also called as the sample mean.  
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And from all the images subtract the sample mean. So, you obtain from each image xi you obtain 

x bar i equal to x tilde i minus mu bar. So, we subtract the sample mean so we subtract the 

sample mean and then we from the covariance matrix. Now from the covariance matrix we form 

the covariance matric rather the estimate of the covariance matrix which is given as R equal to 1 

over n minus 1 summation i equal to n xi bar xi bar Hermitian. So, this is basically your 

covariance this is basically your covariance matrix. So, this is essentially your covariance matrix.    
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Now once you form the covariance matrix we form the Eigen value decomposition of the 

covariance matrix and that is given as V you remember the Eigen value decomposition that is 

given as V lambda V transpose remember this is an Eigen faces algorithm. So, there is some 

relation to the Eigen values and Eigen vectors in fact what we are going to see the Eigen faces 

algorithm as the name implies has a very deep relation to the Eigen values and Eigen faces. 

And what is the relation this is the relation. So, we talk about the Eigen values of this covariance 

Eigen. So, this is basically the other covariance matrix and this is basically the Eigen value 

decomposition. We have the covariance matrix this is basically our Eigen value decomposition. 

And from this essentially we do ease we find the Eigen vectors largest principals of, we find the 

Eigen vectors remember similar to PCA find Eigen vectors v1 bar, v2 bar, vp bar this correspond 

to the largest principal components.  

Or you can think of this as the direction corresponding to the are just principal components. You 

find basically these are the Eigen values corresponding to the P largest Eigen vector or these are 

the Eigen vectors corresponding to the P largest Eigen values of the covariance matrix. These are 

Eigen vectors corresponding to P largest Eigen values. P largest Eigen values of R which is the 

Eigen vectors corresponding to the P largest Eigen values of R which is basically your 

covariance matrix.  
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And now what we do is we form the principal component vector for each image x bar i form the 

principal component vector. And we know this is given basically by taking the objection of each 

facial image x bar i along the principal direction along the principal components. So, essentially 

what we do is now we have the w bar i which is basically given as you take the projection of v1 

bar this is your v1 bar transpose, v2 bar transpose, vp bar transpose times your x bar. 

Or essentially we are saying this is your vt transpose x bar i and this is your w bar and this will 

be a P cross 1 vector. And these are the principal components corresponding to image principal 

components for you can think of this principal components for the face i, principal components 

for the ith face. These are the principal components for these are the principal components 

corresponding to face i and remember this matrix v is v equals again v1 bar, v2 bar, vp bar which 

you can clearly see each vector is a size of m. So, this will be m cross P matrix.  
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And now so this is basically you can call this as the weight vector for image, weight vector of 

face i. This is the weight vector for face this is the weight vector for face i. So, you can see this is 

also basically nothing but our presentation of face i, a compact a compressed P dimensional 

representation remember that is what PCI gives us what PCA does is it determines the principal 

components corresponding to the projection of each facial of each data vector along the direction 

which have the largest variance. 



So, this is a vector containing the P you can think of it as the vector correspond containing the 

principal components of the face i or the significant components or the largest or the components 

of the face i that has the largest variance. This is a compressed version of that rather than storing 

that and using that large dimensional that m dimensional vector remember each face image if 

you think about it 256 cross 256 image face image of pixels.  

So, if you represent that as a vector that will be 256 times 256 which essentially 2 to the power 

of 16. So, that is a large vector we are taking the significant directions of the significant 

components of that along the Eigen vectors of the covariance matrix corresponding to the largest 

Eigen values calling that as principal components and this is basically compressed representation 

of that facial image.  
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And now we similarly form so now we similarly form from your x1 bar, x2 bar for these images 

in your data set we form the weight vectors we form the weight vectors w1 bar, w2 bar, w2 bar 

these are the weight vectors corresponding to the images, facial images in that database. Weight 

vectors or facial images in the, these are the weight vectors for the facial images in the database. 

And now how to perform the facial, so these are the weight vectors for the n images.  

In your database you have n images and now what is the procedure for how do we perform facial 

recognition. As we say let x tilde i be the new face that is not yet identified. X tilde i be the given 

face image.  
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Corresponding to x tilde i we subtract the mean. Now from x tilde i we obtain x bar i by x from x 

tilde we obtain x bar as x tilde minus mu bar that we subtract the mean.  
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Once again now find the weight vector corresponding to x bar that will be given as w bar which 

is V transpose times x bar. So, you are finding the principal components corresponding to x bar 

and this is the weight vector for the unknown face. So, this is the weight vector for the unknown 

face. This is the vector corresponding to the unknown face and now compare this with the weight 

vector so of the images, compare this with the weight vector of the images in your database. 



Compare this w bar n for images in the database. And the face image from the database with the 

closest weight vector w bar is the recognized image essentially that is the idea. 
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So, you compare it, so you form the distance di of the weight vector of this unknown face to each 

vector in the, so this is the distance. This is the l2 norm which is essentially the distance or you 

can think of this as the Euclidean distance this is your essentially or distance matrix or this is 

essentially the distance of the weight vector w bar i from weight of each image i in the database.  

And then find the least, find the image i we find the face image i with the least distance implies 

find i tilde equals arg min which is essentially the arg minimum argument of di that is the 



distance di the i such that the distance di is minimum and i tilde this is essentially your 

recognized face. This i tilde which basically corresponds to the minimum distance that is the 

weight vector which has the minimum distance weight vector i w bar i which has the minimum 

distance to the weight vector w bar of this new facial image that is essentially the recognized 

image. So, this is your Eigen faces algorithm for face recognition.  

So, this is essentially basically your whole thing that we described so far is basically what we 

call as the Eigen faces. Eigen faces algorithm this is basically the Eigen faces algorithm for face 

recognition. The only small change here is going to be the fact that see sometimes this image this 

new image of a new face and practical, practice that might also arise frequently that is this facial 

image of this unidentified person might not actually be present in your database. So, it might not 

correspond to any facial image in your database.  
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So, typically we compare this distance with a threshold. So, di, so compare di or this di tilde 

rather that is the minimum di that you found di tilde with some threshold epsilon. If this 

minimum distance di tilde is greater than epsilon, then it essentially means that minimum 

distance that has no face in the database is a close match. Then it does not match with any of the 

facial images in the dataset. So, this typically means that this means this implies that the 

unknown face, this implies that the unknown image does not correspond to any face image in 



existing database. It does not correspond to any unknown image because it is not particularly 

close to any of the images in the database.  

On the other hand, if this di tilde is less than equal to epsilon else if di tilde is less than epsilon, 

then this e matches to face i tilde. Then it matches to face i tilde. So, this match, so essentially 

what you do at this point is you announce face i tilde from the dataset as the closest facial image 

that is unknown image you announce face i tilde. Essentially, you announce that i tilde matches 

to that face i tilde or essentially what you can do is instead of taking the in fact there can be 

variations of this instead of taking the facial. 

If you have a large database sometimes what might happen is that it might closely match with the 

images of several faces. So, you might not just take the i tilde which has the least distance but 

you might take a certain number let say 3 or 4 or a certain number k of images which have the 

lowest distance corresponding to weight vector of this new unidentified face. And then you do a 

manual search or you probably do a more an expert search, you call in a next part of something 

of that sort and then try to better identify or more carefully identify which of this faces in the 

database does this space correspond to or does it not in fact correspond to any face at all.  

So, these are all variations of this algorithm. So, essential idea here is that you are taking this 

large database which potentially comprises of a large number of facial images and more over 

each facial image itself we consider the modest resolution of 256 cross 256. This facial high 

resolution facial images now a days because of the improvement in the resolution of the cameras 

this can be 512 cross 512 or 1024 cross 1024 and so on which means the size of each vector can 

be huge.  

So, you have a large database of faces each data point has a huge size and now how do you take 

a new facial image and essentially announce compare it or essentially check with which image, 

facial image in your dataset this image, this new facial image matches or which the image in 

your dataset to which this new image corresponds. So, this is the Eigen faces algorithm which 

can be used which is essentially a machine learning application of the principals of Eigen values 

and Eigen vectors that we have learned so far.  

It is an interesting application of and essentially PCA principal components analysis. Essentially 

a very interesting application of I would say linear algebra and PCA in a practical context of, 



practical example of facial recognition. So, with this let us stop here and we will continue with 

other such interesting applications as well as new concepts in the subsequent modules. Thank 

you very much.    

   

 

 

 

   


