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Hello, welcome to another module in this massive open online course on Applied Linear Algebra. 

So, we are looking at the norm of a vector and we have derived the norm of a vector and now let 

us continue our discussion. So, we have ||𝒖̅|| which is basically we say norm of the vector 𝒖̅.  

And now we can also see some properties of norm. If norm of ||𝒖̅|| = 1, this is known as a unit 

norm. If norm of the vector that is length is 1, this is known as a unit norm vector. And any norm 

that is if you take any vector 𝒖̅ divided by ||𝒖̅|| this becomes a, that is if you define this vector 𝒖̃ 

that is you take 
𝒖̅

||𝒖̅||
, this becomes an unit norm vector for any vector 𝒖̅.  
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Now this norm has very interesting applications for a signal, for a signal vector. Example for a 

signal vector 𝒖̅, now ||𝒖̅||
2
 equals, let us say we have a real signal, ||𝒖̅||

2
= √𝑢1

2 + 𝑢2
2 + ⋯ + 𝑢𝑚

2 , 

this is basically the energy of the signal. So, the norm square of a signal vector denotes its energy. 
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Let us look at a simple example, for instance, let us consider a vector 𝒖̅ = [−1,3, −2,1] and then 

we have ||𝒖̅|| = √12 + 32 + (−2)2 + 12  = √1 + 9 + 4 + 1 = √15. 
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And the corresponding unit norm vector is given as 

𝒖̅

||𝒖̅||
=

1

√15
[

−1
3

−2
1

]. 

Now this is basically your unit norm vector. So, that is basically you have computed the vector 

divided by its norm that makes the vector as a unit norm vector. Let us look at another very 

important application of the norm that is to find the distance between any two vectors and this is 

very important. 
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So, we have the distance, the notion of distance between two vectors that is where you have the 

vectors 𝒖̅, 𝒗̅ that is these are the two points and the distance between them is defined as  

||𝒖̅ − 𝒗̅|| = √(𝑢1 − 𝑣1)2 + (𝑢2 − 𝑣2)2 + ⋯ + (𝑢𝑛 − 𝑣𝑛)2 = √< 𝒖̅ − 𝒗̅, 𝒖̅ − 𝒗̅ >. 

This basically gives the distance the distance between two vectors 𝒖̅, 𝒗̅.  

Let us now look at a very important property of the vectors related to the norm and which relates 

the norm of the vectors to the inner product, this is known as the Cauchy-Schwarz inequality, this 

is very important inequality, which has a large number of applications in Linear Algebra.  
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So, we have to look at Cauchy-Schwarz inequality, which is also called as the CS inequality or the 

CS property, or the Cauchy-Schwarz property, which basically relates the inner product to the 

norms. So, this simply states that the magnitude of the of two vectors 𝒖̅, 𝒗̅ is less than equal to the 

product of their norms, that is 

|< 𝒖̅, 𝒗̅ >| ≤ ||𝒖̅||||𝒗||. 

Or you can write this as  

                                                           |< 𝒖̅, 𝒗̅ >|2 ≤ ||𝒖̅||
2

||𝒗||
2

.     

This is a very interesting property, but it is for real vectors. 
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If you simplify this you can say  

(𝒖𝑇𝒗)2 ≤ ||𝒖||
2

||𝒗||
2

. 

And for complex vectors one can say (𝒖𝐻𝒗)2 ≤ ||𝒖||
2

||𝒗||
2

. 

 So, this is a very important property, which has a large number of applications. 
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So, let us look at a simple proof, of course you can also look at a general proof. Let us just look at 

a simple proof of this for the two-dimensional case. Consider 2D real vectors and the general case 

is also fairly straight forward and then what we have is, since these are real vectors remember let 

us simplify this by assuming these are real vectors. Then we have  

(𝒖𝑇𝒗)2 = (𝑢1𝑣1 + 𝑢2𝑣2)2 = 𝑢1
2𝑣1

2 + 𝑢2
2𝑣2

2 + 2𝑢1𝑢2𝑣1𝑣2. 
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Now, if we use the inequality, that is, we use the geometric mean (GM) is less than or equal to the 

arithmetic mean (AM) that is GM less than or equal to AM. Then this reduces to  

2𝑢1𝑢2𝑣1𝑣2 ≤ 𝑢1
2𝑣2

2 + 𝑢2
2𝑣1

2. 

So, geometric mean less than arithmetic mean simply states that if you are not familiar with that, 

that simply states the √𝑎𝑏 ≤
𝑎+𝑏

2
 . And that is essentially, if you look at it and clearly see that is 

essentially being used over here. 
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And therefore, now you can write  

(𝒖𝑇𝒗)2 ≤ 𝑢1
2𝑣1

2 + 𝑢2
2𝑣2

2 + 𝑢1
2𝑣2

2 + 𝑢2
2𝑣1

2 = (𝑢1
2 + 𝑢2

2)(𝑣1
2 + 𝑣2

2) = ||𝒖̅||
2

||𝒗̅||
2

, 

So that is essentially the Cauchy-Schwarz inequality. I think to cover both the general complex 

and real case one can simply write this  

(𝒖𝐻𝒗)2 ≤ ||𝒖̅||
2

||𝒗̅||
2

. 

 



So, this covers in fact both the real case and the complex case. And let us look at a simple example, 

so this is a very important example essentially as a large number of applications this Cauchy-

Schwarz inequality. Let us just look at the simple example just using some 2 dimensions, some 

real vectors. 
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So, let us look, we have 𝒖̅ = [1, −1,1, −1]𝑇, and 𝒗̅ = [1, 2,3,4]𝑇 these are some simple vectors. 

So, we have  

𝒖̅𝑇𝒗̅ = 1 − 2 + 3 − 4 = −2, 

                                                     (𝒖̅𝑇𝒗̅)2 = (−2)2 = 4. 
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And now ||𝒖̅||
2

= 1 + 1 + 1 + 1 = 4, and ||𝒗̅||
2

= 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30. 

And therefore, you can see ||𝒖̅||
2

||𝒗̅||
2

= 4 × 30 = 120, which is much, which is greater than 4, 

which is equal to you can say |𝒖𝑇𝒗|2. So, this is a simple example to illustrate this Cauchy-

Schwarz inequality. 
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Now, this 𝒖𝑇𝒗 this has very important connotations, so this 𝒖𝑇𝒗 this is termed as the correlation 

between the two signals, and this has many practical applications, very interesting applications. I 

would say high-impact interesting applications. 

(Refer Slide Time: 17:00)  

 

 

Let us look at a simple example application of correlation or inner product. Let us look at a simple 

application in radar. So we want to look at the application of correlation or basically your inner 

product in this RADAR in this field of RADAR. What is RADAR signal processing, all of you 

will know if you have a RADAR which is essentially trying to detect a plane. 



Therefore, what is going to happen is the radar transmits a signal and then there is a reflection. So 

this is simple schematic diagram, so this is basically your radar and this is basically your object 

that you are trying to detect, that is, for instance an aircraft. And this is essentially your ground 

radar and this is basically transmitted and reflected signal. So, you have the transmitted and 

reflected signal. 

So, let us say 𝒙̅, so naturally we consider a digital signal. So, let us say 𝒙̅ equals 𝑥0, 𝑥1, these are 

the samples of the transmitted signal. So, this is the transmit signal vector. 

(Refer Slide Time: 20:02)  

 

And let us say this is your 𝒚̅, which is a reflected signal. Again, you have the samples of the 

reflected signal or the received signal. You are transmitting a signal from the RADAR and you are 

measuring the response at the radar after a certain delay. So, this is your received signal which is 

measured after a certain delay. 
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Now, the point here is that if there is an object such as an aircraft that is present then what is going 

to happen is that your received signal typically is 𝒙̅ plus the noise vector 𝒘̅. So, 𝒙̅ is your 

transmitted signal, 𝒚̅ is your received signal and this is simply the noise vector 𝒘̅. So, what it is 

saying is, of course there is going to be noise, remember because it is a practical communication 

system, so along with the signal you will have the noise. 

So, what happens is that the transmitted signal 𝒙̅ is reflected and then of course you are going to 

have noise. So, the observed signal 𝒚̅ at the RADAR is going to be simply a copy of the transmitted 



signal plus the noise. Typically, the noise is assumed to be Gaussian this is also what is called as 

additive white Gaussian noise. So, although it is not very important you might understand this 

better, this is called as, this noise is additive, this is additive white Gaussian noise.  

Therefore, in this case the observed signal 𝒚̅ will be highly correlated with 𝒙̅. If the object is present 

𝒚̅ will be highly correlated with the transmitted signal 𝒙̅ or essentially that implies that the inner 

product, the magnitude of the inner product that is what we are calling as for instance we can call 

this as if these are complex signals in general 𝒙̅𝐻𝒚̅ is very high because the copy of the signal is 

present in 𝒙̅, so the similarity between 𝒙̅ and 𝒚̅ will be high, you get the point because 𝒚̅  is the 

observed signal, 𝒙̅ is reflected, so the similarity between 𝒚̅ and 𝒙̅ will be very high. On the other 

hand if the object is not present then it will simply be noise because there is no reflected signal. 
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So, on the other hand if there is no object or if object is absent, then we are going to have 𝒚̅ = 𝒘̅, 

that is, simply the noise. So, there is going to be no 𝒙̅, that is, there is going to be no reflected 

signal. So, in this case, because it is simply the noise, similarity between 𝒚̅, 𝒙̅ is low. Therefore, to 

determine the presence of target, this is called object or this is also known as target in the context 

of RADAR. So, to determine if a target is present or not? simply correlate. So, correlate the 

received signal with the transmitted signal, so what we do to determine the presence of target, 

simply correlate the observed signal with the transmitted signal, if this correlation is high, then the 

target is present, if the correlation is low, then the target is absent. 
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So, to determine presence of target we correlate received signal with the transmitted signal.  
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So, what we do is, we look at the inner product that is |𝒙̅𝐻 𝒚̅ |2 and we compared it with the 

threshold 𝛾. So, we have a significant, because remember there is noise, so we have to have a 

threshold, so we compare it with the threshold, the threshold is 𝛾, so if it is greater than threshold 

this implies that target is present, else implies target is absent. 

This is also known as a hypothesis, a detection problem or this is essentially a RADAR problem. 

This is essentially one of the most fundamental problem this is also known as a detection problem 

or this is also known as hypothesis testing. In fact, that is there are two hypotheses, the target is 

present or absent and you are testing each hypothesis. So, this is also known as the hypothesis 

testing, and more specifically a binary hypothesis testing problem. 

So, another interesting application is this as already told you the similarity between two signals or 

images.  
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So, we can also use it to determine for instance you have two signals 𝒙̅1 and 𝒙̅2. Let us say these 

are two images or audio signals, so on and so forth, I mean signals can be anything, voice signals 

images. To determine the similarity, to determine, to see if they are similar, to check the similarity 

you again take the inner product that is magnitude or essentially the correlation |𝑥1
𝐻𝑥2|2 ≤ 𝛾, this 

implies, that they are similar, if the same thing is less than 𝛾 this implies, they are dissimilar. So, 

that is a very interesting property. 

So, this property of the inner product or the correlation between these two, in fact, this is the 

correlation between these two data vectors or the correlation between these two signals has several 

key interesting applications and this is a very important concept. We are going to see another 

important application of this in the context of wireless communication in the next module. Thank 

you very much. 


