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Machine Learning Application: Gaussian Classification 

Hello, welcome to another module in this massive open online course. So, in this module let 

us look at an interesting application of Gaussian’s Gaussian random vectors in the context of 

machine learning and in particular linear algebra linear transformations of Gaussian random 

vectors in the context of machine learning. 
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So, we want to look at an interesting application, one of the first in a series of applications we 

are going to look at in this course: Machine Learning (ML). The particular problem that we 

want to look at is what is termed as classification; classification with Gaussian classes. What 

the problem is essentially very simple. You have the data belonging to 2 classes. So, you 

have class A and you have the data; another set of data belong to and of course there can also 

be some kind of a sparse overlap because they are these are after all Gaussians.  

And what you are trying to do is you are trying to classify this or basically separate these into 

2 different classes. So, you have class let us call this as Class 2 and let us call this as Class 1 

and you are basically separating these 2 classes. Or you are basically classifying the data into 

these 2 classes. So, partitioning the data into 2 classes. And now, let us say these classes are 

Gaussian. Now, in this problem and this frequently arises: these classes are Gaussian. 
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Class 1 is Gaussian with mean mu 1 bar covariance sigma. So, we are simplifying this by 

assuming this by assuming the same covariance sigma. So, Class 2 is Gaussian with mean mu 

bar or mu2 bar. So, the means are different. First one has mean mu1 bar; second one has 

mean mu2 bar but the covariance is same. So, this is Class 1, Class 2. So, these 2 classes both 

these classes are Gaussian.  

Now, the point is if there is a new point. Now, the question is if there is a new observation x 

bar. Which class does x bar; the question is which class does x bar belong to? Which class 

does x bar belong to that is an interesting one. For instance, let us take a simple example. You 

can have 2 classes. We can have for instance an image. Image can contain 2 classes: one class 



belongs to a certain object; other class of pixels belong to a certain object. You are trying to 

find a new pixel which object does it belong to?  

And let us take this simplified even further. Let us say there is an image with a single object. 

You have the object which is we can term as the foreground object or a person that is a 

foreground. And then you have the background. So, you can think of these 2 classes as one 

being the foreground; other being the background. This is an example. This can be anything. 

This can basically the presence of an object, foreground-background pixels. So, foreground 

pixels, background pixels; foreground pixel background.  

Now, we have new pixel vector x bar. Which does it belong to? x bar does belong? Does it 

belong to the foreground? Does it belong to the background? In general, we are saying that 

these 2 pixels are basically distributed as Gaussians: foreground Gaussian with mean mu 1 

bar, covariance matrix sigma. Background mean mu 2, bar covariance matrix sigma. How do 

you classify a new pixel, x bar? Let us look at this problem. 
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Let us now write the probability density function of the foreground. So, look at the 

probability density for each class. Let us look at the Class 1. Let us look at Class 1. What is 

the probability density for the Class 1? P of x bar which is basically parameterized by mu 1 

comma sigma. This is the multivariate Gaussian random probability density function with 

mean mu 1 bar. In fact, I have to write mean u1 bar, mean mu1 bar 2 pi sigma n.  

This is the determinant as you know. This is the determinant of sigma; determinant of the 

covariance; this is a probability density function; times e raised to the power of minus half x 

bar minus mu1 bar transpose sigma inverse x bar minus mu1 bar. So, this is basically your 

PDF corresponding to. So, this is the determinant that is what I was saying earlier. This is the 

determinant, there is no n here. This is the determinant: minus half x bar minus mu1 bar 

sigma inverse minus x bar minus mu1 bar and this is a Gaussian PDF and this is now termed 

in the context of classification or detection, this is termed as the likelihood corresponding to 

Class 1.  

Because we are looking at it as a function of the different classes. x bar is fixed. So, 

probability density function is basically a function of x bar. Now, we are looking at a point x 

bar. x bar is fixed. And you are looking at it's with respect to the different classes or the 

different hypothesis. So, therefore, this is known as the likelihood. So, this is what is known 

as the different, the likelihood of Class 1. This is an interesting terminology. This is the 

likelihood of Class 1 which is nothing but a probability density function evaluated at point x 

bar corresponding to that particular class.  
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Now, let us look at the likelihood of the Class 2 which is nothing but P of x bar mu 2 bar 

sigma. This is equal to 1 over square root of 2 pi raised to the power of n magnitude sigma; 

that is the determinant of the covariance matrix times e raised to minus half x bar minus mu 2 

bar transpose sigma inverse x bar minus mu 2 bar.  

(Refer Slide Time: 8:53) 

 

Now, so, this is basically what we are calling as; this is basically your likelihood. Or this is 

basically; let me just write it with a different color. This is basically the likelihood, this is the 

likelihood of Class 2, this is the likelihood of Class 2. Now, how do we make the decision or 

how do we do the classification? 
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Now, what is the classification rule or what is the classifier? This is what we call in the 

machine learning: what is the classifier? Or what is the classification rule? The classification 

rule is very intuitive. If the likelihood corresponding to Class 1 is higher, choose Class 1. If 

the likelihood corresponding to Class 2 is higher, choose Class 2. If both likelihoods are same 

which arises with 0 probability, you can choose any class. So, if the likelihood; so, the 

classifier is very simple.  

The likelihood corresponding to Class 1 if is greater than or equal to likelihood Class 2, if this 

is the case, then choose Class 1. That is your simple decision rule. Else, so we can write it if 

likelihood of Class 1 greater than equal to the likelihood of Class 2, choose Class 1 else 

choose Class 2. This is your simple classifier, that is your simple classifier. You compare the 

two classes. If the likelihood that is P x bar mu bar sigma bar x bar mu 1, mu1 bar sigma 1 



bar greater than or equal to P x bar mu 2 bar comma sigma. It is not sigma bar. This is sigma. 

greater than equal to sigma, then you choose. 

So, I can write this both as a single statement. If this is greater than or equal to this, choose 

Class 1. Or I can write this as over the greater than and if this is less than this, choose Class 2. 

This is the way you write it in a compact fashion. If it is greater than or equal to the 

likelihood corresponding to Class 2, so over the greater than or equal to symbol I am writing 

class 1 or the less than symbol I am writing Class 2; below the less than symbol I am writing 

class 2.  

So, this automatically tells you what is the classification rule. If the likelihood corresponding 

to Class 1 is greater than or equal to likelihood corresponding Class 2, choose Class 1. Else 

naturally choose Class 2. So, essentially this is the simple problem or this is the simple rule 

for this classification problem. So, we were saying choose C1 if the likelihood corresponding 

to class C1 is the likelihood corresponding to C1 which is given by this. This is the likelihood 

for C1. So, if the likelihood corresponding to C1 is greater than or equal to this likelihood 

corresponding to C2.  

And of course, if otherwise is less than equal to this. The likelihood corresponding to C1 is 

less than likelihood corresponding to C2, then choose C2. Now, let us simplify this. Let us 

substitute the expressions over here. 
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So, that essentially gives me choose C1 if well if you substitute those likelihood expressions, 

if you go back and take a look at it, let me write these expressions anyway. So, this 



essentially implies that 1 over square root of 2 pi raised to the power of n magnitude or the 

determinant of the covariance e raised to minus half x bar minus mu 1 bar transpose sigma 

inverse x bar minus mu1 bar. If this is greater than or equal to, choose C1. If this is greater 

than or equal to 1 over exactly identical constant that is square root of 2 pi determinant of 

sigma e raise to minus half x bar minus mu2 bar sigma inverse x bar minus mu 2 bar.  

And now you can see from this that these constants these go away. And now you only are left 

with the exponential. And essentially you can choose C1 if this exponent on the first is larger 

than the quantity in the exponent on the right. But there is a negative sign in front of it. So, 

essentially what it means is choose C1 if and the half is essentially its scaling factor. So, 

choose C1. 
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So, you can equivalently; you can easily check this C1, this reduces to choose C1 if x bar 

minus mu bar transpose sigma inverse x bar minus mu 1 bar, this is less than or equal to x bar 

minus mu2 bar sigma inverse x bar minus mu 2 bar transpose sigma inverse x bar minus mu 2 

bar. And therefore, now if you simplify this further, this implies if we expand this, this will 

give you x bar transpose sigma inverse x bar minus 2 mu 1 bar sigma inverse to 2 mu 1 

transpose sigma inverse x bar plus mu1 bar transpose sigma inverse mu 1 bar. This is less 

than or equal to.  

Again the same thing, x bar transpose sigma inverse x bar minus 2 mu 2 bar transpose sigma 

inverse x bar plus mu 2 bar transpose sigma inverse mu 2 bar. And now, you can see the x bar 

transpose sigma inverse x bar, this cancels from both sides.  
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This implies essentially that now, if you simplify it, you bring this on to the right, this implies 

mu 2 bar minus mu 1 bar transpose sigma inverse x bar, this is less than or equal to half mu 2 

bar transpose sigma inverse mu 2 bar minus half mu1 bar transpose sigma inverse mu 1 bar 

which now again once again if you simplify this, this implies that it is not very difficult. After 

some manipulation you can show this. This essentially mu 1 bar minus mu 2 bar transpose. 

Not very difficult to see this, mu 1 bar minus mu 2 bar transpose sigma inverse x bar minus, 

well mu 2 bar plus mu1 bar divided by 2 greater than or equal to 0. So, choose C1 if this 

condition holds. If this condition holds, otherwise you choose C2.  
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And this finally implies; I can write this conveniently as w bar transpose, w bar transpose x 

bar minus x naught bar greater than or equal to 0. That is choose C1 if this holds, greater than 

or equal to 0. Else if this is less than 0, choose C2. Remember this is how we write this 

condition. This is a very interesting and I am going to explain more about this. This has to be 

the sigma square; sigma inverse has to be there. So, w bar transpose sigma inverse; sigma 

inverse.  

This and or you can, you can write this as w bar transpose. I think this is fine. It is better to 

define it this way. So, where w bar is well where this quantity w bar equals sigma inverse mu 

1 bar minus mu 2 bar. So, w bar transpose will I once again give you yeah mu1 bar minus mu 

2 bar sigma inverse. In fact, I can write this as w bar transpose.  
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And x naught bar which is mu1 bar plus mu 2 bar by 2. So, this is the condition. And you can 

see you will later see that this is essentially w bar transpose x bar greater this w bar transpose 

x bar minus x naught bar greater than or equal to 0. So, this w bar if you if you look at this, 

this w bar transpose x bar equals w bar transpose x naught bar. This is actually a hyperplane, 

this is an n-dimensional plane. We are going to look at; the set of all vectors that satisfy this 

is essentially a hyperplane. We are going to look at that.   

So, that is essentially what this is saying. And so, this is the condition. So, choose C1 if w bar 

transpose and is also known as a discriminant. Now, let us come. Now, why is this very 

interesting? Let us look at a simplification. Let us set sigma equals; let us set a capital matrix 

sigma equals sigma squared times identity that is considering independent identically 

distributed Gaussian random variables. We know that when the covariance is essentially 

proportional to identity that corresponds to independent identically distributed Gaussian that 

is a Gaussian random vector with independent identically distributed Gaussian random 

components. Now, therefore, this essentially for i.i.d or i.i.d Gaussian components. This has a 

very interesting.  
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So, i.i.d Gaussian components, you have your w bar becomes which is essentially w bar 

becomes 1 over sigma square mu1 bar minus mu2 bar. And your condition becomes if you 

look at this 1 over sigma square times 1 over sigma square times mu 1 bar minus mu 2 bar 

transpose x bar minus x naught bar greater than equal to less than 0. So, you choose C1. If it 

is greater than equal to 0, C2 is less than 0.  

And of course, since there is 0 on the right, 1 over sigma square can be removed and net you 

get the condition that is choose C1 if mu1 bar minus mu2 bar transpose x bar minus x naught 

bar greater than or equal to 0. So, C1 is greater than or equal to 0; C2 if it is less than 0. And 

realize that this x naught bar, this is nothing but if you look at this x naught bar this is equal 

to mu1 bar plus mu2 bar divided by mu 1 bar plus mu 2 bar divided by 2. This is equal to 

essentially the midpoint: mu 1 bar comma mu 2 bar. This is the midpoint of these two means 



that is mu1 bar comma mu 2 bar. And therefore, the condition is something that is very 

interesting. 
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If you look at these two Gaussian classes, let me just draw the picture again and show you. 

So, you have these two Gaussian classes and this one has mean you have the mean that is mu 

2 bar and you have the mean that is mu 1 bar. Now you join these two; just write this 

appropriately. So, so this is your mu 1 bar. And now you look at the midpoint. Let us draw 

this hyperplane that bisects these two. So, this is the perpendicular bisector. This is a 

perpendicular bisector. And what you will see is that what you will see is that this is the 

midpoint which is essentially mu 1 bar plus mu 2 bar divided by 2.  

Now, look at any point x naught or look at any point x bar. Now, mu1 bar minus mu 2 bar is 

this vector, mu 1 bar minus mu 2 bar is basically the difference vector. So, this is your mu 1 

bar. This is your mu 2 bar. So, mu 1 bar is mu 2 bar is a vector starting at mu 2 bar pointing 

ending at mu 1 bar pointing pointing towards mu1 bar. Now, x bar minus mu naught bar is 

this vector. So, x bar minus; so now if you look at it x bar.  

So, now, if you look at it, your mu 1 bar minus mu 2 bar transpose x bar minus x naught bar 

which is the dot product between these 2 vectors is greater than or equal to 0 if this angle 

theta is lies between 0 and 90 degrees. Because remember this is nothing but this is 

essentially equal to the magnitude of mu 1 minus mu 2 times or norm of mu 1 minus mu 2 

times norm of x bar minus x naught bar times cosine of theta where cosine of theta is the 

angle between x bar minus x naught x naught bar that is the midpoint mu 1 bar plus mu 2 bar 



by 2 and mu 1 bar minus mu 2 bar. If this angle lies between 0 and 90, this is positive which 

means it will be classified as C1.  

And you can clearly see this angle. I have to say this angle less than minus 90, minus 90 

degrees less than or equal to theta less than equal to 90. That is, it lies anywhere x bar lies 

anywhere in this side of the hyperplane. So, this is greater than or equal to 0 if x bar lies on; x 

bar lies on side of you can say a side of mu1 bar. On the other hand, for any point here this is 

your x bar is here. And now, if you look at again once again this angle, the angle between mu 

1 bar minus mu 2 bar this angle, this angle theta cosine theta is equal to less than 0 or 90 for 

theta which is greater than 90 degrees or theta less than minus 90 degrees.  

So, you can say theta greater than 90 degrees or theta less than minus 90 degrees. And when 

cosine theta and when this cosine theta is negative, then for all points on this side of the 

hyperplane you will have mu 1 bar minus mu 2 bar transpose x bar minus x naught bar. This 

will be essentially less than 0. So, essentially if you look at this. Let me just draw this figure 

again. 
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You have mu1 bar. This is the midpoint. This is the perpendicular bisector so, this entire 

region so, this is your mu1 bar. This is your mu 2 bar. So, this entire half space we can call it. 

In fact, this is known as a half space. This entire half space is classified as; this entire half 

space is classified as basically Class 1. And if you look at this side of the half space; this half 

space, this is classified Class 2. That is if it lies on the side of the perpendicular bisector that 

is, you take 2 means: mu 1 bar, mu 2 bar, draw the perpendicular bisector.  

If the point x bar lies on the side of mu 1 bar; if the observation x1 bar lies on the side of mu1 

bar rise on the side of mu 1 bar, it is classified as belonging to class 1 if the observation x bar 

lies on the side of x2 bar, it is classified as belonging to class 2. All right. So, that is the 

interesting. This is very intuitive. So, it says essentially that you are classifying as belonging 

to the class corresponding to the mean which is closest to the observation vector x bar. That 

is, if you have x bar; if you have any point x bar, you look at the distance between x bar and 

each of the means. So, this is x bar minus mu 2 bar and this is x bar norm of x bar minus mu 

1 bar.  

And essentially what you are doing is if norm of x bar minus mu 1 bar is less than or equal to 

norm of x bar minus mu 2 bar, then you are choosing; you are choosing Class C1 else you are 

choosing C2. So, this is also essentially known as the minimum distance classifier. So, this is 

a very interesting thing. So, with Gaussian covariance proportional to identity; covariance 

both covariance are equal. Both covariances of both the classes are equal and proportional to 

identity. This essentially reduces to minimum distance classifier.  



That is, basically you draw the perpendicular bisector between the two means, if it is on the 

side of the new observation x bar is on the side of mu 1 bar; that is it is closer to mu1 bar than 

mu 2 bar, classify it as Class 1. If it is on the side of mu 2 bar that is, if it is closer to mu 2 bar 

than it is to mu 1 bar classified as belonging to Class 2. So, this is a very interesting and a 

very simple classifier and a very interesting application of the principles of linear algebra.  

It combines a lot of principles as you can see, it combines the principles of the multivariate 

Gaussian, multivariate Gaussian probability density function, the covariance of a Gaussian. 

Covariance of a Gaussian when the random when the components are independent, 

identically distributed. And finally, this notion of these likelihoods and comparing the 

likelihoods belongs to both the class of the likelihood corresponding Class 1 is greater than 

likelihood corresponding Class 2, choose Class 1, else choose Class 2. 

And once you simplify it, you will see that it reduces to something that is very intuitive and 

interesting as well as intuitive that is nothing but the minimum distance classifier. Basically, 

the half space that is closer to mu1 bar is classified as Class 1. Half space that is closer to 

mu2 bar is classified as belonging to Class 2.  

So, this is a very interesting application of linear algebra that we studied so far in the context 

of Machine Learning. And thus, it can be used to build very sophisticated Machine Learning 

algorithms. Alright, so let us stop here. We will continue this discussion in the subsequent 

module. Thank you very much.  


