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Hello welcome to another module in this massive open online course on Applied Linear Algebra 

for Signal Processing, Data Analytics and Machine Learning. So, let us start our lecture, so we are 

going to start with the fundamental concepts of vectors and how vectors can be used to represent 

data. 
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So, this is the massive open online course on Applied Linear Algebra for SP that is Signal 

Processing and you have the DA that is your Data Analytics and also you have the ML which is 

basically Machine Learning. So, as you can see essentially linear algebra and its applications, the 

concepts of linear algebra are so fundamental that they have diverse applications, in fact they are 

applied in almost all the fields of science and engineering. And, in particular, we are going to look 

at the interesting applications of linear algebra in signal processing, data analysis, data analytics 

and machine learning.  
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So, the notion of linear algebra, when you talk about the linear algebra the notion or concept of 

vectors, so vector or basically 𝑛 dimensional point is fundamental. This is fundamental to represent 

data. For instance, we can define a vector 𝒖̅ as this is, an 𝑛 dimensional vector comprising of the 

elements or we say the components 𝑢1, 𝑢2,.., 𝑢𝑛. This is we say 𝑛 dimensional vector. This is 

fundamental to represent the data which is what we are seeing and this belongs to the 𝑛 dimensional 

real space. 

So, this notion is basically your 𝑛 dimensional real space if 𝑢1, 𝑢2, so on up to 𝑢𝑛 if these are real, 

else this belongs to the 𝑛 dimensional complex space, so this is 𝑛 dimensional complex space, if 

your 𝑢1, 𝑢2, 𝑢𝑛 are, complex. So, you have the 𝑛 dimensional vector 𝒖̅, 𝑢1, 𝑢2, 𝑢𝑛 are real then 

this belongs to the 𝑛 dimensional real space if 𝑢1, 𝑢2, 𝑢𝑛 are complex this belongs to the 𝑛 

dimensional complex space. 
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And you can also say 𝒖̅ represents, this essentially represents an 𝑛 tuple, or essentially, you can 

also say this is a point in 𝑛 dimensional space. So, by default we will consider real vectors. For 

example, a classic example of that for our course would be an 𝑛 dimensional signal, 𝑛 samples of 

a signal, so you take continuous time analog signal, you sample it and you consider 𝑛 samples of 

the signal that would be a vector.  
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So, you take for instance a classic example, a very useful example for us. So this is your signal 

and then you take the 𝑛 samples. So 𝑛 samples of a signal in space, sorry 𝑛 samples of a signal in 

time or we can generally say 𝑛 samples of a signal, so that will be our signal vector. 

So, for instance you have 𝑛 samples of noise that can be your noise vector. So, vectors have a lot 

of applications, of course, you can consider 𝑛 samples of a spatial signal such as an image, so of 

course, an image is 2 dimensional but you can also take the samples and put them as a vector. So, 

essentially vectors are very useful in representing data signals and various other quantities. 
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Therefore, now for instance, you can also have the 𝑛 observations of a sensor, so that can also be 

another interesting vector. So, 𝑛 observations of a sensor in time such as temperature pressure. For 

instance, let us write this another example, you can have 𝑛 observations of a sensor such as 

temperature, pressure, etc so that is your, there are a lot there are basically many many examples 

of such vectors. 
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Now, for instance a location, 3D space, that can be represented by or you have a location in 3D 

space that can be represented by a 3-dimensional vector. Any location in 3D space that can be 

represented by the 3-dimensional vector 𝑢1, 𝑢2, 𝑢3 or what we call as the 𝑥 𝑦 𝑧 coordinates. So, 

this is basically a 3-dimensional vector, this is the physical space that we are used to, this is your 

location in 3-dimensional space. 
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Now, consider 2 𝑛 dimensional vectors, now let us look at vector addition. Consider 2 𝑛 

dimensional vectors that is we have, let us say,  𝒖̅ equals 𝑢1, 𝑢2, . . , 𝑢𝑛  and we have 𝒗̅ equals 

𝑣1, 𝑣2, … , 𝑣𝑛 then the vector addition is simply an element-by-element addition of these 2 vectors.  

So, essentially 𝒖̅  plus 𝒗̅ will also be an 𝑛 dimensional vector with the first element 𝑢1 plus 𝑣1, 

second element 𝑢2 plus 𝑣2, so on, 𝑛th element 𝑢𝑛 plus 𝑣𝑛.  



(Refer Slide Time: 11:09) 

 

 

And let us now consider the scalar product, let us consider the scalar product you have 𝒖̅ plus 𝒗̅  

or you have 𝑘 that is a scalar, so 𝑘 is a scalar coefficient, so 𝑘 times 𝒖̅ you take the scalar multiplied 

by each element of the vector, so this will be 𝑘𝑢1, 𝑘𝑢2 so on up to 𝑘𝑢𝑛. And then we have the 

notion of a linear, so this basically completes the basic operations that is your what we call as your 

vector addition and the scalar product. And now let us look at another fundamental operation of 

vectors that is basically a linear combination.  
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So, let us now look at a linear combination, let us now look at a linear combination of vectors, so 

you have the vectors 𝒖̅1, 𝒖̅2,.., 𝒖̅𝑚. So, consider the vectors 𝒖̅1, 𝒖̅2,.., 𝒖̅𝑚, these are the vectors 

and then you have the scalar quantities 𝑘1, 𝑘2, … , 𝑘𝑚 these are your scalars. Then your linear 

combination of vectors, the linear combination is basically given as multiply each scalar 

coefficient by the corresponding vector.  

So, this is essentially the concept of the linear combination of the vectors. Then we have the notion 

of an inner product, so that is basically and this is a very important concept the linear combination 

of the vectors. 
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Now, let us consider another concept that is the inner product, what about the inner product and 

this is another fundamental concept that is the inner product when you have 2 𝑛 dimensional 

vectors what happens to the inner product of these 2 vectors. So, consider arbitrary vectors 𝒖̅, 

comma 𝒗̅ that belong to the 𝑛 dimensional space of real vectors that is you have 𝒖̅ equals 𝑢1, 𝑢2, 

up to 𝑢𝑛, and 𝒗̅ equals 𝑣1, 𝑣2, up to 𝑣𝑛.  
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Then we have 𝒖̅𝑇, this becomes a row vector 𝒖̅𝑇 when you take the transpose of a column vector 

that becomes a row vector. So this is 𝒖̅𝑇 and then so this is 𝒖̅𝑇is essentially a, this is essentially a 

row vector and then we define the inner product, this is a very important definition, we define the 

inner product of 𝒖̅, 𝒗̅, we define it as 𝒖̅𝑇𝒗̅ which is essentially if you look at this, this is the product 

of the row vector 𝑢1, 𝑢2, … , 𝑢𝑛 times the column vectors 𝑣1, 𝑣2, … , 𝑣𝑛 which is equal to summation 

𝑖 equal to 1 to n, I can write it as 𝑢𝑖  𝑣𝑖 or essentially this is 𝑢1, 𝑣1, write it in the expanded form 

𝑢1 𝑣1 plus 𝑢2𝑣2,  plus 𝑢𝑛𝑣𝑛 so this is basically the notion of the inner product.  
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So, this is the inner product, this is a very important concept, the concept of an inner product 

between 2 vectors. For example, let us take these 2 vectors, example 𝒖̅ equal to 2 1 minus 1 and 𝒗̅ 

equal to 1 minus 1 3 and then what you can say is you have 𝒖̅, 𝒗̅ the inner product is 𝒖̅𝑇𝒗̅ which is 

basically equal to 2 1 minus 1 and 1 minus 1 3 which is essentially equal to 2 minus 1 minus 3 

which is equal to minus 2, so that is a simple example for the inner product which is essentially 

you can also think of it as an element wise multiplication of 2 vectors and then an addition that is 

𝑢1𝑣1 plus 𝑢2𝑣2 so on until 𝑢𝑛𝑣𝑛. 
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Now, for complex vectors the definition becomes we have 𝒖̅, the inner product of 𝒖̅, 𝒗̅. We will 

define this as 𝒖̅𝐻𝒗̅ that is essentially you have to take the transpose that is when you look at the 

Hermitian you essentially have to take the transpose and also the complex conjugate 𝑢1
∗, 𝑢2

∗ , … , 𝑢𝑛
∗  

times 𝑣1, 𝑣2, … , 𝑣𝑛 that is sigma equal to 1 to 𝑛 that is 𝑢𝑖
∗𝑣𝑖, so this is the notion of inner product 

for complex vectors 𝑢1
∗ to 𝑣1 plus 𝑢2

∗𝑣2 plus 𝑢𝑛
∗ 𝑣𝑛. 
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Further now there is a notion of orthogonality which is very important, the notion of orthogonality 

of 2 vectors, 2 vectors are, and this is a very important property 2 vectors are orthogonal if their 

inner product is 0, so orthogonally of 2 vectors are orthogonal or perpendicular, orthogonal, I am 

sorry orthogonal if their inner product equal to 0. 

So, the 2 vectors are orthogonal that is in real dimensions we have 𝒖̅𝑇𝒗̅ equal to 0 that is for the 𝑟 

dimensional space, for the 𝑛 dimensional real space, for the complex space we have 𝒖̅𝐻𝒗̅ equal to 

0, so this is essentially the definition of orthogonality.  
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Let us take a look another again at another simple example 𝒖̅ = [1, −1,1, −1] and 𝒗̅ =

[2,2, −2, −2]  and we have 𝒖̅𝑇𝒗̅ if we do 𝒖̅𝑇𝒗̅  this will be 2 − 2 − 2 + 2, which is equal to 0.  

So, these 2 vectors that you have over here, so these 2 vectors are orthogonal, essentially what we 

also say informally as that as these 2 vectors are perpendicular and that makes more sense in 3-

dimensional space that is we have 2 vectors which are at angle with respect to each other, more 

generally the notion is these 2 vectors are orthogonal because their inner product is 0. Let us look 

at another interesting example and this time with respect to complex signals and complex 

sinusoids.  
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So, another very important example I would also say consider the complex sinusoids for instance 

you have the sinusoids 𝒖̅, let us call this as your 1, 𝑒
𝑗2𝜋

𝑁 , 𝑒
𝑗4𝜋

𝑁  so on and so forth 𝑒
𝑗(𝑁−1)𝜋

𝑁 , so this is 

your first sinusoid. And then you have another which is essentially 1, 𝑒
𝑗3𝜋

𝑁 , 𝑒
𝑗6𝜋

𝑁   and so on and so 

forth 𝑒
𝑗4(𝑁−1)𝜋

𝑁 . 

So, you can see these are essentially 2 complex sinusoids, I am sorry let me make this again, this 

has to be  𝑒
𝑗4𝜋

𝑁 , 𝑒
𝑗8𝜋

𝑁  and essentially what you have, yeah, essentially these are 2 complex sinusoids, 



these are 2 complex sinusoids and if you look at their inner product so these are 2 complex 

sinusoids corresponding to the frequencies if you look at the frequency of this that is 𝑓1 this will 

be equal to 1 over 𝑛 and this will be a complex sinusoid of frequency 𝑓2 this will be equal to 2 

over 𝑛, so you are talking about the complex sinusoid 𝑒𝑗2𝜋𝑓1𝑛 and  𝑒𝑗2𝜋𝑓2𝑛.  

(Refer Slide Time: 27:16)  

 

 



And when you look at their inner product, their inner product 𝒖̅𝐻𝒗̅  is basically if you look at this 

that will be the summation 𝑙 equal to the ∑ 𝑒−
𝑗2𝜋𝑙

𝑁𝑁−1
𝑙=0 𝑒

𝑗4𝜋𝑙

𝑁 . And therefore, this is going to be the 

∑ 𝑒
𝑗2𝜋𝑙

𝑁𝑁−1
𝑙=0  which is essentially 

1−𝑒
𝑗2𝜋𝑁

𝑁

1−𝑒
𝑗2𝜋

𝑁

. 

And if you look at this 𝑒
𝑗2𝜋𝑁

𝑁  is nothing but 𝑒𝑗2 𝜋which is 1. so this is 
1−1

1−𝑒
𝑗2𝜋

𝑁

. So, therefore, you 

have this interesting property where you have the complex sinusoids at the frequency 

0,
1

𝑁
,

2

𝑁
, … ,

𝑁−1

𝑁
, these are essentially orthogonal.  
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So, we have the interesting property complex sinusoids at frequencies, so you have complex 

sinusoids at the frequencies, at the frequency 0,
1

𝑁
, so these frequencies, these are orthogonal, 

complex sinusoids edges and this property, this orthogonality of this complex sinusoids, this 

property is extremely important in Fourier analysis, this forms the basis of all Fourier analysis.  

So it is going to be very important. Naturally it is important for all of signal processing because 

remember the Fourier transform or the spectrum of a signal, the decomposition of the signal is 

very important in signal processing and in general, of course, naturally when you apply to images 

and audio signals and so on, it becomes also very important in machine learning and also naturally 

in data analytics, all of these are interrelated. 
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Let us now go to this notion of the norm of a vector, so what we mean by the norm of a vector? 

So, the norm of a vector this is denoted by ||𝒖̅||, which is nothing but the square root of the inner 

product of a vector 𝒖̅ with itself which is essentially for a real vector, you can clearly see the inner 

product of 𝒖̅ with itself for a real vector 𝒖̅ inner product with itself this is 𝑢1
2, 𝑢2

2, … , 𝑢𝑛
2, which is 

nothing but 𝒖̅𝑇𝒖̅. 
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And therefore, this ||𝒖̅|| or what you also call as 𝑙2 norm of 𝒖̅ which is what we are going to use 

by default is going to be √𝑢1
2 + 𝑢2

2+. . +𝑢𝑛
2. And this is also what we call as the length of a vector 

in 3-dimensional space or in general length, this is essentially the length of a vector.  

And for complex vectors, so this is for real vectors where 𝑢1, 𝑢2, … , 𝑢𝑛 are real, for complex 

vectors this will be simply the magnitude, this is simply the √|𝑢|1
2 + |𝑢|2

2+. . +|𝑢|𝑛
2 . And so, this 

is for a complex vector, this definition is for a complex vector. 
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And it is very easy to see ||𝒖̅||
2
 that is ||𝒖̅|| is greater than equal to 0 and this equal to 0, ||𝒖̅||  

equal to 0 if and only if this is implies and is implied by 𝒖̅ equal to zero that is the norm or length 

of a vector equal to 0 only if 𝒖̅ equal to 0 which means every 𝑢𝑖 which means essentially every 𝑢𝑖 

equal to 0.  

So, this is essentially the norm of a vector which is defined as √𝑢1
2 + 𝑢2

2+. . +𝑢𝑛
2 for a real vector 

and √|𝑢|1
2 + |𝑢|2

2+. . +|𝑢|𝑛
2  for a complex vector. And this is always greater than equal to 0 except 

for a vector 𝒖̅ which is identically equal to 0, that is 𝑢1, 𝑢2, … , 𝑢𝑛 all the elements are 0. So, let us 

stop this module here and let us continue in the next module with further discussion on these 

various concepts of applied linear algebra. Thank you very much. 


