
Peer to Peer Networks

Professor Y. N. Singh

Department of Electrical Engineering

Indian Institute of Technology, Kanpur

Lecture 8

PASTRY Protocol: The Efficient Use of Internet Infrastructure

(Refer Slide Time: 00:13)

Welcome to lecture number 8 for the MOOC on peer to peer networks. In the previous lecture, I

had covered about Pastry, and I have shown you an example that if we just depend on routing

table exchanges, then our routing table may not converge correctly. So, one of the essential

mechanisms in chord was the use of predecessor and successor both. We can also call it leaf set,

Pastry terms it as a leaf set. And with that, we were always able to list with the correct routing

table, so convergence was always guaranteed.

So, that is what we had discussed in the previous lecture. But there was a problem in the chord

that each node is randomly picking up the node IDs. So, maybe your neighborhood node might

be going to some node when you are forwarding a query or trying to publish a key-value pair,

which may be all the far off. It may be just the opposite direction on the earth. If you are in India,

it the other node; the next neighboring node might be in the United States. And then, the next

node may be back to India.

So, proximity is not guaranteed. This basically in the node ID space only we are looking at

closeness, and based on that, every time the query, or the key-value, or hash ID for the key, is

moving towards the node which is closer in node ID space. But it is not taking the optimal path.

So, this was one of the problems; this needs to be resolved. So, that is why the Pastry got

invented. We will now be today looking at the Pastry, another DST routing algorithm, which is

technically very similar to chord, where the route nodes are defined, except for the minor

changes in distance definition.

So, we will be revising the chord first, and then we will move on to Pastry. So just a quick

revision of the chord. The chord, in this case, all nodes have to maintain a predecessor, as well as

a successor node. And all nodes are supposed to be arranged circularly, as you can see in the

figure, so they are placed circularly.

So, this will depend on the node ID. So, if this number is going to be 0, this has to be higher than

0. So, there is no other node which should exist between these two node IDs. They are all

arranged circularly, so you start from 0, go all the way to 2 raise power n minus 1.

Suppose there are n bits which are contained in the node Id. And we are using modulo

numbering, so we essentially, in this case, once the numbers get finished off, we again go back to

0. So, this circular arrangement is maintained. And in chord usually, we have a mechanism by

which if the hash ID lies will be lying somewhere on the circle. And whichever node ID will be

immediately after that in a clockwise direction, so that will be the first node that will become the

root node. So, I will explain the actual definition of the root node. We had discussed this thing

earlier.

(Refer Slide Time: 3:39)

So, this is the way it is going to be arranged. So, I am taking an example of 16 node ID space, so

numbers can only be given from 0 to 15. There are some nodes, so when they will be arranged in

the circle, after 1, 5 will come, there is no node with a value 2, 3, 4, so then only this can happen.

And from 5, there will be 9. So, they are in, remember they are in order. So you are not going to

get a 10 here in this position. So, you will not get 10 here. If you want, you will not get 10 here.

10 has to be only after this, so 10 can only come at this location. So, this cannot come here. So,

this is going to be correct if I have to insert 10.

So, this is the way things are organized. Now the hash ID, or the key value, so basically there

will be a key, and you will be generating a hash, hash function of, the hash of the key. This is

what will be your hash ID. So, this hash ID is what will be; for example, hash ID belongs to this

particular point in this node ID space, then the root node for this one will be 0 in this fashion.

The definition is the node ID that is closest or greater than or equal to the hash ID and smallest in

magnitude in a cyclic manner, so that will be the root node as per this definition.

If you have your hash IDs in this range at any point in time, this will be the root node. So, this is

how it is going to be happening. We can take this and define this as a, in a mathematical form.

So, as a distance metric. This, we had also discussed in one of our earlier lectures. From a point i,

so from you take a point i, and to a point j, if you want to find a distance, this distance has to be

taken in this fashion. So, this distance will be given by j - i, and this can also be negative, need

not be always positive, because, after 15, it is, the circle is completing and coming back to 0, 1

and so on.

So, j - i can also be negative. That is why we can add 2n. So basically, and then do a modulo

operation. So, that will give me the distance always in a clockwise fashion. So, for a hash ID i,

the root node will be any node whose node ID is j such that dij is the least, so you have to choose

j such that dij is minimum for a given hash ID so that that node j will be the root node. So, that

what will be the definition?

(Refer Slide Time: 6:27)

So typically, how the routing table will be there. The routing table at each node is called the

finger tables already discussed in case of a chord. Usually, this is the current node i. so every

node should maintain a successor and predecessor, immediately any node which is smallest in

number but is higher than i, that has to be retained cyclically. And a predecessor, the previous

one. These two always have to be maintained.

And after that, you can find out the root of halfway across. So, the total number of node IDs is

2n. So this 2n/2 = 2n-1. So, this actually will when I add to i, this will point to diametrically

opposite point. So, whatever is the root node of this, this will be the root node; if this, no node

exists in this range. So, this will be kept in the table. So, in the finger table. Similarly, for quarter

2n-2, I will add to i and find the root node.

We will keep all the entries. Ultimately, at 20 i +1, so the root node of i + 1 will always be the

successor. So, the predecessor is always kept for optimization purposes. Otherwise, you will not

be able to do, you cannot stabilize the routing table to the correct entries, as we had seen in the

previous lecture. And of course, now the routing strategy is straightforward. For hash ID l, so l

is a hash ID that you want to find out. And there are many nodes which are going to present.

For example, this i contains this node, this and these three nodes. It will choose a node such that

from the hash value, we have to select a node such that from the node listed in my finger table,

the distance should be minimum from that node to the hash ID. For example, if the hash ID is

supposed at this position, this is the hash ID. So, in this case, I should now hand over the query

to this particular node. This node will now further determine if its successor is immediately after

this node after this hash ID, so it should be the root node.

It will then inform the successor that you are the root node, and this is the hash ID, then it will

look into its database. Every time you have to use it, you are trying to minimize it; you are

choosing k such that dkl is the minimum thing and hand it over. At some point, the node will

figure out that it is the closest guy. And then that guy will figure out the successor and hand over

the query to him, and tell him that you are the root node. That has to be told him specifically;

otherwise, he will look at his finger table, and he will find out somebody else who is closer to

that hash ID.

 So, routing has to stop here. And this guy will then has to specifically ask him to supply the

value pair, value key-value pair from his database. We can modify this definition slightly and

make it simpler. I will do that later. For example, I am always pointing here; this is the same

thing I had mentioned in the previously recorded lecture that this is pointing here.

So, suppose there is a better pointer from predecessor and successor. In that case, somebody is

closer to the halfway across entry, so halfway across the entry. For example, it is pointing to

somewhere here, so then n it is now pointing here, so predecessor is at this point, the successor is

here, so this remains the root node.

But if my halfway entry is pointing here, so this is going to be, this is i, so this is i + 2n-1, and the

finger table contain this nodes entry. Whenever this node sends back the information about

predecessor and successor, this node will figure out the better entry to change the pointer instead

of this; the pointer will be modified from here. So, this entry will no more be valid. So, this how

you keep on optimizing the pointers in the finger table. So, this predecessor, successor, actually

do that job. So this we had discussed earlier also.

(Refer Slide Time: 10:55)

So once the current node i will satisfy the dil, where l is the hash ID which we are searching this

hash ID, this what we had used in the earlier slide, is the least value. The successor of i will be

the root node. This is what I mentioned earlier. We can avoid this specific condition if we choose

my root node definition slightly differently. We can decide that root node, node k, such that dkl;

remember earlier, when the root node was being defined, it was dlk, so we chose k such that dlk

gets minimized.

But now we are not doing this; we are doing this one. So, node k is chosen such that dkl is the

least for the hash ID l, so that k will be the root node. So, in this case, if this is the range of hash

ID, the root node will be the previous guy, the predecessor to, each one of, this hash value, the

predecessor is this, so this will be the root node. Now, this is relative to logarithmic routing. Now

when I want to, in this case, only numeric ID based search can only happen. I cannot choose

based on geometric or actual distances, which are closer to me. I need something different. So,

that is what Pastry did.

(Refer Slide Time: 12:20)

And, of course, I had talked about finger table management. And this was also part of the

previous lecture. We will now use this Pastry; this algorithm uses the proximity metric, or actual

distances will also be accounted for. But the root node definition, or the node ID, node ID space,

the distance metric is still based on the circularly arranged nodes. So that is the key thing. This is

the same thing as what happens in the chord.

So, still, the arrangement is circular. And two neighboring nodes may be far off in case of a

chord, even in terms of round trip time, hops, or geographical distance, and this cannot be done

in a chord, but Pastry can do it I mentioned earlier. So let us see how it does. So, first of all, what

is the root node definition in the chord in the Pastry? If a node is lying here, so the next successor

is here, the predecessor is here, so halfway across will divide. This node will be the responsible

node for this whole range or called the root node for this ring.

So, it is the absolute distance that is going to be critical here. So technically, your dij will be

given by a minimum of i-j + 2n mod 2n, or so this is what is going to be the distance metric now.

So, the node closest to the hash Id will be the root node in this sense. This distance represents

this, so I am going either this way or going the other way around, either way, whatever be the

distance, so i to j or j to i, both I am taking, so this will be the root node.

But there can be a problem actually, that a node your hash ID may be precisely between the two

nodes, in this case, who will be the one, so both are equidistance. So, in that case, you can

choose the next higher entry all the time, but it has to be consistently done with everybody.

Otherwise, you will not be able to find the root node. The root node has to be unique in the

system. So, each node in Pastry will maintain three tables, on is called leaf set, so this is an

extension of just maintaining predecessor and successor in the chord. This is an extension for

that. The routing table is now slightly different here. It is not based on finger tables.

And there is one-third thing that is neighbor tables, which essentially now look into taking care

of these three distances mentioned here, these three distances are being taken care of, so anyone

can choose it. So, but that is being left to the implementation of the algorithm.

So, the leaf set, first of all, let us define what the leaf set is. So, its size will be given by some

parameter l. I will tell you what the l will be actually. So, l by 2 nodes, which are higher and

closest to the current node, those will be the part of the leaf set higher side, and there is a leaf set

lower side, which is l by 2 lower nodes, but which are closest to this current node.

So, this set of, for example, add node, 8 nodes will form a leaf set, where l is now 8 in this case,

so 4, 4. So, that is what leaf set is; every node is supposed to maintain it. Even if some node dies

off, this guy will always be exchanging leaf sets with all the leaf set members. So, its leaf set will

be given to this person. So, this will be changing the given leaf set to him. This guy will be

communicating leaf set back to him. If some node dies off, they can always repair it and always

maintain 8 nodes in their leaf set.

(Refer Slide Time: 16:26)

So the basic principle is to ask the leaf sets from all the nodes in your leaf set and choose the best

option to update your leaf set. So that is going to be the key rule, which is maintained by all the

nodes. So all the nodes will keep on maintaining the leaf sets accordingly. And whatever node

you choose, you start taking leaf set ultimately you will end up in fine building up your own

optimum leaf set, and you will stabilize on to that. So, all the nodes reported, you usually do a, if

you are doing ping-based proximity, closeness, based explicitly on node ID, there is no ping test

here to be done based on node ID.

So, it is a straightforward algorithm in this case. A similar thing is also done in the neighbor table

case, but we will use a metric, which is defined by one of these three, or maybe something else

whatever the application developer decides. If you note down that the same principle we were

using, so leaf set l-value was 2 in a chord. So, in this case, the value of l can need not always be

2. It can be higher; it can be 4, it can be 8, it can be 16, or 32, whatever as an application

developed you decide.

Another important thing is that the other nodes send even the received entries, and the routing

tables or the neighbor tables are sent from other nodes; even those entries are also considered to

make a better choice for your leaf set. So, this is an ongoing process all the time. Leaf set,

usually, will not be required, but you should always consider all the new information arriving at

you for faster convergence.

(Refer Slide Time: 18:06)

Now when a hash ID is to be routed, so how the routing has to be done? So, routing here is

slightly tricky. First of all, you will always use the routing table, and once you reach here and

find out you are the closest node, you will start using your leaf set for doing the routing. You get

a hash ID; this guy gets the hash ID, which is at this point. And there is no more closer node; this

is the only closest node as per the routing table.

I will talk about what closeness is. Then you start looking at your leaf set. So, it finds out this

guy is actually between these two. So whichever, it will just send it over to one of them, or it will

find out which one is closer. If both of them are equal, it will give it to the higher one as per the

consistent rule. I had been following the higher node. Or this node 1, if that is, whichever is

closest that we have picked up and entry will be passed on to that.

That guy will again look at his own leaf set and find out he is at the closest node to look into the

database for the corresponding key-value pair, or rather he will publish, depending on whether it

is a query message or a publish message.

 (Refer Slide Time: 19:25)

You are now coming to the routing table, how the routing table is built. So fast routing, routing

table has to be maintained, because you do not need a routing table, you can work without the

routing table, because you can keep on passing through these leaf sets, but every time you can

jump at most by 4.

So, you can do 4, 4 jumps, so if there are n nodes away, you have to go, so if there are total n by

2 nodes are there, halfway across if they are uniformly distributed, so, n by 8, roughly those

many hops will be required to reach to your root node in the worst-case scenario. So that is not

desirable typically when n is very large. So you would like to go into log n steps instead of some

constant steps into n.

(Refer Slide Time: 20:10)

So, for this, the routing table is maintained. This is going to be pretty fast. So in the case of n, if

it is a size of node ID space, n for example, it is 2256, so 256 bits can represent a node ID. Then

the number of digits which will be required will be log2
b N. With 2b, b is the number that we

have to define. So, this is base 2b digit has to be used for representing those node IDs. So, I can

use that, so b can be 3, it can be 4. Normally b equals 4 is used, but in our example, we will take

b equals 3 for simplicity because my tables will be smaller.

We can now even choose 2 that actually can be determined; it can be anything. It does not

matter. If you choose b is equal to 1, then we have only two digits 0 and 1 are there, and this

whole thing will degenerate to Kademlia. You do not require, in this case, this table will generate

to Kademlia, but of course, the distance metric is going to be different in Kademlia and here. So,

once I explain Kademlia, you will be able to appreciate that. But as of now, this can be anything.

So, the number of rows in the routing table, we have to understand this, the number of rows will

be equal to the number of digits in the node ID.

If there is a 4 bit, b is equal to 4 is chosen, so I am now using a 4-bit hexadecimal digit for

representing the node IDs. So, how many hexadecimal digits can be there, 256/4? So, those

many will be there. And you will end up going to have those many rows, which will be presented

here. Depending on, if I am going to use a hexadecimal number, there will be 16 columns; if b is

equal to 3, there will be 8 columns. So, the number of columns will always be equal to 2 raise

power b. So, 24 is 16, so 16 columns will be there for a hexadecimal, base 16 digits if used to

represent the Pastry routing.

(Refer Slide Time: 22:22)

So, let us take an example. So here b is equal to 3, which has been taken, and this can now

represent octal digits. The digits can be from 0 to 7. You are not allowed to have 8, 9, 10 and so

on in the node ID. And I will take four-digit node ID, which means 2 raise power 3 multiplied by

4. So, 2 raise power 12, those many, the node ID space, which is still actually large.

So, let us take a node ID to 0 to 256 first of all. So what the routing table will look like? So, this

will also explain how the routing table gets done. So let us, the first digit will now derive the first

column. So, the first digit I will take. So, when the first digit is 0, this node itself can actually be

put up here. So, there is no nothing else; only it, the same node entry, will just remain here. Now

the first bit is 1, I will keep here. And I can choose anything, anything which can match with 1 x

x x.

Which means 4 x x x here; take this example. If the cell, this particular cell, will have this entry,

it can have any node that matches this. So, 4 1 2 3 matches, 4 0 0 matches, x means it can be

anything. Sorry, I should not have written this F F F here because I am talking about the octal

system. So, let us call it 4 7 7. So there is no entry as of now, there is only one node, so I am just

leaving it as it is.

So this means there is nothing. Then 2 x x x, any entry which matches with this. 29 possibilities

exist. Anyone of them can be placed here. But we are going to put a restriction on this what can

be placed here. As when doing peer to peer routing, we want to have fewer network resources to

be consumed. We are looking going to have some kind of a proximity metric beside which entry

has to come in when there are multiple possibilities.

Similarly, for three, anything which is matching. So, each of these blocks can have an entry from

29, that much size block. One of them is 29, entry is possible. So, this block is representing 29

possibilities. Now, coming to the second column. So, 0 remains as it is. So, this will remain at 0.

I am not looking at the second digit. So, the second digit is 0, so this entry has to be maintained

here. And then n has to be x x.

So, 5 cannot come here. It has to be, can be anything. So 0 2 5 6, I will be keeping here at 2 at

this place, because of 0 2 matches with this. 0 0 is not matching with this, so it is x x. Anybody

come here. This l represents, will be containing one entry out of possible 26 entries. So, three bits

here and three bits, so 6 possible entries, one of those will be coming here. 0 1 x x and so on,

here 0 2, it matches, so 0 2 5 6 I will just put as it is. That is the closest; you have to be closest to

yourself.

Then 0 3 x x, 0 4 x x. So, each of them represents a block of 2 raise power 6 sizes in the node ID

space. So next entry is, technically, what I have done is, I have taken this particular thing, and I

have expanded in this whole row. 0, that is why gets fixed, everywhere in the highest order

place. Now in the second place will change 0 1 2, so wherever there is 2, I am repeating this

entry. Now, 0 2 gets fixed here. And I am going to expand this into this third row. 0 2 0 will

come here. So, I do not have any entry matching this.

There will be total 8 entries which are possible which can come here if they exist. There is

currently only one node; that is why there are all left all. So, as I go along, you will appreciate

this. So, 0 2 1 x, similarly, it goes on. Here 0 2 5 6 comes in. So, the same node will appear

again. And subsequently doing the same way, I can only take 0 2 5 0. Any entry which is in

black actually node does not exist. I am going to use the color to identify. But 0 2 5 0 if it exists,

will come here. Otherwise, there is no entry here.

All nodes that are different only at the unit place, the lowest octal number place, digit place, so

those will be all 8 numbers coming here. 0 2 5 6 exists, so it is going to be present here. I have

highlighted with yellow here. So, what Pastry further did, because there were many possibilities,

many nodes can exist which can come. It is representing a number directly; this is representing 8.

One of the 8 will be coming; here, one of the 26 will be coming. Here one of the 29 will be

coming. So, when you have multiple choice, which one to pick up.

(Refer Slide Time: 27:36)

Pastry innovated here, and they said that we could choose when multiple options are there, and

the choice will be based on the physical distance. How this physical distance has to be defined

actually? Ideally, communicating to this node we choose should consume the least resources of

the internet; that is the idea. So, here the routing will become more efficient; it will become

efficient routing compared to chord.

And this efficiency is much higher than a chord. If I want a faster route, I can choose the options

based on the least round trip time. I can do a ping and do the ping. Ping is a command used in

any machine that can be used to find out a round trip time. The UDP packet goes all the way to

the other side and comes back, and based on that, you will figure out whether the time is delayed.

After transmitting many packets, you just make half of it, do the average and take half of that,

and that will be your one side delay and choose whichever is the least one. This will make your

routing very fast. So other options, not only RTT, you can choose. Your difficult proximity, if

you can identify from IP address longitude and latitude, you can do it based on the number of

hops you have to use in that case trace route command to find out the number of hops.

(Refer Slide Time: 29:00)

It is essential for routing, only the routing table and leaf set participants; the neighbor table never

participates in the routing table; it is not supposed to actually. So, if you have the hash ID being

given to you, how the routing happens? Node ID will now search, look at the hash ID. Now hash

ID if we compare with the current node, it must be having some bits present here so that some

bits will be matching in the hash ID, so maybe these two match with this.

The third one is not matching. These this is different. So, match prefix match is only two digits

in this case. So, node ID will be from the routing table; it will search, it will choose such that the,

it matches with hash ID in a longer prefix. Here it is matching 2 with the current node, so I need

to choose an entry that matches three or higher digits on the prefix side.

So, whatever your current is matching with the current one, it has to be longer. For example, 2 0

5 6 is the current node ID, 2 4 2 6 is the hash ID, and the routing table of 2 0 5 6 contains 2 4 2 1.

You can see that it is only matching with one digit with the current node. But with this entry, it is

matching with 3. And this is the longest match, so that you will hand over this query for this hash

ID to 2 4 2 1. So, the prefix match is now 3; it is not 1.

(Refer Slide Time: 30:35)

If somehow you cannot find a longer prefix, then, or a hash ID, then it is already matching with

you at some places, you cannot find a longer prefix. You can choose a node ID, which has the

same prefix match as what it is having with you, but it has to be numerically closer to the hash

ID and choose the node. Now, if you cannot, if you end up finding out that you are the only guy

who is the closest to the hash ID, and there is no node which is having a longer prefix match, in

that case, you have to just switch over to the leaf set based routing.

So, that is for the local optimality. So, you do a faster routing, faster jumps with a routing table.

Then, when you reach very close to the root node, you start using leaf sets. So, of course, I have

mentioned it here that you can only use leaf sets if you want. But that will be slower. So, these

routing tables make it very, very fast. I have explained this same principle in the earlier slide,

which you can use for routing the leaf set, any hash ID once you can reach the pair.

(Refer Slide Time: 31:53)

Now, let us come to neighbor tables; what happens to the neighbor tables. You will again choose

L closest node based on the proximity metrics, so maybe the number of hops or ping, or maybe

RTT, you will select the L closest one. So, there is no node ID thing to be considered here. These

are very close to you. If I am in IIT Kanpur and try to do it, I will pick up all L nodes from IIT

Kanpur inside me because my round trip time to the outside will be larger.

My hop count will also be larger when I go to the outside world. So, they will become kind of

my proximity metric. So this essentially solves a big problem. It makes things efficient; you will

appreciate it once we come to choosing the nodes. So, periodically, you will require the neighbor

table from all node tables in your neighbor table. So, when each one of your neighbor tables,

there are L such nodes you have in your neighbor table, they will give their entry and their

entries to you.

You get L square new entries. And now, you will do a ping test if you are doing RTTP. If you

are doing several hops, you will do a traceroute to each of them and find out the best L and

update them. Your neighbor table will always keep on updating. So, in the beginning, for

example, if I am connected to somebody in the US, he gives his neighbor table to pick up

somebody closer to me. So, the moment I find somebody closer to me, where the entry is coming

from the routing table, or in my leaf set, the moment somebody comes close to me, I will just

pick up and hop on to that.

I will keep on replacing it. And ultimately, I should converge on a situation where all nodes in

my neighbor table are in my proximity. So, under the city-state, each node will maintain L

closest node. This usually can be a separate function, which can be plugged into the peer to peer

libraries or middle where we are using, and then the proximity can be used for doing the more

efficient routing.

 (Refer Slide Time: 34:00)

So, each node periodically will fetch routing table and neighbor tables, so remember, it has to

bring routing table and neighbor tables, from all the nodes, from all the nodes present in its

routing neighbor table. So, whatever is there in your routing table and neighbor table, you will

pick up each of them and ask them to send you their routing and neighbor tables. Based on the

entries you will arrive at, you will update your routing table entries that are physical as per the

proximity metrics are closer to you.

(Refer Slide Time: 34:40)

So, you may end up getting, for example, a routing table here; for this particular entry, you may

get, say, ten possibilities once the exchange happens. Once the ten possibilities come, you will

pick up one of the guys who is the closest to you. And put that here. So, whenever you are doing

the routing to a more extended domain, for example, this is a very long hop as far as the numeric

distance is concerned. But the guy is physically close to, physically closer to you.

All nodes will keep closer routing table entries and neighbor table entries; that is what happens.

And a node will keep on moving to the entries, which are better and better. And neighbor table

makes it happen much faster. The routing table actually will very quickly; they will try to find

out. For example, you are a new node; you are only building up your neighbor table. So, you do

not know in your routing table, which is the closest one. He says maybe you got a far off node

and is giving his proximity-based node possibilities to you.

So, you do not know; you are not getting closer nodes in your routing table. But when you get it,

even you will ask your neighbor. Neighbor will give his routing table, which is based on

proximity. This is already optimized. When you provide it to somebody closer to your neighbor,

he must also be closer to you than somebody who is arbitrary. So, this leads to a much faster

convergence because of that. So, at this point, let me close this lecture. And in the next lecture,

we will look at an example for this ST routing.

