
Peer to Peer Networks

Professor Y. N. Singh

Department of Electrical Engineering

Indian Institute of Technology, Kanpur

Lecture-4

Logarithmic Partitioning of Node ID Space and Index Entry Authenticity

So, welcome to the lecture 4 in the MOOC on peer to peer networks.

(Refer Slide Time: 0:18)

So, earlier we had talked about distributed hash tables. We had also talked about what is

Chord-based routing, a circular organization based on the node IDs. So, I will be further

actually moving ahead and then talk about a few more things. So, today we will be talking

about logarithmic partitioning.

(Refer Slide Time: 0:47)

So, I had mentioned this thing earlier. This always ensures that no node is disconnected and

network will never get partitioned into two different halves, which they cannot communicate

back together again, this will never happen. And then we will be also talking about how the

index entry authenticity has to be maintained.

Because it should not happen that if you remember, we have been talking about Voice over

IP. So for your phone number, some node ID, anybody should not be able to arbitrarily

publish the phone number to the node ID mapping. In fact, we do not use for phone number

to endpoint address, we actually use phone number to node ID mapping and in the second

step, we go from node ID to endpoint address.

In this index entry authenticity has to be done and then we will be also talking about how the

node identifiers can be randomized. How we can force it. Because, there is a denial of

service which can happen, people can choose node identifiers on their own arbitrarily. So for

your phone number, whoever is the root node, if I just happen to choose the closest node ID

to that one, so I will then become the root node, and whenever actually somebody comes to

me for your phone number I may give a endpoint, wrong endpoint address I am a rogue node

there or I may choose not even to tell see there is this guy does not exist.

I can technically black you out, nobody will be able to communicate to you or I may actually

route your call to somebody else which is not correct. This is taken care of in case of SIP-

based telephony because SIP servers are proper servers which are authenticated and they are

being resolved in both ways through DNS servers. In this case, in peer to peer system, DNS

kind of thing does not exist. It is a distributed responsibility handled by DHT table, DHT

network. So, let us first come to what is the logarithmic partitioning.

(Refer Slide Time: 2:53)

So, as you can see, I have actually represented a namespace by a horizontal line, this is the

whole range of the namespace from one endpoint to another point. Now, in this case, let h be

the hash value which I want to find out who is going to the root node. So node which is

closest to the hash value will be the root node.

So obviously, you can see B should be the root node. So and then I have actually, for

example, talking about the node x, x is going to have a routing table or a neighbor table, and

it will maintain the status of in every partition 1 node and whatever partition in which it exists

all the nodes in that. So, you can see, I can actually divide this whole thing into two

partitions.

The first partition is this half from here to this middle and second partition, which I call a, so

which is half of the people. But since node x does not lie in this part, so I am not further

partitioning it, so b and c are the parts of this.

And then, I look at this particular partition. So, this can now further, we further divide it into

half and half so, one fourth here and one fourth here. x lies in this so, I keep this thing as

intact. So, one node from this one fourth partition will be there in the routing table at x, one

node from this partition a will be present in x. Now, this partition will be further divided into

two parts. So, this will become one of them will become C. x is not in that, so I will come to

this part and this is further partition to half so E and D.

x actually now remains in E there is no more further partitioning being done this is the

smallest partition, but this technically depends on what kind of DHT you are using. If you are

using tapestry so smallest partition will, can have at most 16 nodes and all 16 nodes. They

can be only 16 nodes, so each node will have 15 node entries for that partition. And I will be

talking about Tapestry at some point of time later in one of the future lectures and this will

become more elaborated at that point of time, but, just to clarify why logarithmic partitioning

actually works.

Now node x will maintain the status of all nodes in E that is important because of the lowest

partition. So, whatever be the number is the lowest partition is consists of 16 nodes, so all 15

other nodes have to be kept. Whoever was are there with you in that partition, you have to

keep track of them, and then you have to keep, now x should also keep one entry from D

because this next actually similar order of partition, one entry from c, one entry from b and

one entry from a which can be any one of the b or c. For simplicity, I have taken only four

nodes present in this DHT network as of now.

And remember, I had when I talked about this, I had put up a condition that x will be taking a

node which is closest to itself from every partition. So b should is what should be made the

entry normally but we will relax this will not keep this actually. So let us not let us just

choose any arbitrary node from every partition to be kept with me, then what happens? So, x

will have in partition C, it will maintain a as the entry, this is the only entry available so it can

only keep a.

There is no nobody in partition B, so there is no entry for B partition for A partition, b and c

are two possibilities. And because I have not kept this I have relaxed this condition of using

a closest node, I am going to choose c here. Just I wanted to show why it is important to keep

the closest node to yourself from each partition. There is a reason for that, so I am just wanted

to explain that reason. So, it chooses c and it is not the closest one, b is the closest one to x

from partitioning a. So, I have just made this deviation. Let us see what happens because of

this. And remember, I have to now choose figure out this hash value h, h has to be closest to

somebody and based on that I have to figure it out.

(Refer Slide Time: 7:13)

So, now what it will do is x will match a, c with h a as well as c both will be matched with h.

So, what will happen is, a will be found out to be the closest entry for h, x has only two

entries a and c so it will compare h whether h is closer to a or closer to c, h is certainly closer

to a, so it will hand it over to a. And a will also have table entry from each partition. So, a

will have again a will do a 1 by 16th partition here. So, there is nobody else in other 1 by 16

partition, a will have its own entry as itself.

One entry which will be there from E plus D partition, this will be one together thing for a

actually. So, A will have x and c as the partition. Again, I am relaxing the same condition

here. So a is not need not have b here, suppose this can happen, because I am not mentoring

this condition I am not forcing it. So, now, how the a will route, a will now search h is closer

to whom, to me a, x or c. And it will find out that a itself is the closest to the h.

So, it will declare since I am the closest match, so, I am the root node which is actually not

true, this is incorrect. Figure shows that the b should be the root node not a. So, let us see,

how this can be corrected.

 (Refer Slide Time: 8:40)

(Refer Slide Time: 8:52)

If I impose the closest path condition, closest path condition is imposed for all node IDs, all

the nodes from other partition. In that case Xxis going to keep a and b it cannot keep C,

whenever it will come to came up, it will find out about b it will immediately replace c by b

actually. So a and b could be the only entries.

This happens because of the neighbor table exchange continuously, you keep on improving,

finding out the better nodes and better nodes will replace better entries will replace the older

entries actually. So, h will be closer to b and it will be handed over to b. Now b will do the

search and we will have x and a as a closer centuries, b actually should have a and c because

there will be half partition here, this whole thing will be one single partition. So, I think this

is incorrectly written here.

So, b will have a and b, a and c to be the entries. So, it will simply figure out that it is itself is

the closest, so it will declare that I am the root, which is correct entry actually now. So that is

the reason why you need to choose the closest path condition should be there for every node

from other partitions, so whenever you are making a selection. This ensures that things

always converge correctly.

(Refer Slide Time: 10:05)

(Refer Slide Time: 10:10)

Now, this also means, one of the important thing if now node dies off then what is going to

happen. So, if the node dies off then what is going to happen? So, important thing is that x is

maintaining all entries here. So, it actually all that neighbor table is being giving it to handing

it over to other guys. So he is maintaining somebody who is closer to him, closest in this

particular partition, in this half partition and in this half partition.

If x dies off other node entries which are there present here will be available, after some time

and a will then again start pointing to that. All your neighbors you are actually aware of so if

your dies off your neighborhood information, other people will figure it out and the people

who are your closer neighbors will be known to others and people can connect to that. They

will never get isolated actually.

Keeping track of only one guy from the remote node is fine, if c fails, so there are other nodes

that are actually having knowledge of c. So, c should be connected to somebody here, it is not

an arbitrary connection. So, this cannot be arbitrary thing. So, even if c fails some other node

which is present here will start communicating. So, network will never actually get

partitioned in this scenario.

In fact, this logarithmic partitioning-based routing table is actually a very good option even

for unstructured networks. So, currently I am talking about structured ones. So, this is how

the network topology or routing tables are being maintained continuously.

(Refer Slide Time: 11:34)

So, now let us come to Voice over IP, the original problem with which we started. And with

distributed indexing, each node will choose a node ID that is one a very important thing,

otherwise you cannot build up a DHT, you have to have a node ID. And you will put yourself

in that DHT. And what normally you will be putting is phone number to endpoint addressing.

Actually it need not be endpoint it has to be a node ID. I will explain why this node ID is

required later on, as we come to the, there is a reason for doing that, it will be, I will be

discussing that in next lecture.

But currently let us assume it is an endpoint address. Somehow if you know this, you will be

able to make a phone call to that guy directly by after mutual authentication. So, this phone

number to endpoint address mapping will be stored at the root of hashed function, hash value

of the phone number.

 So take a phone number, pass it through a hashing function, if a 256 bit node ID is 256 bit

hashing function will be used, you will get 256 bit number the node which is closest to that

depending on the distance function. If it is a chord-based system, it is basically a node ID

which is higher than this but if it is smallest, higher than or equal to this, that will become the

root node or it can be other way around, it can be highest node ID, which is equal to more

less than or equal to hash of the phone number.

 That also can be depending on how you choose the distance function. So, now the functions

once this, this is what has to be put into the DHT by each node after you have tested in the

node ID. It will first of thing it will do a publish, so everybody has to tell in there, this should

hash table that this is my phone number and is my endpoint address this information has to

go. Now anybody who wants to connect to me will do also do a query.

So there are two kinds of messages which will be pushed into the system one is publish. So

this publish message will keep on moving till it reaches to the root of the hash of phone

number. Once it reaches there, so node will figure out that it is the root node, it will use this

and it will keep that entry inside the database.

Somebody can make a query for this phone number. So, we will compute the hash of this and

keep on routing until it reaches to the root node, root node will then search for this entry,

phone number and endpoint address in the database and send it back to the guy who

originated the query. So he will know that what the endpoint address of the destination phone

number is.

(Refer Slide Time: 14:06)

So each node publishes the phone number and endpoint address to the root of hash of phone

number. So anyone say B who wants to make a call to phone number A, he will generate, a

query will be generated for phone number A actually. So query will be routed, will reach to

the root of hash of A, A is the phone number of the destination. The root node will now

search for A and send the endpoint address back to B and B will set up then a media call to A

essentially.

So if you note down in the SIP server-based telephony, a similar thing was there but you were

using SIP server there, you were telling the destination, SIP server was communicating to the

SIP server of the destination which was then calling the ringing, response was coming back

and then both were knowing each other's IP address and they were talking to each other they

were coming, they were setting up a media call. Same thing is going to happen here.

(Refer Slide Time: 15:00)

Now question is can anybody publish phone number to endpoint address? I think it should

not be permitted. So otherwise, maybe for your phone number, I may put somebody else's

endpoint address. So only the owner of the phone should be able to do it. And when I say

phone number, it need not be phone number, it can be email id also for making a voice call, it

has to be unique identity, and which should be verifiable.

So the way it happens is each node should get an identity certificate from a Certification

Authority. We call it CA. We also call it authentication server in our parlance, and this server

will actually generate. I mean digitally sign the certificate. Now what the certificate will

contain, how actually it happens. Each node has to generate a public and private key pair. It

will send its own phone number and public key to the server for getting a certificate sign. A

certificate should be created and signed by that server.

Now one thing which is important as I have told earlier, this server certificate is available in

trusted store of every node which is participating in the network. So when I use, somebody

else offers me a certificate. I can verify the digital signatures of that certificate. So, and if

that is verification is viable, is possible, it happens then I know that this certificate was

created by this Certification Authority, because nobody else knows the corresponding private

key. He's the only guy who knows and his certificate is available in my trusted store.

So, normally we actually when we distribute the application that time itself we embed the

public certificate of the Certification Authority. So, this is done in almost all peer to peer

systems.

(Refer Slide Time: 16:49)

Now server needs to verify if the requester who has given me his public key and as well as a

phone number and is asking you to sign a certificate, I should figure out that whether he holds

a corresponding private key or not, that is very important. So, one possibility is he actually

gives me a signed request to generate a certificate, so I can verify to the public key then I

know he is the owner, it cannot be anything arbitrary.

Otherwise I can generate get a certificate generated for somebody else by giving something,

so that certificate goes in that original guy does not have the private key I can create a denial

of service attack otherwise. So in this case, we have to understand the server certificate is

already present in the trusted store of each user. Now, this is a process which will be followed

that no day who wants to publish his entry phone number two endpoint address mapping will

generate a random number A, it will encrypt with the public key of the certificate server or

security authentication server, sign that thing so nobody can figure it out only the server can

decrypt it because he has the private key.

A will decrypted it, it will generate a random number B and it will generate using A and B a

session key, security session key. It will then send the random B it need not be encrypted and

a hash of this key which is generated will also be sent.

Once it comes back here, A and B both will be combined by A to generate the key and hash

will be computed to compute or verify the hash value. If the tempering happens, this hash

will not match. So, that is how the two random numbers are generated by two different

people and every time it is going to be a different session key, so replay attack cannot happen

in this case. And this session keys there, you have a secure channel now. On this the A node

A can send its phone number and public key for encrypted communication. So on this for

generating a certificate. Still server has not verified whether A has the corresponding private

key or not, so it has to do that.

(Refer Slide Time: 19:02)

So what it will do is it will actually send server will generate a random number C, it will

encrypt the public key of A, it goes back, remember it is a secure channel now. So rand C

can be returned back, if the rand C is same, so they A actually has the public key, has the

corresponding private key. So first verification is done, then the server will send an SMS to

the phone number, it can be an email also email-based OTP also, if the email is the unique

identification being used.

So SMS will be received on the phone and then it will also then send a request for submission

of OTPs. He will enter that OTP here, OTP comes back; OTP will be matched and verified.

So guy owns the phone number. So I can actually allow the client to act on behalf of that

number, actually, that is how it is done or it can be email ID. So then OTP will go via email

in that case. So now the certificate will be signed, a certificate will be created having phone-

number, having a public key and then that will be signed by the private key of the server.

Anybody can verify this certificate because each every client is supposed to have the public,

has the certificate of server, and hence the public key of the server actually. So, this is

Certification Authority. So when publishing a phone number endpoint address, a node will

also generates the signed hash using its private key, which is only known to itself. It will also

attach its identity certificate signed by the certificate authority.

 I can always verify the signed hash using the public key of client A, I can verify the

authenticity of client A's public key by using the certificate which is signed by Certification

Authority. So even if somebody actually tries to put a kind of rogue entry phone number

endpoint address, but he cannot actually forge the digital signed hash, digital signatures, he

cannot actually forge upon the certificate. So, people will be able to figure it out.

So, it does not make sense to actually corrupt the entries, only the original guy will be able to

put his entry there. So, only thing root node has to ensure or anybody who makes a query

should ensure that whatever his phone number given here, the certificate should have, that

identity certificate should have same phone number, it should be verifiable, using public key I

should be able to verify the signed hash.

If all the three things happen, the entry is valid and I can use that for making a phone call.

And except the owner of phone number nobody can generate and publish this phone number

to endpoint address now. So I have ensured that no rogue node can exist and they cannot

tamper with the database, distributed database.

(Refer Slide Time: 21:39)

And so normally the entry will look something like this a phone number and point address,

signed hash and identity certificate. All this will go in database not only the phone number

and endpoint address, as I have mentioned earlier. And anyone will believe on this entry if

and only if certificate is valid, and has the same phone number as in the key. And signed hash

can be verified by the public key given in the certificate.

(Refer Slide Time: 22:19)

So no one can put this endpoint address for any arbitrary number. So we have taken care of

this problem, but we do have another problem actually. This is also one of the key things in

all peer to peer systems and all, in fact, whether you go for block chain or you go for N-Talks

kind of app, so all those are actually using their public keys as the node ID. So they have

corresponding private keys also.

So normally, node IDs are being used to encrypt the information, send it back, so use a

private key, then only you can get it. So you cannot arbitrarily choose. You have to generate

both private and public key. And which is a random number generation process, so you

cannot arbitrarily choose a public key, it is through a random process, so you will be just

simply randomly placed.

So you cannot choose yourself to be placed close to a hash of certain key and start doing a

denial of service to the people who are trying to connect to that guy. So, that is actually not

feasible. So, the problem actually again, let me specify a node can choose any random node

ID as of now, and rogue node can then choose the node ID such that it becomes root of a

phone number say alpha. I want to block it, say is a some big shot and I want to ensure that

nobody should be able to talk to him; I just choose my any random node ID if I can, and it is

going to be such that the hash of alpha is closest to that.

So all queries will terminate to me and I will say this guy does not exist. Of course, I cannot

temper, I cannot route it to some other endpoint address that is taken care of through digital

signatures but I can at least deny that this guy does not exist. And there is no way you can

verify. So, this actually can be taken care of in some mechanisms.

(Refer Slide Time: 24:16)

So, this denial of service attack has to be taken care of.

(Refer Slide Time: 24:20)

So, the way it can be done is, so either I should force the nodes to choose their node ID

randomly, that is what I think is a preferred route or I can also have multiple root nodes. So,

you can only place yourself at one root node handles me that you cannot do it at other places.

And this will be done by appending a known string to the entry whose hashing is done. So for

example, phone number dash copy one, so dash copy one I have attended compute the hash,

you get a different root node.

I say dash copy 2 being appended, I will get a different root node, and both of them can keep

the entry. So I can search with dash copy 1, after being appended or dash copy 2 dash copy 3

and so on. So unless rogue, a set of rogue nodes placed itself at all these possible root nodes

of copy 1, copy 2, copy 3, which is actually very much viable. So this is not a good solution

actually, by appending some string and trying to find out create multiple root nodes because

somebody who is attacker can actually create, put itself at closest to those particular root

nodes. So then coordinated denial of service attack is going to be feasible.

(Refer Slide Time: 25:29)

Only way is now to force random generation of node IDs. So each node needs to generate a

private and public key pair. Now this is a random process, you cannot choose your private

public key because they both actually come together. If you know public key and then you

want to choose a private key that is not feasible. If you know private key, you want to find

out public key not feasible, both comes in together in the process. That is why it is random.

And hash of this public key can be used to generate node ID if the hash value is larger. So for

example, you are using 2048 bit public key, 2048 bit private key, so then, but your node ID

space is 256 bit so you have to do further hashing of the public key to 256 bits and that will

be your node ID. So node ID and it now will not have simply a node ID or a random listing, it

will have three components, it will have node ID , which is basically hash of the public key a

public's also has to be present. And I can sign these two things together as a block using the

corresponding private key.

Now, the question is I can always use this public key and verify the signatures are correct or

not correct. And it means this node it can only be generated by a guy who has the

corresponding private key to this public key actually, nobody else can generate this. And we

also ensure because these digital signatures are there, and they can be verified, it is generated

through this process, public private key pair generation.

So it is the randomly generated stuff you can, it is not arbitrarily placed. So, once you force it,

so you yourself cannot, you cannot place yourself anywhere arbitrarily in the network. So,

this actually means you cannot actually now do denials of service attacks, so that probability

reduces drastically.

(Refer Slide Time: 27:06)

And of course, if digital signatures are going to be verifiable by the public key, so public key

and hence the node ID are truly random, that can be insured. So that is a key thing. And

almost impossible for a node to choose any arbitrary node ID to build a denial of service

attack, so we solve this problem.

Also the important process that randomness of node ID allows a uniform spread of nodes in

the whole node ID space. This actually means uniform distribution of key-value pairs in the

DHT otherwise there will be unbalancing which can happen, so it will be more balanced

system. So that is another added advantage which will come because of the randomness.

(Refer Slide Time: 27:47)

And for hashing of the key, we do not use the hashing which we had done earlier. In our

previous lectures I have talked about hashing, but was kind of doing modular operation or

something, no that is not done now. In most of the practical cases, we use something called

cryptographic hash. From the hash value, you will never be able to figure out what is going to

be the value of key. So, from hash I will not be able to figure out what was the key whose

hash was computed.

 So, normally in finite set of keys passing through hash function I will get finite, but large set.

So, 2 raised to the power 256 is extremely large number. Normally, there will be many

entries which we may up to same entry, but it is very difficult to figure out from this entry the

hash value find out what was the original entry whose hash was computed. This is a

cryptographic thing.

 (Refer Slide Time: 28:46)

So, from hash your input cannot be estimated, and finding out two messages which gives the

same hash value is also almost impossible. This can only be done through brute force, but it

will take too much of compute time to do this job and even a small change in the input will

change altogether a different hash value. You get, it is not correlated with the value which has

been computed before the hash is being estimated. So, and keys will now be uniformly

distributed across the whole node space. So that is the advantage of this.

(Refer Slide Time: 29:24)

These are the popular cryptographic hash algorithms we have been using SHA 256 in our

case now, in our Brihaspati-4 implementation which we have been doing. So MD2, MD4,

MD 5 that is a message digest algorithm and Secure Hash Algorithm is SHA, SHA1, 256 and

512. SHA 1 can be easily cracked by brute force technique it has been shown. So you can

find out 2 messages, which will lead to same hash value, so SHA 1 is actually normally not

used. A SHA256 or SHA512, in fact SHA512 is more preferable.

(Refer Slide Time: 30:00)

In today's discussion, what we had discussed is logarithmic partitioning. Nodes cannot be

isolated due to failures of some other node, because every node knows about all the

neighbors, so my neighbors also know about me. So, even if I die, they will still communicate

to others because and other partitions, they are connected to the also the closest node I am

also connected to the, those guys. So, they will inform about me and update will happen

automatically.

Somebody else who is closest in my partition to others will actually, so, that is ensured in this

case. And we also discussed how the key value entry pairs are genuine, they are digitally

signed entries now, and how to ensure that we do or deny, we take care of denial of service

attack, which is done by ensuring the random generation of node IDs. We will now look into

the next lecture about how the actually Voice over IP is going to function (())(30:57).

(Refer Slide Time: 31:01)

So, some of the popular cryptographic hash algorithms are MD2, MD4, MD5, SHA1, SHA

stands for Secure Hash Algorithm, MD stands for Message Digest and 2, 4, 5 are the versions

stop then SHA256 means 256 bit hash value which will be coming out, SHA512 means 512

bit hash value will come out and these are all cryptographic hashes.

So, even minor change in the input will make a lot of drastic change in the output which is

computed. And normally a larger value SHA512 or even higher SHA1024 kind of algorithm

actually should be used, not the smaller ones because, now with the kind of computing power

people have they can be easily, you can by brute force you can figure out an input which will

generate the same hash value. So, people actually have moved to SHA512 or even higher

now.

(Refer Slide Time: 31:57)

So, in the lecture for what briefly we have discussed, all the concepts one is the logarithmic

partitioning. So, this ensures that node will never become isolated, each node will actually

have the information about all the neighbors, which are there in this the smaller smallest

partition for which it is, to which it is belonging.

 And it only knows one node from other partitions every time. So even if you fail, other guys

in your partition knows about you, they also knows about the same node in the other partition

which is closest to them so, they can update them that you are no more there and the other

guy can update based on whatever information these guys will be sending it to them.

So, you will never get partitioned even if a node dies off because of the structure of this

network. Second thing which we understood today is that the key value entries have to be

genuine and for that they have to be digitally signed. So, that is what we keep. So, popular

cryptographic hash algorithms, there are many of them. So, some of them I have written here.

(Refer Slide Time: 32:58)

These are MD2, MD4, MD5, MD stands for Message Digest, MD5 had been very popular, I

had been using that earlier. And but now most of the places we have upgraded to Secure Hash

Algorithm SHA version. So we have SHA1, SHA256, SHA512. SHA1 is not very popular

now, not many people use it, so most of the time people are actually moving to the algorithms

which give larger bit sequence. So, even SHA1024 algorithm is going to is now more

popular.

So, we use either SHA512 or SHA1024 for security reasons, these are not, this is not easy to

identify an input instance, which will give a corresponding hash value for this but for the

lower values, it becomes far easier. It all basically because you have too much of compute

capacity, too much of time and it is very easy, easy actually one can do it now. So, with that

we close the lecture, but summary quick summary of what we had done today.

(Refer Slide Time: 34:07)

We, I had talked about logarithmic partitioning. So, every node is knowing all the neighbors

which are very close to it actually all the neighbors in the local smallest partition is already

known to them. And it actually keeps track of the closest node in the other partitions, which

is being also done by all your closest neighbors. So, even if you die off, so, your closest

neighbors are also connected to the same nodes in the other partitions.

They will update that you are no more there and the new updated values from your

neighborhood will be available to all the nodes in the other partitions and correspondingly,

they will actually then update their entries. So, that will be happening, because they are again

connected to their partitions closely so they will be also exchanging neighborhood tables. All

the nodes there also will update the entry because of your getting removed from the system.

So, network will never get partitioned that is being ensured with this mechanism.

(Refer Slide Time: 35:05)

 And we also looked at the how the key value entries are kept genuine. This is done through

digital signatures and because these are signed through identity certificates issued by

Certification Authority. So, nobody else can actually put an entry. Your node ID can change,

your IP address can change but your identity certificate remains the same, your private key

remains the same, public-key remains the same. So, this signed entry becomes a valid entry.

But of course, as an endpoint address probably we should not keep IP address port number

kind of things. I will actually explain in the next lecture how this is being handled. We still

normally should actually keep node IDs there of the destination node, but then we require not

only publish and query messages, there are other kinds of messages also which are required.

I will list down all those messages in future lectures.

And also we also learned about how to subvert the denial of service attack by ensuring that

all node IDs are randomly generated. So that is being done through again, public-private key

pair generation. A user can be connected to multiple nodes with the same user ID, basically

same identity certificate, but different node IDs can be present. So that actually is technically

feasible with this kind of design. So we will look at it in the next lecture on Voice over IP

thing with which we started, and we will discuss how Voice over IP will actually work in

such a scenario with all the basics, which we have learned so far.

