
Peer to Peer Networks

Professor Y. N. Singh

Department of Electrical Engineering

Indian Institute of Technology, Kanpur

Lecture – 25

P2P Mailing List Services: An Alternative Design

(Refer Slide Time: 0:15)

In the earlier video, we have discussed peer to peer mailing list implementation; but, some of the

discussions were missed out. So, in this video is I am discussing something more on this peer-to-

peer mailing list.

 (Refer Slide Time: 0:32)

We discussed in the earlier one that there was a list server DHT, so all the nodes that can act as a

list server will register in that DHT. So, any node which wants to find out that want to generate a

list. He will create a list name; he will also append his owner's ID the way it has been shown

here.

So, this will be a colon which will be used and then, of course, a copy 1; the reason being I am

implicitly assuming that there were two copies maintained for every data structure for the list.

So, this for resilience purposes, the way we had done in the discussed in the earlier videos; same

way it is done here. So, I am not mentioning that when I say copy 1 computing hash, it goes

here; it will generate a copy 2 actually, which will go to another root node; which intern will

maintain the copy 1.

So, if a node goes off automatically, the copy 1 structure will move to somewhere else. A new

node comes in that should become the root node; then all the data structure will move, so all that

will hold. With this, we do compute the hash of this particular structure; we will append copy 1

here, we will get a hash id. We will find out the root node for this; let this root node be this

particular node. These are all these black circles that I have shown inside this list server DHT;

these are the nodes, which can act as list servers. I have shown it node ID space, and these nodes

have formed a list server DHT.

 (Refer Slide Time: 2:04)

Now, what this root node is going to store? So, when the owner is going to publish. You are the

guy, so I am creating a list. It will create a list data structure that will be, which will look

something like this. It will contain the list name, owner's user-id, and when you do underscore

copy1, compute the hash and root; you will come to the root node. And you will, this particular

structure will be published there; it will contain all the members' user-id, whatever number which

are there. Whether they have permission to post or not? Whether it will require moderation or it

is a moderated free.

And of course, this whole list needs to be signed by the person who has created the list. The

owner's user-id should have signed this particular list; otherwise, the root should not maintain

this data structure. So, this was not stated earlier explicitly, but I am stating it now.

 (Refer Slide Time: 2:55)

Now, a sender wants to send a message to this list; how can this be done? So, I have discussed

this thing in the previous video. So, it will create a message, and as I mentioned earlier, that will

be a group key. So, there is a key for the whole group, which the group owner will be sending or

dispatching to all members.

When the membership is going to be updated; that time, it is going to generate a key and send it.

Of course, when you remove somebody from the list, you remove it from the root. But, if

somehow that guy still gets a message, he will decrypt it; unless you send/change their group key

and then communicate to everybody.

Anyone who wants to post will take the message; it will encrypt with the group key. It will attach

its signature to identify who has sent this particular message to the group. And then, it will again

compute the list name colon and the owner's user-id; we will append a copy 1 and compute the

hash. And to this root node, it is going to send this whole message.

The root node in the list server DHT can now send it to all members of the list. So, let us call this

node R; so what R will do is it is going to have a huge list. For example, say K into 100 kinds of

the list to create K groups, each one hundred. And of course, once it has been done, the message

is there, so this is discussed in the earlier one. So, I am going to today talk about an alternative

method also.

 (Refer Slide Time: 4:26)

So, I will send list 1 the complete list, plus signed encrypted message to member 1; so, member 1

will further send the message copy to each of the list members, so from member 2 to member

100.

Alternatively, member 1 can further split the list, so like this, member 2 to 50 is the first list,

member 51 to 100 in the next one; and then it can send this detailed list 1.1 and the message to

member 2. And member 2 will further then look at this whole list and send it to 3 to 50; member

51 will be getting a message again from this member 1, along with this whole list, and he will

further split it from 52 to 100 members.

 (Refer Slide Time: 5:10)

Now, this will look something like this; I have sent it to 1, 101 and 201 along with the list to

who; or this is a list of all the children to whom the messages have to go. 1 has further solved it

out and gives again a sub-list of the children to whom the message should go. And given it to the

two of the nodes, which can do the further for, 2 is giving it all 3 to 50. 51 is giving to 52 to 100,

and so on, this 2 is for even for these; so message reaches to everyone. So, this is what I have

talked about in the previous lecture.

 (Refer Slide Time: 5:43)

The problem here is that each member can become aware of who all are the list members; it may

not be the whole list, but even the partial list will be available to them. Sometimes it is not

desirable; in fact, in most of the list server implementations. It is only available to certain people;

not everybody can see who all are the members; unless you permit it in the list. So, we need to

have an implementation that needs to be changed.

So, what we can do is why I was not sending it to all K into a hundred nodes; because the

message was large and sending it would have taken time processing and sending. So, the

alternative way is that R can keep the message with itself, so R has kept a message, for example,

here. And will compute the hash of that message, and this R now sends it to each member; a

message that will contain the list id and hash of the message content.

So, the message is not going to be sent, so everybody will come to know that there is a menu

message, which has arrived in this list id and this the hash value. Now, here we can play a trick

around, so member 1, for example, sends a query that I want to get this message now. So, it

knows already list id, which is going to be list name colon owner's user-id, it will append copy1;

compute hash, find and it will send to this particular destination or request that I want to retrieve

this message with this hash; with the Hm which has been given. The message will reach the root

node, and the root node will go either through a DHT root or directly through the endpoint

address that will send the message.

So, member and member1 as a list member has got the message now; and he can read the

message. Now, we need to do something more because if there is going to be, say, 10000

members; there all of their queries will be coming to R, and R is needs to serve it. If suddenly all

of them become active and all want to access it, it will be a bottom line. So, we need to use

another phenomenon called caching here. So, when it sends to 1 will also know that from which

the root query arrived. It will also send a copy of this particular message; remember it is

encrypted, so it is safe.

And the hash value goes through the previous node from which the query has arrived, and it will

be cached here, so the cache is shown here. There is an index the hash content hash, which is

used as an index entry, a key entry, and there is an encrypted message; this is now available with

it. Now, suppose member 2 also wants to get access to it; it will send a query, query travels, it

reaches here. There are already things in the cache, so every node, wherever a query arrives

before forwarding towards, the root will search if it is already there in the cache.

If it is not there, it should only send it towards the root node; otherwise, you serve the message

from your cache itself. It will now search for this content hash, it will take this message out, and

it will send it directly or through DHT root to member 2. And it will also then send a cache entry

for caching towards the node from which the query arrived. What happened as more and more

people are trying to access it, so more and more neighbours around R will start having the cached

entry for this particular message.

 (Refer Slide Time: 9:03)

This essentially means that R all the neighbours will start having the entries, and more people

will access, it will start this spreading out more and more. And this caching will allow a large

number of nodes in a brief time without loading the root node; can have access to the message.

And we usually for this cache messages you can keep expiry timer of say 30 minutes. When the

load reduces, not many people are accessing; this will automatically purge from the entry. So,

whenever a sudden burst of queries happens, those can be handled very effectively with this

method.

 (Refer Slide Time: 9:38)

And of course, one more feature exists, which is moderation; I had also not discussed anything

about moderation in the earlier case. So, moderation the moment that comes into the picture, and

moderation is configured in them. So, all posted messages which are not permitted to go through

without moderation; they will be just held up in the root node R., And R is now supposed also to

maintain a list of the moderator, let us say another data structure in the list server; which need to

be now populated by the owner. The owner will say these people are the moderators, so he

creates the list; he creates the moderators.

And whenever a message comes, that needs to be moderated clear; a message needs to be sent by

list server or that root mode to all the moderators listed. So, all the moderators will get it, and

once the moderator will get this particular list. It is then to clear it, but if they give a clearance

message or give a message to reject it or drop it. The method has to be digitally signed so that the

list server can be identified by who/which particular moderator is responded to, and then it will

act accordingly. So, tomorrow, for example, if somebody has done a wrong moderation, the

owner can find out who did this wrong thing; and he can be removed from the moderator list. So,

once the clearance is received, the message will be sent to all the members.

(Refer Slide Time: 11:09)

We need to understand that message has been sent from sender to R in this case, which is a root

node or the list server. R has sent the message to moderators, moderators to again send a

message back to R; R has sent it to members, or R has sent it to members who have further send

it to members.

All these messages are not direct transactions; they all use to peer mailing system to send

messages because that is important. Usually, when you are sending it to a list server, so it may be

off; but in that case, somebody else will be acting as a list server for you.

The list server is always alive, so it can directly peer-to-peer transaction; we do not require a

mail storage system. But when you are sending to moderators or sending it to members; then you

will be using peer to peer mail system for transacting or transferring the messages.

This was something additional that I missed up in the previous lecture, so I wanted to clarify, so I

had done this in this particular one. In the next video, we will be looking into a new peer-to-peer

web; and now the peer-to-peer search engines are built using this whole formalism.

