
Peer to Peer Networks 

Professor Y.N. Singh 

Department of Electrical Engineering 

Indian Institute of Technology, Kanpur 

Lecture-21 

P2P Overlaid Multicast: Basic Design 

(Refer Slide Time: 0:13) 

  

So welcome to the lecture number 21 in peer-to-peer networks course. In this lecture, we will 

be looking at the issues related to overlaid multicasting. In overlaid multicasting, the idea is 

that somebody is trying to send the audio or video stream or for that matter any real time 

thing, but there is only one source and there are many people who would like to access this. 

So, there will be many people who would like to access this particular session.  

So, one of the simplest example because of which we have been doing it is to for 

transmission of live lectures. So, that was the idea in Brihaspati 4. And the basic mechanism 

which we have thought of is that instructor will actually give audio and video and this audio 

video and of course, screen capture will be available to everybody and that people will be 

now accessing through this mechanism which we are discussing. And whenever somebody is 

would like to ask a question or something, they should be able to raise their hand.  

So, that will be done through a signaling mechanism. So, they have to send a signal which 

can go to the source and source will queue it up and then structure appropriately can look at 

the signals and then actually give a confirmation. So, this confirmation can be sent back 

directly, but this will be because they both will know their endpoint addresses.  



So, mostly the forward signaling from user to this will be coming through DHT route, but the 

reverse source can always tell the confirmation to the user that I am now confirming and then 

you are allowed to interact. And then the audio video of the student will be essentially 

streamed directly over a point to point link either using HTTP tunneling or to NAT or 

through a proxy. So, it is a direct connection and S (Source) will source will now actually 

mix all this audio video coming from him and his own interaction these both interactions will 

be now available to everybody as a stream.  

So, once it is over, he will be disconnected and then source can take up more questions from 

the queue. So, every any one of instructor can actually anyone of the student can interact with 

the stream, that was the idea behind our design. But in general this can be used even for IPTV 

kind of implementation if they wish. So, but the question is now we are not using in this case 

the multicast which is being provided by IP, there is no multicast use on IP layer.  

So, what we are doing is there is already a network and users are connected to this network 

the, there is an IP network. Then add application level I am actually going to create a 

broadcast tree. So, essentially source will be here, so it will communicate to this guy, may 

communicate to this, this can then communicate to this person and so on. This guy may then 

actually be able to talk to another network on somebody else. So, users are actually forming 

an overlaid network in this case.  

So, how this will be done in a peer to peer system that is the idea? So that is what I am 

actually now talking about in this lecture. So, we can actually take care of lectures or you can 

actually have conferences, all this actually can be done in this fashion.  



(Refer Slide Time: 4:05) 

  

So, this is a typical lecture scenario. Similarly, we can think of a conferencing scenario also. 

But normally, when in conferences, when large numbers of people are there will be one 

person who will be chairing it. So he will be like the instructor and everybody can raise their 

hand and then everybody can speak. So but the under conversations are going to be or 

everybody's views will be available to everybody else and that is how they can actually come 

to a consensus decision. Or they may not come but still they become aware of each other. 

That is what the purpose of any conferences is actually.  

(Refer Slide Time: 4:38) 

  

So, how this will be done? So 1 important thing is that we have talked about DHT layers 

earlier, if you remember. We have talked about a storage layer at that time. So storage layer 



was anybody who is providing in storage service to others, that will become participate in this 

of this storage in DHT layer. So, rest everybody can actually become a leaf node. But when 

you are leaf node, there is no use because you cannot actually use any storage service because 

you do not gain in the reputation.  

If you remember, that is what I had discussed in 1 of the earlier lectures. So, they need to be a 

part of the storage, they need to contribute something, the same user there can be multiple 

devices contributing and henceforth he will actually get a bigger share of storage from others. 

So normally, whatever you contribute, you get roughly almost similar thing from the other 

side. If you contribute less, you get less and this is basically we use the mechanism of 

reputation mechanism, reputation management system.  

On another DHT layer, which was a reputation management layer, which is different, this is 

not much load, this is basically only the some people there is always for every node, there is 

going to be somebody who will be acting as a reputation manager. And everybody is using 

the service will keep on sending the information about the service being provided to the 

reputation manager of the server. And he will keep on updating the reputation of people.  

So, when somebody is coming in with a request to view, that time you check the reputation 

and based on that, you will provide him service or you will deny it. So that is what the 

mechanism is. We will also be using a similar mechanism here, but it will be in a different 

context. And we can actually prove that strategically, there will be only one strategy, which 

allows the people to cooperate in case of overlaid multi casting system. So, now we are going 

to for every media stream, so every lecture, so there is 1 lecture I am talking about and these 

guys are going to listen to this.  

So, there you are receiving, so I call this a lecture. So, this every lecture will be a one layer, 

that is very important, there will not be one single common layer for all the lectures, but for 

every lecture, I can actually prepare a layer.  



(Refer Slide Time: 6:59) 

 

  

So in case of your DHT routing, there will be a separate layer for each lecture. Or each live 

program, you can call it or each conference or each TV channel. So, separate for each lecture. 

And I should not use lecture now, I can call it a stream. But since I was doing it, as an 

extension of an LMS, because we did Brihaspati 3 LMS and Brihaspati 4 came, because there 

are some technical problems in that, in the sense, it was not massively scalable, we required a 

lot of servers and that is where I decided that we have to go to peer to peer we because that 

auto scales.  

So, more than number of users has the more the system will become better and I do not need 

to invest in servers and everything. And that is more environmental friendly, because I 

consume less energy, less hardware, air conditioning required at the data centers. So, we had 



discussed all this earlier. So first fundamental thing, each stream, media stream I should call 

it now, that is the word which I will be using, media stream will have a separate DHT layer. 

For every node that is participating want to receive this media stream has to be part of this 

layer.  

So, I can call it a layer for the media streaming, where every node participating or in the 

media session, so it can be a passive thing you are simply listening or once in a while you are 

interacting, has to be a member of this DHT layer. So, he has to be a member of that, so that 

what it means every node which is participating will have one routing table and will also have 

one neighbor table.  

And the routing table will contain only the members which are, only the nodes which are the 

member of this layer, neighbor table will also contain the nodes which are the member of this 

layer. But this will be basically based on who has got the best performance round trip delay 

time. Round trip time we call it RTT delay, so has the least delay, that set will be maintained 

here. And this will be based on located next partition so that the network will never get 

partitioned.  

There will be some node; it might be power participating the layer because anybody who is in 

the layer, so their node IDs will be present in this case. Anybody who is going to be leaf 

node, he is going to probably receive this stream but he will be at the lowest end. But he will 

be actually having a poor quality that is a problem. And there will be also he will be suffering 

from the delay. If there is a TV broadcast is done of a cricket match.  

So, by the time the wicket is taken, the person gets out, by the time the last guy knows 

actually there will be a delay, because he will be essentially in this broadcast he will be at the 

lowest node actually, it is the lowest level, we call it the leaf node actually. Because these 

guys cannot garner the reputation, their reputation will always remain zero in the system. We 

will actually, when I talk about reputation then this will become obvious. So now, every node 

will now look at the RTT that we keep on the way it was done with earlier DHT layer same 

way the routing table will be managed.  

Now, with this how the actually stream will be received. So most likely cases that whenever 

you are joined, you will join and you will come back to the bootstrap node first. So anybody 

can be bootstrap node. So, you want to join this session you will first of all find about the 

session actually. So, you will find about the session, so this information can be kept in base 



DHT layer because this is not a permanent kind of key value pair, because this should expire 

after some time, then maybe the guy who is actually there is going to be a stream ID.  

So, you will be getting through advertisement or through a mail or some other source or some 

of your friend might be telling it. So, you will now have a stream ID, the stream ID can be 

simply a channel name. So, you can say star TV and it can be the stream ID. And then this is 

stream ID you will pick up and from there you will find out, you will do and  you will 

compute the hash value of this.  

So again, this will be, hash of this will not be copied this is actually key. As we had done 

earlier, we will be having key and then copy 1, copy 2, kind of thing combinations which will 

be there. So that even if the node dies off, these entries can be maintained. Then of course 

these are for shorter time, but is still the same thing will be done. You will take a stream ID 

copy 1 and compute the hash of this and this will give you a hash ID.  

Using the hash ID, you can search in the base DHT now, and go to the reach to the root node. 

The root node is supposed to be actually storing the stream ID and then corresponding what is 

going to be the bootstrap node through which you can connect. The bootstrap not only will be 

the first node, which will be in the DHT layer of the media stream. So, most likely it will be 

the source node always and maybe a few other nodes which can actually can come in.  

So, media stream can give, it can always request few more notes to go and then do it. If 

media stream is there it is fine. So once that is there, so media's ID, node ID will be available 

here. In that case, the current node will be first of all talking to the source and getting its 

routing table. So, it will be also now making a neighbor table entry. And then further because 

whatever entries which are here based on that, it will start keep on optimizing and after some 

time it will stabilize and it may not be connected to root source node at that point of time.  

So, it may be connected to different nodes in different partitions, and may be connected to a 

neighbor table, which is going to be the closest nodes based on RTT. So, this part will ensure 

the connectivity this part ensures the proximity. And that is what we are going to use now for 

creating our stream.  

Now, remember, all these nodes are already far actually interested in getting the media 

stream, that is why they are part of this DHT layer. So ideally when you will be joining so 

anybody you will connect with always have a stream, so whether it is your routing table, 

whether it is in your this thing. So, when you do keep on you actually optimize, you can find 



out which is the closest node and you can always connect to this. So currently I am talking 

about the reputation or any that thing, I am assuming that everybody is cooperating, so 

somebody asked the media stream node will always willingly, is willing to give the stream to 

him.  

So, there is no problem in regard to that. Normally I would like to receive this team but 

would not like to give it because I have to pay for uplink and downlink bandwidth both. So 

normally that is what is going to happen, I would like to only receive, I do not want to give it 

and remember there is no payment mechanisms which have been talked about so far. The 

financial things can be thought of in the system. We have been already working on that issue 

in B4 design.  

But currently we have essentially, if you are forwarding our stream to somebody else, you are 

actually paying in that sense because you are not helping the network to pay for it. So, you 

should get the stream because of that, so people have to be cooperative. I am assuming 

currently that they are cooperative, now how the stream will be received.  

(Refer Slide Time: 15:11) 

 

Worst-case scenario that there is a set of nodes they all join together at the same time, they all 

join together, but in that case, what is going to happen is, that they will be always first of all 

connected to some people who are already receiving the stream. So, they will connect to 

bootstrap and they will start to do it, then even this guy will also join, at some point of time 

these may get connected actually. But in the beginning in real life, when in real life, in actual 

implementation, you will never find that none of that is you cannot, there will not be a 



situation where none of these guys who are there in the routing table or neighbor table are 

receiving a stream, but will never ever be happening.  

So, the idea is very simple with whichever, home you have the RTT which is least, you just 

send a request to him. Even you also maintain a children table. And then he will essentially 

start feeding you, you will say this is the media stream I am getting and these are the guys to 

whom I have to send. So, there is a list of nodes to whom the media stream has to be given, 

these are basically packets. So, you will start getting the feed. So, this is pretty 

straightforward thing.  

So, the moment you connect to the source, source may not give it. So, you may ask, but he 

says I am loaded, so he may refuse. So, you can keep on asking from all of other neighbor 

table or routing table entries and at least one of them will start giving it. So, once you start 

getting the feed then at least you are listening, but in the meanwhile, you can keep on 

updating your RT and neighbor table. And then what you do is you find out if there is a better 

candidate from the current person from whom you are receiving party.  

If the RTT from the current person is very high, you will tend to choose a person with whom 

the RTT is least actually, because that is more efficient for you. So, the idea is that the total 

number of average length of the links which are used in this broadcast, this sum total has to 

be minimized, that will lead to the most efficient use of resources. In a hypothetical case, I 

can take a scenario like this when we have a distribution happening. Normally this will be a 

worst case scenario this will never ever occur most likely.  

So, then there are nodes which are connected but they are not receiving. So, these dashed 

lines are the ones, so these are trees, so these guys which are actually already connected with 

dark line, they are already receiving a stream. So, these guys are not. But they are all 

supposed to, they will all be trying. So ultimately, they will. So, even if the last guy I am here 

and I have only these two as my in my neighbor table or routing table, these are only entries 

which I have. So, I can send the join request. 

Now, I am giving a hypothetical case this actually will ensure that, yes things happen. So, if it 

happens here, it will happen in the real life. Real life is far simpler; normally any 1 of your 

neighbors will always be receiving it before. If suddenly large number of people will tend to 

join, then of course, it will take some time before the network gets built up, but everybody 



will keep on getting successful, will start getting the feed, it may take some time before it 

happens.  

So, in a neighbor table, I will just send a request, join request to both of them, but I will 

whenever the request will come I will tend to pick up from somebody who is going to have a 

better RTT. So that I will choose I will actually put fewer resources from the network to use 

for this streaming system. So when this guy will receive, it will say I have received from 

here, now in this case this source will send a request packet, did the join request this will 

always contain the source where you have it, there is going to be a sequence number  and 

there is going to be an age.  

When this will be received this will actually I am just doing a broadcast outing, remember. 

Here I will make an entry that this guy has sent the packet is the last sequence number which 

I received and this is the age, so whenever the age will expire I will purge this entry actually. 

And if I get a fresh source in a new actually packet which is have better sequence number I 

will replenish this age actually in that case. But, any packet which is going to have sequence 

number lower or equal will be simply discarded. So this ensures that duplicates are discarded.  

Now, this guy will now send this packet to this side as well as to this side as well as to this 

side, because it does not have a feed, if it would have had the feed it would have sent the 

feedback directly to this guy by making an entry in case of a children table which would have 

been there. Then multicast requires multicast routing information base   but I am calling it in 

simple language a children table.  

But since it does not have, it cannot use this because not receiving the stream, it will simply 

broadcast. Now this not receives this same request second time. So this also maintains a 

similarly broadcast table which will say there it is I have already received a packet from this, 

with this sequence number this is the age. This entry would have been there when this packet 

comes; this packet will be simply discarded because you wanted to receive this same thing.  

And this might also have sent it in the same fashion and this would also have been discarded 

here. But then there is a broadcast which is happening, the duplicates will be discarded and 

this packet, this request packet will keep on moving and every time this broadcast table 

entries will be updated at every node. So, this is what is going to happen, ultimately it will 

reach here. And here this might get discarded actually.  



So, each one of these guys who are receiving feed gets it and they suddenly they figure out 

that yes, somebody is asking for a feed. So what you will do is you will create a, you build up 

a children table here and it will make this person's entry. So this will also start automatically 

getting subscriptions when this guy tries it out. There are too many nodes, even 1 guy doing it 

will also work but most likely they would have already initiated in what the feed back at the 

time.  

When this starts, somebody will be there he will get figured out that we will get the feed and 

from there he will get the feed for itself. So it will make a child entry that this is a stream ID 

and this is the children. So this guy is whatever his ID that ID will be listed in the children 

table and whatever feed is coming that will also be broadcasted to him. From this side, feed is 

not going to come because this has been discarded actually being a duplicate request.  

Because it came from the same source, if this guy would have made a request, this would not 

have been duplicate but this has come from here. So I, the basic idea is this need to get it to 

this particular guy. But incidentally in this case everybody will get the feed, whoever has 

asked for it. But of course, this link would not have been there this guy would not have got 

the feed you might have to start a separate search for it.  

So because this guy would have been not requested, so he would not have been given the feed 

the feed would have to be taken by this guy from here actually. But Incidentally, I have taken 

this link. It is okay.  It is the request will go here and feed will come from this side. So this 

guy will also give a feed to him, this guy will also give a feedback making the entries in their 

children tables. Now, here are actually there are two feeds which are arriving.  

In this case, this node has to figure out which guy actually has, remember these nodes are in 

their neighbor tables actually. You send it to your neighbor tables; they will then further 

forward it to whichever nodes which are there in their neighbor tables and routing tables. It 

will now look at the RTT of these nodes. So if the RTT for this is less it will simply disregard 

this one and this one will be taken up.  

Idea is very simple because a join request was sent. It created an entry in the children table. 

And we can what we have done is periodically you have to keep on sending the join requests 

if you want to receive the feed. In the beginning you will do a broadcast and later on you can 

only send it to the guys from whom you are getting the feed actually. This guy will not stop 

giving the join request here but we will keep on giving it to this guy.  



Every few minutes or every few after an hour kind of thing, this will get replenished to entry 

will refresh in the children table and it will keep on getting the feed. Then it will be coming 

here, so feed will this guy will receive the feed only one feed so it will now. As already 

request was coming so it will now create an entry in the children table, it will send the feed 

here. Now there are two feeds, this guy will find out which is m lower RTT, so it has to pick 

up that person and the remaining will be discarded. 

This feed will come from this side; it will stop sending the joint here actually. Once the joint 

is not sending and this guy does not want the feed which is not the case in our scenario 

because everybody need to receive the feed because they are part of the same DHT layer 

(())(24:54) actually. So this guy needs keys to keep on consuming. There is no need to simply 

disregard the whole thing. In that case, of course, our strategy should have been very 

different, I would have used a different protocol, which would have been something like a 

protocol independent multicast in that case.  

But this is also fine, I do not have to maintain a routing table here, that is a beautiful thing. 

Through a broadcast I can actually create stop and so now the feed will be start coming on 

this direction, and then the feed will come in this way to everybody. So this guy now has to 

make a choice between whichever has got the lowest RTT, so this might discard this and this 

packet will come and this guy now has to make a choice of this will disregard this and this 

will come.  

So you will start, you have now started getting the feed through this particular route, and then 

of course, as time goes by, you are only going to send joins in this direction. So everybody 

will only see the joins in those directions only from here you are getting the feed. Next time 

you find out somebody is having a better RTT you can send the join by identifying yourself 

as a source toward this direction. This guy has got a better RTT. Then the join and let us see 

what happens because he might also be receiving the feed after some stabilization.  

So you keep on changing dynamically and ultimately you will have 1 single tree getting 

created. And if you look at the RTT on each of the links, sum total of RTT is for all active 

links will be minimum in this scenario; this will automatically will get optimized.  



(Refer Slide Time: 26:34) 

  

Now, it is possible that your neighbor table, if I am not using routing table, so in each node 

actually has a routing table as well as a neighbor table. So, maybe you can ask a question why 

not, why to use only RT, why not to use or I will not use RT, only use NT neighbor tables 

because they are actually proximity-based thing. So, I will actually always build up a best 

broadcast three, multicast tree so is but there is a problem here is there actually say 3 node, 4 

nodes which are very close to each other. And my neighbor table has only three possible 

entries, three maximum entries.  

There will be only maintaining entries here. And actually somebody who is a feeder is sitting 

here. I will keep on sending only if I do, if I only use NT, I will keep on sending only 

requests here and I will never get the feed. I should also send a request to RTs also all entries 

which are there in routing table. So that way you will always be ensuring that you are getting 

connected to the source because everybody is using both RT and NT. I will also be sending a 

request here.  

If I do not get any response from here, I will get a response from here and I get the feed stuff 

and because other guys are actually talking to me I may start getting the feed to them, and 

once the feed is available, perfect. So, now people will try to optimize based on RTT, so but I 

will never be choosing because I am getting the feed from here and I am giving it to others, 

because nobody has responded to me earlier. Of course, I will find out that I am giving it to 

these three guys, I cannot get the feed.  



There may be a situation that you are getting a feed from here, you give the feed to these two 

guys and this guy gives a feed to him and I find this guy is having a better RTT and also 

getting the feed. In that case I can send a join, and then the moment I will actually send the 

join so that I can get the feet. And you may even come from; you may start sending the feed 

back to me. But then there is a loop cyclic loop here, these needs to be broken in such 

scenarios, because, the feed can only come through this route.  

So, one of the ways is when actually you are giving a feed, you should actually tell that you 

are, when you are feeding to others, and you are trying to join to somebody else it has to be 

disjoint path always. So of course, in this scenario, what will happen is when I join it here 

and I leave with this one, suddenly everybody's feed will get stopped. And in that case are no 

other options because this is not coming from anywhere else. I will again start doing are RTT 

thing and I will again connect to it.  

And that is when I should figure out that yes, it is not happening. But if I actually keep it 

alive and I keep on getting food I may get the feed twice. So, whenever I am actually 

switching over and by switching off the earlier feed I get this, I am not getting the feed that 

time I should figure out this is the invalid thing, I should not use it I will only use this 1 and 

this will be simply disregarded even if its RTT is smaller. I have to only do with the other 

pools actually.  

That way actually you can actually break the loops and there are various other methods also 

by which this can be done. So, this is one of the methods by which this is possible. Now 

another problem which will happen in this scenario is that you are listening to 1 TV channel 

and now you want to suddenly want to go to another TV channel. Now that is a complicated 

scenario. Because you have to now go through a different, there is a different DHT layer and 

there is going to be another DHT layer.  

So, 1 of the ideas generally will be something says 1 to 2 to 3 to 4 and so on, because there is 

going to be overhead, time overhead after which you will be able to get the feed. When you 

are doing this, it actually means you should actually connect to multiple DHT layer and 

channel surfing is happening. So, while you are at TV1, I should actually have joined, the 

stream end should have been getting a feed for some of other DHT layer also. Of course, you 

are getting the feeds for all these layers, but you are only using this one.  



And when you are getting feeds for these, you might end up in also giving it to others while 

you are not consuming it. So, these can be the scenarios which are feasible. That is the only 

problem which happens in this case. But this also can be taken care of to a certain extent as 

the people will not mind, anybody who is doing very fast surfing, for them there is going to 

be too much overhead, they have to run too much DHT layer also a lot of computing 

overhead and bandwidth will be consumed. 

Which also happens in even in case of IPTV because you have to subscribe to multiple IP 

multicast layers. And you consume tremendous bandwidth when you are doing channel 

surfing. So normally, whenever you switch to another channel, you do not release it 

immediately; you actually engage it for some time. And when you are searching that time, 

you try to also subscribe to other one.  

You have to look at the behavior and then based on that at the receiver side, you have to 

figure out a way so the user do not feel this channel surfing delay which is going to happen in 

the system. This is I think another complication which is there. We have looked at the loops, 

we have looked at this, now I come to an interesting problem, we call it free riding.  

Normally if I am getting a feed I am happy because I am using it, now I should give the feed 

to somebody else this is consuming my bandwidth. And of course I am paying for it, I would 

not like so normally people will have a tendency, the most optimal strategy for them is only 

receive and see it, do not give it to anybody else. But that we our network will never take off 

because source only can give it to the limited people.  

Now question is why this guy should actually broadcast it to somebody else. If I can make 

some mechanism by which there is an incentive to be here, because if he is not going to be 

here, he will end up in here and his quality of reception will be bad. He saves on the 

bandwidth, but his quality of reception will be bad because there will be more packet losses, 

there will be more paths. So let us look at this how this can be done.  

One possible way which we thought of in the beginning is that we can make a closed loop 

economic kind of stuff. When you are getting a feed you are paying something, you are 

giving a feed to somebody else you also getting paid something. So whatever is the value 

which is deriving by viewing this video that is the only value which you are paying, now this 

value that add into this so you are paying a higher to the source.  



That actually means there is a currency transfer who is required and digital currency transfer 

requires something like a blockchain, if you have to do it reliably. Or you require some 

central banking where whenever the transactions happen, both the entities will send the 

request and the bank will keep track of who actually holds what amount of currency that what 

point of time. So that could be the only way.  

(Refer Slide Time: 33:42) 

  

But the only problem which we see in any economic system, normally there will be a closed 

loop economy which exists always. So, for example, there are many entities, so you are 

transferring some value to him. So, you will transfer the currency to him. In that is you are 

getting some value from somebody else you are transferring the value, so the currency 

circulates actually, currency circulates in the economy and the value circulates in the 

difference, so everybody contributes.  

Somebody who does not contribute gets bypassed, value goes directly and currency also goes 

directly, this requires means poor now. It is possible there are some nodes. Some of the 

currency, some part of the currency or value passes through this way. But there is a very 

small amount, but the sum total of this has to be equal to sum total of this. So, in fact, when 

you want to reach actually route maximum amount of this flow, it will only flow through you 

then you will become rich guy actually.  

And of course, if you storing, start storing the resources then there is an issue because they 

have not been, the help taken out of the flow. So, economy actually contracts in this situation. 

So, this is also not encouraged. Now, the only problem here is that there has to be 



conservation of currencies, the total amount of currency has to remain same. Currency cannot 

be destroyed cannot be produced. And so implementing blockchain will be much more 

cumbersome. So, we have thought about it and ultimately we came up with an idea that we 

can use reputation in this case.  

So, depending on a certain desired behavior, we can actually modify the reputation of the 

person. So, you have a tendency to gain a reputation because when you have reputation, you 

have an advantage when you are interacting with others, you always act as if so that you gain 

higher and higher reputation. And that way we can actually give an incentive and people will 

be willing to know, not only receive the feed, but will also give it to others.  

So, we had thought of it, we are also actually doing it, though we are actually still 

investigating this how this can be done. But I find this is a far superior method, it is actually 

simpler to implement, and I do not have to maintain this conservation of currency principle. 

And then of course, there has to be equitable distribution. So, everybody has to whatever he 

is spending that much he need to earn in the scenario.  

If that does not happen, somebody will go out of the network. Somebody will start 

dominating, that is not desirable for our system, if you want to build up a peer to peer 

network. The way it is going to happen is that if a node we will actually maintain another 

DHT network. Remember in storage DHT, when we had talked about storage layer, we have 

talked about storage DHT also and then we have talked about the reputation DHT at that 

point of time.  

Reputation for that we will have a separate DHT, the same actually reputation DHT can be 

used here also but there is a reputation regarding the overlaid multicasting. And now we, so 

this the reputation DHT will have nodes, some nodes will be there. Every node who is there, 

who is actually participating in my media DHT layer, every node will have a node ID. So, I 

can actually take this node ID and then I can compute the hash of this and this hash of this 

node ID even without that this can be done but I would like to always do hashing because that 

gives a randomization. And then find out a root node for that, for the hash ID so you get the 

hash ID here. So, this guy is the person who will be holding the reputation of this person, this 

node.  



(Refer Slide Time: 37:31) 

  

So, the rule is very simple that whenever a node is supplying, so some node is receiving. So, 

whenever this node receives, it will now send a message to this responsible node in the DHT 

layer. Every five minutes it can send only one message. So, we have a restriction of that time, 

every five minutes one message, and this message will come here.  

So, it will now update the reputation of this person. So, reputation is going to be something 

which is going to change with time. So, reputation at time t is this. So, I want to find out, let 

this current time be t, reputation at earlier time so for example, (t-τ), at that time the 

reputation was updated for this node, for this particular node I am talking about. So, there is 

going to be R(t-τ), but this reputation should decay.  

So, we are always taking the concept, if you have a reputation this, if you are not gaining in 

the reputation, reputation will decay with time. If some positive message comes, the 

reputation updates, if more positive comes reputation updates, otherwise it keeps on 

decaying. If you are not active, you are not participating, you are dead, you have to start from 

bottom always and you have to gain the reputation by becoming more and more cooperative.  

So, this reputation will decay. So, I will define a parameter alpha. So, what this parameter 

alpha should be we have to design appropriately. I will only give what happens if the alpha 

has small value, what happens when alpha is big. So, what will be a tendency of more 

depending on this alpha value? So this has to be network constant. So, this will be decayed 

reputation which will come. Now, this node has actually given an update to you. I will say 

this reputation will always be one because of this thing.  



And I can now do weighing actually. So I can have 1+ e 
-αt

, this will give me a new reputation 

value R(t) for this particular node, for this node. Now, this value will always be less than one. 

But interestingly, the problem is that this guy's reputation is small or high, based on that my 

reputation, if somebody has an having a reputation and he is getting a feed from me, I should 

actually have a higher increment. So, I will have a tendency to give my feed to a person with 

higher reputation.  

So, that is the actually advantage you have, if you are going to have a reputation, you have a 

chance of getting a feed from somebody else who is having higher reputation than you. So 

you actually can be closer to the source, you will get the things in time, you will get more 

number of packets, there will be less amount of loss. Because more number of hops is there 

more the loss can be in there in the packets. Remember in the media we do not actually use 

TCP, we use packets.  

So, it is like the UDP things which are UDP packets which are transmitted, if they are lost, 

they are lost. So you may be getting a lot of media, so if packets are lost, you will get that 

kind of a jerks in your audio and video media which is being played back. So, it is always 

desirable to be towards closer to the source, which is going to have highest reputation 

actually. Because you are going to get it and your reputation is higher, that is why he gains 

higher mark.  

Let me change this formula further. If we change this formula to that R(t )will be equal to     

R(t-τ) e
-στ

 +1, I will not put up an exponential formula and I will put A and this will be the 

reputation of the receiver, the guy who is sending me the update. So this is reputation is now 

AR. So when it goes, so I will use this reputation, I will multiply it by 1 and then I will do 

R(t-τ) e
-στ

 +1 e
-AR

. This value will always be less than or equal to 1 and it will always be 

greater than 0 obviously.  



(Refer Slide Time: 41:50) 

  

So, it actually means, if this guy has a higher reputation, I will again, I will have a higher 

gain, if this guy has a lower reputation; I will get a lower gain. Also, as a consequence, now 

what is it going to be the best strategy for a node. Node always wants to get a feed from a 

high reputation, there is very important, he can only get it if he actually has a high reputation, 

because when somebody is asking me, I am going to choose somebody with a high reputation 

only so that I will have higher gain in my reputation, because of this mechanism.  

For you, for anybody to gain a higher reputation means he has to forward, otherwise he 

cannot gain high reputation. People have are the leaf node, they will have the least amount 

they will have zero reputation because they are not forward. Given an opportunity, they will 

start forwarding, as soon as possible somebody asked because they gain reputation. Then now 

within whatever options when they have in their neighbor table. If they find out not that in 

our situation, you cannot connect to anybody; you have to only connect to somebody who is 

in your neighbor table.  

I am now also trying to optimize on the round trip time. I have a limit on how many can be 

there. I will pick up somebody else who is got a reputation; I will try to connect to him. If he 

accepts, it is fine, I get connected to him and leave this guy, this guy's reputation actually, and 

then overtime goes down because he is not giving the feed to me. And I am not sending 

update about him. Now, there can be situation when some node says, I am actually getting the 

feed, why I need to send up data about him, so it becomes a rogue node, he has a malicious. 

 



So, this node is not sending to the reputation server, it does not send the message. So, we also 

do it because we have to do apply that 5 minute rule, so every node, every reputation server 

will maintain a queue of how many messages were received in the last say 30 minutes 

regarding the updates. So, anything which is coming from the same source is simply 

discarded. So, it has to be actually each five minutes. So, if this made not be 30 this can be 

five minutes only. 

So, every 5 minutes if some somebody tries to send say 10 requests within 5 minute frame. 

All remaining 9 will be discarded, only the first one will be. I can always go and check 

periodically that whether the guy whom I am feeding is sending the updates or not to my 

reputation server. This can be checked by this guy. If he found he is not doing he can simply 

kick him out. That is it. So if you are not cooperative you are doing malicious things, you are 

out.  

You can have a reputation as zero, you have to find out somebody else and you have to be 

honest, if you are not you cannot get the feed. So, this strategy is gained, theoretic technically 

what we have done we have actually proven that there is no better possible strategy for him to 

operate in the network except to be cooperative and forward whenever it is feasible. 

Otherwise you end up becoming a leaf node; you will go lower down in the topology.  

The guy closer to source will actually have higher reputation; the guy who is in the bottom 

will be having lowest reputation. So, if you are not cooperative, you will not gain reputation 

and hence forth you will end up in becoming going down to the bottom. Of course this we do 

not have a dynamic topology in the current scenario, we are actually using neighbor tables 

and we are trying to steal ideas to whatever is coming, we will be optimizing the round trip 

time also.  

But yes, we can actually now add more flexibility further and we can say that if I get more 

information because every, guy they are here are also changing neighbor tables. When I get 

neighbor tables from my neighbors I can actually use that particular issue, information also to 

try and try to connect to them actually, so they become my neighbors. I can now make what 

we call another neighborhood, I can actually no make what we call a separate tree structure 

distribution, where I can actually say who is going to be my feeder.  

So, feeder holds and then of course, whenever my neighbor's table is coming from others I 

can find out if somebody is a better feeder with high reputation available and he is willing to 



feed me I can just simply keep on changing my feeder. And this feeder also I can use to get 

what are his neighbors actually if I can, if he is willing to share, otherwise anyway, I will 

keep on doing it again and again and again.  

So, but this is the way we can actually create overlaid multi casting system. So this is going 

to be pretty much massively scalable and you have to understand that this is very lucrative 

because even if I do only source only gives it to two guys, these two guys gives further to two 

guys and this is the first hop, this is the second hop, by the time I do 64 hops, this is 63 hops. 

So, I will be having a huge number of nodes which can get the feed.  

So, this is actually an extremely large number because what I am doing is I am doing this 

(2
0
+ 2

1
 +….+2

63
) . This value will become actually 2 dot, so this is going to be right, this 

number comes to be 64 into this divided by 2. So, this is going to be a pretty huge number 

Actually. This is going to be, I made a mistake here this has to be S multiplied by (2-1) also 

this will become to this total number of nodes which will be there is 2
64

-1, which is extremely 

large number.  

So almost everybody, every computer on this earth has been counted, this number is going to 

be still larger than that. So, with 64 hops, I will be able to actually stream it to everybody. So 

that is actually become I think a very nice system and can be massively scaled up without 

using any servers. But we need the higher high end servers to actually start feeding each 

other, feeding all the users, end users start feeding.  

Only thing you have the way you have to do is you are forwarding it to others and by 

reputation mechanism you are trying to reduce your delay. Lower reputation guys will be at 

the bottom always. So, with that we close this particular lecture. In the next lecture we will 

look at another interesting topic. Thank you. 


