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Lecture - 58 

Larsen Fuzzy Model (For Multiple Rules with Multiple Antecedents 

 

Welcome to the lecture number 58 of Fuzzy Sets, Logic and Systems and Applications. 

And here, we will continue our discussion on the Larsen Fuzzy Model for Multiple Rules 

with Multiple Antecedents and this also we will discuss with max-min composition and 

max-product composition for fuzzy and crisp inputs both. 
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So, since this class is having the multiple rules and multiple antecedents. So, we are taking 

2 rules here for simplicity, but we can have multiple rules like n number of rules we can 

have and similarly, we can have multiple antecedents. So, here also we are taking two 

antecedents only. 

So, 2 antecedents and 2 rules we are taking for simplicity. So, rule number 1 and rule 

number 2, but if we understand this then we can apply this for multiple antecedents and 

multiple rules, means we can apply to any number of rules and any number of antecedents. 
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So, here we are taking only 2 rules and let us go to the first case, where we are taking the 

fuzzy input. So, we have this as the rule number 1 and this as the rule number 2. These 

two are the rules already given for the fuzzy model Larsen fuzzy model and this dotted 

one is the applied input. 

So, we may not at the moment consider when we are discussing the rule. Now, this is the 

input, this is the fuzzy input this is a fuzzy input that we supply to the Larsen fuzzy model. 

And we have this fuzzy input for 𝑥 this fuzzy input for 𝑦 means the fuzzy input the fuzzy 

value 𝐴′ that means the 𝐴′ is nothing, but a fuzzy set here and 𝐵′ is also a fuzzy set. 

So, these two fuzzy values are applied fuzzy values are given as the input to the model. 

So, when we do that, we see that for the first rule let us understand that when we apply 

this so we superimpose 𝐴1 and 𝐴′. So, we superimpose 𝐴1 and 𝐴′, we get the point of 

intersection as 0.86 and similarly here for 𝑦 input we superimpose 𝐵′ and 𝐵1, 𝐵1 was 

already there and 𝐵′ is the given fuzzy input. So, when we superimpose these two or we 

superimpose 𝐵1 on superimpose 𝐵′ on 𝐵1 and we see that there is an intersection here 

point of intersection and this point of intersection is 0.36. 

So, we have two points of intersection first is for the 𝑥 first antecedent and the second one 

is for the second antecedent. I can call this as 𝑤1 and I can call this as the 𝑤2. Now, since 

here we are taking max-min composition. So, we will take the min of these two weights 

𝑤1 and 𝑤2. 

So, when we take the min and since this is for the first rule, where there are multiple rules 

here means two rules. So, we write the symbol of weight like this. So, upper subscripts 

here is for rules, so first rule similarly here the upper subscript will be the 𝑤1 . So, 

𝑤1basically I can ok. 

So, let us have this have it like this the symbol is a bit, we can take here in this particular 

case you can take this as the 𝑤1
1 and 𝑤1

2. So, the lower subscript is for the rule and so the 

𝑤1 here is the 𝑤1 is equal to the minimum of the 2. 

So, 𝑤1 is equal to the minimum of 𝑤1
1 and 𝑤1

2. So, this way we have the min of the two 

as 𝑤1 𝑤1 is 0.36 and this we used to a scale down the output fuzzy set 𝐶1. So, we can 

click, we can very easily get this value the 𝐶1. So, there is the fuzzy output here this is the 



fuzzy output this is 𝐶1′  and this is nothing but 𝜇𝐶′(𝑧)/𝑧 and what is 𝜇𝐶′(𝑧) is 𝜇𝐶′(𝑧) 

is nothing but 𝜇 but 𝑤 into this is 𝜇𝐶′(1). 

So, 𝜇𝐶1
′ (𝑧) is 𝜇𝐶1

′ = 𝑤1 × 𝜇𝐶1
(𝑧). So, this is how we get this value of 𝐶1

′  . Similarly, we 

find the points of intersection here for the second rule, we call this as the 𝑤2
1 and then we 

call this as the 𝑤2
2. So, 𝑤2 = min (𝑤2

1, 𝑤2
2). 

So, this way we get 𝑤2 here and similarly here we get the 𝐶2
′ . So, this is the fuzzy set and 

this is nothing, but see, if this is 𝑤𝐶2
′ (𝑧)/𝑧 and 𝜇𝐶2

′ (𝑧) = 𝑤 × 𝜇𝐶2
(𝑧). So, this is how we 

get the output fuzzy set scaled. Now, since here we have multiple rules so we have to when 

we apply max-min composition. 

So, now the max is relevant here max of max-min composition is irrelevant. So, we have 

multiple rules here we have two rules. So, both the outputs are now included both the 

outputs are now accounted and this accounting is done by taking the union of the two. So, 

we take the union of the two and that is how we are getting this as the output. 

So, this is the union of 𝐶1
′ and 𝐶2

′ . So, we can write it like this 𝐶′ and then 𝐶2
′  and this is 

our final output in this case. So, now, this output is the fuzzy output and as I have already 

mentioned that when we are interested in crisp equivalent of this crisp value of this, then 

we use suitable defuzzification methods and we get the crisp value the corresponding fuzzy 

set. 
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Now, let us compare this output of Larsen fuzzy model with the Mamdani fuzzy model. 

So, this means that when we have for the same inputs for the same fuzzy inputs, if you 

would have used Mamdani model what will would have got against here. So, for the same 

max-min composition and for the same fuzzy input, we are getting the different outputs. 

So, Mamdani model is giving us here, this output this fuzzy output whereas, the Larsen 

fuzzy model is giving this output 

So, please look at the outputs and these two are different outputs. Now, let us go ahead 

and use the other composition. Let us go ahead and use the max-product composition. So, 

when we use max-product composition. 
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So, since we have already this as the 𝑤1
1 and this we have 𝑤1

2. So, our 𝑤1 = min (𝑤1
1, 𝑤1

2). 

So, we are getting here. No this is the product this is not minimum. So, this is the product. 

What is this? This is this we have 𝑤1
1 and this is we have 𝑤1

2. So, when we multiply this 

the value 𝑤1 that is the firing rule strengths is coming out to be 0.31 and we use this value 

to the scale down the height of the 𝐶1 the fuzzy set 𝐶1 to 0.31. 

So, this is how it is done. Now, the new membership function of 𝐶1
′ the new membership 

function the scale down membership function 𝜇𝐶1
′ (𝑧) = 𝑤1 × 𝜇𝐶1

(𝑧) and then you can 

write the 𝐶1 here we can write the 𝐶1
′ the output is scaled down fuzzy set here 𝜇𝐶1

′ . 



Alright so now similarly, when we apply the second rule when we apply the input the 

fuzzy inputs to the second rule. This was the rule number 1 the first rule and then we have 

the second rule. Now, when we apply this 𝑤2 this is the second rule. So, we write 𝑤2
1 and 

then we write here 𝑤2
2. So, this is 𝑤2

1 this is 𝑤2
2. Similarly, here also we have the value 

that we are getting as the firing strength of the rule as 0.2. 

So, this value will be used to a scale down the 𝐶2 to 𝐶2
′ . So, the membership function here 

of this scaled down fuzzy set will be 𝜇𝐶′(𝑧) = 𝑤2 × 𝜇𝐶2
(𝑧) and the 𝐶2

′ = ∫ 𝜇𝐶2
′ (𝑧)/𝑧

𝑧
. So, 

this is how we get the 𝐶2
′  as the output the fuzzy output. Now, since we are applying here 

a max-product composition. So, we take the union of the two outputs. 

So, we take the 𝐶1
′ take 𝐶1

′ and 𝐶2
′ . So, we take the union of these 2 and this is what we 

are getting here as the output. So, we see that we are finally, getting the fuzzy output and 

this fuzzy output can be defuzzified further to get the crisp output and this is the output 

that we obtained using Larsen fuzzy model using the third case the third case of the Larsen 

fuzzy model that is multiple rules and multiple antecedents and this output is with respect 

to max product composition with fuzzy inputs. 
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So now, let us compare this case with the this output with the Mamdani fuzzy model. So, 

had it been a Mamdani fuzzy model you would have gotten this output for the same input 

for the same composition, that means the max-product composition. So, see here that, we 



are getting different fuzzy outputs for the same inputs and for the fuzzy for the same 

compositions. 

So, we see clearly that we have different fuzzy outputs and since we have the different 

fuzzy outputs, obviously, we are going to get the different crisp values as well. Now, let 

us compare this with the max-min composition and we see that all four are different when 

we use max-min composition here also the Larsen and Mamdani both are producing 

different fuzzy outputs. 

So, we can see that as to how when we use the same even if the same max-min composition 

different models are producing corresponding to the same fuzzy inputs different fuzzy 

outputs and so the crisp out outputs also will be different. 
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Now instead of fuzzy inputs, let us use crisp inputs and see what happens. So, we have the 

again for this case also we have two rules and the input here is different that means, 𝑥 is 

equal to 𝑥1 instead of the fuzzy set and here we have 𝑦 is equal to 𝑦1 that means the 

crisp input instead of the fuzzy input. So, let us see what we are going to get when we 

apply this crisp input. 
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So, here we have let’s us assume that 𝑥1 is 7 and 𝑦1 is 6.5. So, when we take this 𝑥1 for 

the first antecedent, so first antecedent is 𝑥 is 𝐴1. So, when we take 𝑥1 is equal to 7. So, 

corresponding to 𝑥1 is equal to 7 we see that this is cutting this is intersecting the 𝐴1 

fuzzy set at 0.28 membership value. So this we call as 𝑤1
1, for the first antecedent and first 

rule this is rule number 1 this is rule number 2. 

So, similarly here 𝑦1 is cutting 𝑦1 is also intersecting here at 0.97. So, we call this as 𝑤1
2 

the second antecedent and first rule. So, if we use max-min composition, then we have to 

take the min of these two. So, 𝑤1 is equal to or we can simply write here like this that we 

have this as the 𝑤1
1 and this as the 𝑤1

2. So, the value the minimum value is coming out to 

be 0.28. 

So, since we are taking max-min composition. So, the minimum here is 0.28. Now, we use 

this value to scale down 𝐶1 to 𝐶1
′ means the new fuzzy set is the scale down fuzzy set is 

𝐶1
′ and as I have already discussed as to how we are going to get the membership function 

of the scaled down 𝐶1
′ fuzzy set. So, here 𝐶1

′ will be like this, 𝑤1 multiplied by 𝜇𝐶1
(𝑧) 

here also we will have  𝜇𝐶1
′ (𝑧) and then here we will have 𝑤1 into 𝜇𝐶1

(𝑧). 

So, with this we will be getting 𝜇𝐶1
′ (𝑧), the membership function of the scaled down fuzzy 

set and this is scaled down fuzzy set is 𝐶1
′   and 𝐶1

′   is this 𝜇𝐶1
′ (𝑧)/𝑧. So, similarly, when 



we apply the same input same crisp inputs to the rule number 2. So, here we get my 𝑤2
1, 

0.14 and 𝑤2
2 as 0.99. So, since we are taking the max-min composition. 

So, minimum of the two will be 0.14 and similarly here also the membership function of 

the scale down fuzzy set will be 𝜇𝐶2
′ . So, I can write here 𝜇𝐶2

′  is going to be 𝑤2 multiplied 

by 𝜇𝐶2
(𝑧) since this is defined in 𝑧. So, we can write here 𝜇𝐶2

′ (𝑧) so like that and then 

we have this 𝐶2
′  as 𝜇𝐶2

′ (𝑧)/𝑧. So, this is how we get the expression for 𝐶2
′ . Now, since we 

are using here the max-min composition. 

So, the outputs corresponding to rule number 1 and rule number 2 are unionized is a union 

of the two outputs are taken. So, 𝐶1
′ ∪ 𝐶2

′  and this is what is the output that we get when 

we take union we combine these two. So, either we call this as the union or we taking max. 

So, this is nothing, but the union of the two outputs corresponding to the rule number 1 

and rule number 2. 
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Now, let us. So, since this is fuzzy output. Now, let us compare this fuzzy output of the 

Larsen fuzzy model with the Mamdani fuzzy model with the same max-min composition 

and with the same crisp input. So, we see that the outputs again here will differ. So, Larsen 

fuzzy model produces this fuzzy output whereas the Mamdani produces the different fuzzy 

output compared to Larsen fuzzy model. So, similarly when we defuzzify this the crisp 

outputs also will remain the different. 



So, let us now for the same input and in the same class that means, the multiple rules with 

multiple antecedents let us use the max product composition and let us see what we are 

getting. 
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So, here we are again for the same input we are getting 𝑤1
1  as 0.28 as the point of 

intersection here we are getting 𝑤1
1. So, 𝑤1

2 here as the point of intersection here. So, this 

part remains the same, the only thing is this multiplication here because we are using max-

product composition. 

So, we multiply these two the 𝑤1
1 and then 𝑤1

2. This is 𝑤1
2. So, final value that is 𝑤1 is 

coming out to be 0.27 which is the firing strength of the rule 1 and again it is needless to 

mention as to how we get the 𝐶1
′ here. So, what is done here is that the height of 𝐶1 is 

brought down to or the is brought down to 𝐶1
′ and the accordingly the whole fuzzy set is 

a scaled down and this membership function of this fuzzy set 𝐶1
′ that means 𝜇𝐶1

′ (𝑧) =

𝑤1 × 𝜇𝐶1
(𝑧). 

So, when we have this then, we can simply write the expression for fuzzy set 𝐶1
′ and 𝐶1

′ 

is 𝜇𝐶1
′ (𝑧)/𝑧. So, this is how we write 𝐶1

′ fuzzy set. Similarly, when we apply this crisp 

input 𝑥1 is equal to 7 𝑦1 is equal to 6.5 to the second rule the output is 𝐶2
′  and here this 

intersection is 𝑤2
1 and this intersection is 𝑤2

2. 



So, this is 𝑤2
1 and this is our 𝑤2

1 𝑤2
2; 𝑤2

2. Similarly, the membership function of the 𝐶2
′  

so the membership function of 𝜇𝐶2
′ = 𝑤2 × 𝜇𝐶2

(𝑧). So, this 𝐶2
′ = ∫ 𝜇𝐶2

′ (𝑧)/𝑧
𝑧

. So, this is 

how we can get the membership value and the fuzzy set. So, both the outcomes are now 

maximized the outcomes that union of the two membership two fuzzy sets are taken. 

So, here we take the max of 𝐶1
′ and 𝐶2

′ , we and this is same as this is same as the 𝐶1
′ =

𝐶1 ∪ 𝐶2  here and this is the outcome. So, this is the fuzzy outcome and we use the 

defuzzification methods suitable defuzzification methods to get the crisp output. Now, let 

us compare this output of the Larsen fuzzy model here and let us compare this with 

Mamdani. 
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So, had it been the same input same crisp inputs same set of fuzzy rules and same 

composition that that means, max-product compositions. So, 𝐶  here the Larsen fuzzy 

model is giving this output and Mamdani fuzzy model is giving this output which is 

different from the Larsen fuzzy model for the same crisp inputs and same max-product 

composition and now let us compare the outputs of the max product composition with 

max-min composition as well. 

So, we see that here we see that here all the four outcomes are different means, the fuzzy 

values are changing the output of the Larsen fuzzy model in all the cases in both the 

compositions are different for the same input and same composition and same input and 

similarly here the Mamdani fuzzy model also we have different outputs. And similarly, 



since we have the fuzzy values are different. So, the corresponding crisp values are also 

going to be different. 

So, we see that, we have the outputs fuzzy outputs in as the result of Larsen fuzzy model 

with crisp model crisp input and max-min composition and then the same for max-min 

composition and we see that the results are the fuzzy outputs are different. The different 

the outputs are different and then accordingly, we can say that the crisp values are also 

going to be different. 
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Now, let us take a simple example a very simple example here of the case the single input 

and single output Larsen fuzzy model. 

So, here we have the single input it means we have the single antecedent, but here we have 

multiple rules. We have single antecedent, but multiple rules and in this case we have the 

single input single output that means the SISO Larsen fuzzy model and which is shown 

here for antecedent and consequent membership functions with universe of discourse. 𝑥 

belonging into belonging from −10 𝑡𝑜 10  and 𝑦  from 0 𝑡𝑜 10  respectively for 

every 𝑥 ∈ 𝑋 for every 𝑦 ∈ 𝑌. 

So, we see here that the 𝑥 is having three fuzzy regions small, medium, large and all these 

fuzzy regions are defined by or represented by the corresponding fuzzy sets for small for 

medium for large. Similarly in consequent part that means, the output is also divided into 



𝑦 is also divided into three fuzzy regions and every region is represented by a fuzzy value 

fuzzy set. So, small, medium, large. 

So, we have the input and we have the output and here we have the three rules of the model 

which is given. So, rule 1 says if 𝑥 is small then 𝑦 is going to be in the small means, if 

any input 𝑥 which is falling in the small region then the output has to be fall has to fall in 

the small region only. Similarly what rule 2 is saying is if 𝑥 is medium means 𝑥 is going 

to be medium. 

Then y is also going to be in the medium means what does this mean exactly is if any input 

𝑥  is falling in the medium region then y will also be falling in the medium region. 

Similarly for rule 3 if 𝑥 is large means if the 𝑥 values if the input 𝑥 is falling into large 

region large fuzzy set region, then the corresponding 𝑦 will also fall in the large region. 

So, these are very simple case to make you understand. So, if we have these three rules 

present for this fuzzy model for this SISO fuzzy model for this SISO Larsen fuzzy model, 

then let us find the output corresponding to the input 𝑥 is equal to −3.9. 

So, let us apply this input. So, please understand that the output input here is the input that 

we are giving to the model is a crisp input. So, we have 𝑥 is equal to −3.9 and this is a 

crisp input. So, this input when we supply to the Larsen fuzzy model, let us see what is the 

output that we are going to get corresponding to this input. 
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So, when we apply this input, we see that corresponding to 𝑥 is equal to −3.9, we get 

here the two points of intersection. So, we see that a small region is cut at one place a small 

region a small fuzzy set is cut at is intersected at one place by 𝑥 is equal to −3.9 line and 

similarly the medium is also intersected at 0.7 and then when it comes to large is not at all 

affected. 

So, the input that we are supplying here which is 𝑥 is equal to −3.9 is applicable is falling 

in to two regions a small and medium it is not falling in the large region. So, large is large 

fuzzy region is irrelevant for this input. So, let us now further understand that, 

corresponding to this input we are getting 0.3 as the point of intersection in a small region 

and 0.7 in medium region. Now, let us check this in the given rules. 

So, let us now look at the rules and see whether the rules are applicable for this input or 

not. So, we have we have the input 𝑥 is equal to −3.9 which is falling in the small region. 

So, if it is falling in the small region, we have the given rule we see here and in given rule 

if we if our input is falling in the small region. So, we have the output also in the small 

region. 

So, this means that the input since our input 𝑥 is equal to −3.9 is falling in the small 

region. So, this means rule 1 is applicable, no matter what is the output. So, we will first 

see the input. So, input is falling in this small region, then we see the input is also falling 

in the medium region. So, rule 1 and rule 2 are applicable and rule three is not applicable 

because the 𝑥 is equal to −3.9 is not falling in the large region. 

So, this is this rule is not applicable so only two rules are applicable. Now, let us proceed 

with these two rules. 
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So, we have the  small fuzzy set here the fuzzy set for a small here and then we have the 

fuzzy set for medium here this is medium, this is medium fuzzy set and this is small fuzzy 

set and these two are given. So, since we have two rules here, rule number 1 let us now 

apply the input. 

So, for rule number 1 and then we have the rule number 2. So, when we apply the input 

here we find here for the first rule we are getting the point of intersection as the weight 

which is 0.3; 0.3. Now, if we apply Larsen fuzzy model. So, the height of this output fuzzy 

set that is small here in this case we have to bring it down to the 0.3 value here. 

So, and the membership function, the new membership function let us say the membership 

function of the small here the small here let us say this is y and the membership function 

of they small dash let us say will be the 𝑤; that means, the 0.3 × 𝜇𝑆𝑚𝑎𝑙𝑙(𝑦). 

So, similarly here, when we apply a rule number 2 we get here the point of intersection as 

𝑤2 and we scale down the medium to medium height of the medium to 𝑤2; that means, 

the 𝑤2 is equal to 0.7 and this is the outcome that we get a scale down fuzzy set and the 

corresponding membership function. So, let us call this as the dash medium dash 

So, this is 𝑦 so 𝜇𝑀𝑒𝑑𝑖𝑢𝑚. So, this will be basically, 0.7 × 𝜇𝑀𝑒𝑑𝑖𝑢𝑚′(𝑦). And here we have 

the membership function mu medium let us say 𝑦 and this is dash. So, this is how we are 

getting the scale down fuzzy set and this is the membership function is the membership 



function. We can get the fuzzy set a 𝑆𝑚𝑎𝑙𝑙′ = ∫ 𝜇𝑆𝑚𝑎𝑙𝑙′(𝑦)/𝑦
𝑦

 similarly here the fuzzy 

set and so this will be the fuzzy set basically, this is the fuzzy set and here this fuzzy set 

there the mu medium this is fuzzy set that you write it here. This fuzzy set is 𝜇, let us say 

𝑀𝑒𝑑𝑖𝑢𝑚′  and this 𝑀𝑒𝑑𝑖𝑢𝑚′ = ∫ 𝜇𝑀𝑒𝑑𝑖𝑢𝑚′(𝑦)/𝑦
𝑦

. So, that is how we get the scale 

down membership function and the corresponding fuzzy set for medium dash like scale 

down medium dash scale down fuzzy set. 
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So, the same is shown here. Now, since we are using max-min composition. So, this is for 

max-min composition here, this is for max-min composition. So, we use max-min 

composition. So, minimum we have already taken here the minimum was not applicable 

because, we have only one antecedent. So, max-min composition or max-product 

composition both will give the same result because, we have only one antecedent here. 

So, that is not really going to make any difference. So, I can simply remove this because 

this is applicable to both min and max-min and max-product composition. But finally, in 

both the cases we have to take the max of the two output. So, both the output and what is 

this output this is the small dash here this is a 𝑆𝑚𝑎𝑙𝑙′ and this is 𝑀𝑒𝑑𝑖𝑢𝑚′ as the fuzzy 

output as the fuzzy output. So, both these outputs are now taken as the union. 

So, I can write here as a small dash union medium dash. So, this is what is the output. So, 

this is finally, again the fuzzy output. 
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Now, we can use any suitable methods of defuzzification to get the crisp value. So, here 

this is the output and fuzzy output and when we use the centroid of area the defuzzification 

gives the 𝑦∗ as the crisp value. So, 𝑦∗ is 3.5420, the formula I have already discussed all 

these defuzzification I have already discussed. 

So, if we use all these, we will get the center of area if you use center of area the same 

fuzzy value the same fuzzy quantity is giving us different crisp values. So, when we use 

center of area method of defuzzification, we get 3.5420, when we use the bisector of area 

we get 3.6286 as the crisp value, when we use max of mean of maximum we get 3.7287 

as the crisp value, when we use the smallest of maximum then we get 2.4625 as the crisp 

value. 

 And then when we use the largest of maximum here we get a 4.995 as the crisp value for 

the same fuzzy output. And here it is shown the fuzzy output that we have got is shown 

and their vertices also all these vertices 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6 are shown here, is you are 

interested you can use these vertices to compute and compare the and match the results 

that we have obtained. 



(Refer Slide Time: 50:44) 

 

So, we have discussed in today’s lecture. So, many things and I hope you enjoyed the 

lecture in detail I have discussed the Larsen fuzzy model using max-min composition and 

max-product composition for both the inputs fuzzy and crisp. And all these three cases we 

have discussed, when we have the Larsen fuzzy model with single rule with single, single 

antecedent and then this was the first case. 

The second case was that we discussed was single rule with multiple antecedents and the 

third case that we discussed for Larsen fuzzy model was the multiple rules with multiple 

antecedents and this covered almost all the cases that we could apply. And with this I will 

stop here and in the next lecture we will discuss the Tsukamoto fuzzy model. 

Thank you very much. 


