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Analysis of Single Phase Full Controlled Converter-Fed Separately Excited DC Motor 

Welcome to this lecture on the fundamentals of electric drives! In our previous session, we 

explored the operation of a fully controlled rectifier feeding a separately excited DC motor. During 

that discussion, we identified two distinct categories of operation: continuous current operation 

and discontinuous current operation. We began our examination with discontinuous current 

operation, and now, let's pick up right where we left off in the last lecture. 
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Now, let’s delve into the concept of discontinuous armature current operation. In this scenario, the 

armature current is characterized by its discontinuous nature; it rises, falls to zero, and then starts 

rising again, only to fall back to zero once more. Essentially, the current reaches zero during every 

half cycle. 

To analyze this circuit mathematically, we consider the single-phase converter alongside the load, 



which in this case is our DC motor. The DC motor is represented by its armature resistance, 

armature inductance, and back EMF. During the discontinuous current operation, we initiate the 

triggering of the SCRs, specifically T1 and T2, during the positive half cycle.  

As we trigger these thyristors, T1 and T2, the current begins from zero, gradually building up until 

it reaches a peak and then declines back to zero at a specific angle known as the extinction angle, 

β. Following this point, the current remains at zero until we trigger the next pair of SCRs, which 

are T3 and T4, during the negative half cycle. At this moment, the output voltage reverses. 

We can break down the output voltage and the operation of this converter into a few distinct modes, 

at least two modes to consider. The first mode is referred to as the powering interval, which occurs 

from α to β (i.e., α < ωt < β). This segment represents the powering interval, while the second 

mode, from β to π + α, up to the instant when the next pair of SCRs is triggered, is known as the 

coasting interval or the zero current interval. 

In this scenario, we have a phase where there is no current flowing, which we refer to as the zero 

current interval. Prior to this, we have the first zone, known as the powering interval. During this 

powering interval, we can observe the applied voltage, which is the source voltage, denoted as Vs. 

When we trigger the two SCRs, T1 and T2, the conduction path flows through T1, then through 

the load, and back to the source via T2. In this case, the armature voltage is identical to the source 

voltage, Vs, allowing the current to start from zero and gradually build up. 

As we continue, once the voltage transitions to a negative value, this occurs even after ω t = π, the 

SCRs still conduct. However, the current begins to decrease because the supply voltage is now 

negative. The current will reach zero at the angle ω t = β, marking the end of the powering interval.  

Following this, we enter the interval defined by ω t ranging from β to π + α, this is the zero current 

interval. During this interval, there is no current flowing. At this moment, the back EMF aligns 

with the supply voltage, or Va (the armature voltage), indicating that Va is equal to the back EMF. 

This relationship is illustrated in this portion of the curve or region, where the supply voltage Va 

corresponds to the back EMF. This phase is, therefore, referred to as the zero current interval. 

Now, let us analyze these two intervals separately. 

Now, during the powering interval, we focus on the region where ω t is between α and β, leading 



to the condition that Va = Vs. This relationship allows us to establish a fundamental differential 

equation for the armature voltage, which mirrors the AC input voltage. The equation can be 

expressed as: 

𝑉𝑉𝑎𝑎 = 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎 + 𝐿𝐿𝑎𝑎
𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑑𝑑

+ 𝐸𝐸 
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Here, E represents the back EMF, and the input voltage can be denoted as 𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝑡𝑡) = 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎 +

𝐿𝐿𝑎𝑎
𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑑𝑑

+ 𝐸𝐸. This constitutes a first-order differential equation that we need to solve. 

The solution to this differential equation is comprised of two distinct parts: a steady-state 

component and a transient component. The steady-state component includes terms such as  

𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝜔𝜔𝑡𝑡 − 𝜃𝜃) 

In this context, we have a circuit characterized by armature resistance, inductance, and back EMF. 

When we derive this equation for the RLE circuit, we find that the applied voltage Va is equivalent 

to Vs.  

Consequently, the steady-state current Ia exhibits two components: one induced by the input 



voltage Va, which is an AC voltage, and the other stemming from the back EMF E. The back EMF 

opposes the flow of current, effectively driving it in the opposite direction. 

In our analysis, the AC steady-state current is represented by  

𝐼𝐼𝑎𝑎 =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝜔𝜔𝑡𝑡 − 𝜃𝜃) 

while the DC current, which opposes this AC current, is given by  

−
𝐸𝐸
𝑅𝑅𝑎𝑎

. 

This signifies the steady-state component, but we also introduce a transient component into the 

equation. The transient component can be expressed as  

𝐴𝐴𝑒𝑒−𝑡𝑡/𝜏𝜏𝑎𝑎 , 

where τa is the time constant of the circuit.  

Now, you may wonder why the transient component is necessary. The reason lies in the variability 

of the triggering angle α. In this scenario, α is not fixed; it can be adjusted. However, when we 

trigger the SCRs, the current must initiate from zero to satisfy the boundary condition, which is 

crucial for the transient component. Thus, we need to determine the constant A. 

To achieve this, we start from the condition at 𝑡𝑡 = 𝜔𝜔𝑡𝑡
𝛼𝛼

, where the armature current Ia = 0. 

Substituting this condition into our established equation yields: 

0 =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃) −
𝐸𝐸
𝑅𝑅𝑎𝑎

+ 𝐴𝐴𝑒𝑒−𝛼𝛼/𝜏𝜏𝑎𝑎 . 

To clarify, we multiply the angular frequency ω by the angle α. Notably, 𝜔𝜔𝜏𝜏𝑎𝑎 = 𝜔𝜔𝐿𝐿𝑎𝑎
𝑅𝑅𝑎𝑎

= tan(𝜃𝜃), a 

relationship we defined previously. Hence, we can also express 𝜔𝜔𝐿𝐿𝑎𝑎
𝑅𝑅𝑎𝑎

 as tan(𝜃𝜃) and 𝑅𝑅𝑎𝑎
𝜔𝜔𝐿𝐿𝑎𝑎

 as cot(𝜃𝜃). 

Now, substituting this back, we can rewrite the equation as: 



0 =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃) −
𝐸𝐸
𝑅𝑅𝑎𝑎

+ 𝐴𝐴𝑒𝑒−𝛼𝛼 cot(𝜃𝜃). 

At this point, our focus shifts to determining the value of A. 
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The value of the constant A is given by the expression: 

𝐴𝐴 =
𝐸𝐸
𝑅𝑅𝑎𝑎

−
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃) 𝑒𝑒𝛼𝛼 cot(𝜃𝜃). 

This expression has been derived from our previous equation. By determining the value of this 

constant A, we can substitute it back into our equation to find the value of the armature current Ia. 

Thus, the constant can indeed be calculated from this equation. 

Now, let’s revisit and substitute this value into Equation 1. Recall that Ia is expressed as: 

𝐼𝐼𝑎𝑎 =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝜔𝜔𝑡𝑡 − 𝜃𝜃) −
𝐸𝐸
𝑅𝑅𝑎𝑎

+ 𝐴𝐴. 

Substituting our expression for A yields: 



𝐼𝐼𝑎𝑎 =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝜔𝜔𝑡𝑡 − 𝜃𝜃) −
𝐸𝐸
𝑅𝑅𝑎𝑎

+ �
𝐸𝐸
𝑅𝑅𝑎𝑎

−
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃) 𝑒𝑒−(𝜔𝜔𝑡𝑡−𝛼𝛼) cot(𝜃𝜃)�. 

This equation represents the armature current Ia for the interval where ω t is greater than or equal 

to α but less than β. 

Next, we need to determine the value of Ia when 𝜔𝜔𝑡𝑡 =  𝛽𝛽. At this point, we find that Ia equals zero: 

𝐼𝐼𝑎𝑎 = 0 when 𝜔𝜔𝑡𝑡 = 𝛽𝛽. 

Here, β is known as the extinction angle of the converter. At ω t = β, the current drops to zero 

because the supply voltage becomes negative, leading to a cessation of current flow at this specific 

angle, β. 

If we substitute this value into the previous equation, which we will refer to as Equation 2, we 

arrive at the following expression: 

0 =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛽𝛽 − 𝜃𝜃) −
𝐸𝐸
𝑅𝑅𝑎𝑎

+
𝐸𝐸
𝑅𝑅𝑎𝑎

−
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃) 𝑒𝑒−(𝛽𝛽−𝛼𝛼) cot(𝜃𝜃). 

This results in a transcendental equation, not a simple algebraic one, because it incorporates both 

sine and exponential functions. 

To evaluate the angle β, we must approach this iteratively. If we want to find the value of β, we 

can derive it from Equation 3. We start with an initial guess for β and then refine our estimate by 

exploring values in the vicinity of this initial guess. 

For instance, we might choose 𝛽𝛽 =  𝜋𝜋 +  𝜃𝜃 as a reasonable initial value, where θ is the power 

factor angle we discussed earlier. From this starting point, we can calculate or evaluate β until we 

find a value that satisfies Equation 3. This iterative process will lead us to an approximate value 

for β. 

Now, let's consider the boundary between continuous and discontinuous operation. 

Now, let’s explore the boundary between continuous and discontinuous operation. We can 

establish that when 𝛽𝛽 =  𝜋𝜋 +  𝛼𝛼, we reach this crucial boundary condition; beyond this point, the 



current becomes continuous.  
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To understand what this entails, we substitute β = π + α into Equation 3 to identify the specific 

conditions that delineate the boundary between continuous and discontinuous operation.  

When we substitute β into the equation, we have: 

0 =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝜋𝜋 + 𝛼𝛼 − 𝜃𝜃) −
𝐸𝐸
𝑅𝑅𝑎𝑎

+
𝐸𝐸
𝑅𝑅𝑎𝑎

−
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃) 𝑒𝑒−(𝜋𝜋+𝛼𝛼). 

After substituting, we simplify the equation to find the boundary condition. Notably, since 

sin(𝜋𝜋 + 𝑥𝑥) = − sin(𝑥𝑥), we can rewrite the equation accordingly: 

0 = −𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃) + 𝐸𝐸
𝑅𝑅𝑎𝑎
− 𝑉𝑉𝑚𝑚

𝑍𝑍
sin(𝛼𝛼 − 𝜃𝜃) 𝑒𝑒−𝜋𝜋 cot(𝜃𝜃). 

Here, the terms involving α will cancel each other out, leading us to focus on the condition that 

results in: 

−𝜋𝜋 cot(𝜃𝜃) 𝑒𝑒−𝜋𝜋 cot(𝜃𝜃). 

This establishes the critical condition that separates continuous operation from discontinuous 



operation.  

From this simplification, we can derive the value of the critical speed, denoted as ωmc. The 

expression for this critical speed is given by: 

Ω𝑚𝑚𝑚𝑚 =
𝑅𝑅𝑎𝑎𝑉𝑉𝑚𝑚

𝑍𝑍𝜙𝜙 sin(𝛼𝛼 − 𝜃𝜃)�
1 + 𝑒𝑒−𝜋𝜋 cot(𝜃𝜃)

𝑒𝑒−𝜋𝜋 cot(𝜃𝜃) − 1
�. 

This critical speed implies that if the speed of the motor exceeds ωmc, the operation will be 

discontinuous. Conversely, if the speed is less than ωmc, the operation remains continuous.  

Now, let us proceed to draw the torque-speed characteristic under discontinuous current operation. 
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Now, when the current is discontinuous, we observe several key characteristics. Let me illustrate 

the speed characteristic of the output voltage once again. We have the back EMF represented as 

E, and the SCRs are triggered at an angle α. This triggering occurs at π as well, and we have the 

extinction angle denoted as β. The output voltage waveform appears as follows: it rises up to the 

angle β, then descends, creating a characteristic shape. To clarify, the points of interest are α, π, β, 

and again at π + α.  

If we examine this periodic waveform, we can denote the armature voltage as Va. Our goal now is 



to determine the average armature voltage applied to the DC motor. To find the average armature 

voltage, we will integrate over one half cycle, specifically from α to β and from β to π + α.  

The integration for the first half cycle is as follows: 

Average 𝑉𝑉𝑎𝑎 =
1
𝜋𝜋�

� 𝑉𝑉𝑚𝑚
𝛽𝛽

𝛼𝛼
sin(𝜔𝜔𝑡𝑡)  𝑑𝑑(𝜔𝜔𝑡𝑡) + � 𝐸𝐸

𝜋𝜋+𝛼𝛼

𝛽𝛽
 𝑑𝑑(𝜔𝜔𝑡𝑡)�. 

Evaluating the first integral, we find: 

� 𝑉𝑉𝑚𝑚
𝛽𝛽

𝛼𝛼
sin(𝜔𝜔𝑡𝑡)  𝑑𝑑(𝜔𝜔𝑡𝑡) = 𝑉𝑉𝑚𝑚[− cos(𝜔𝜔𝑡𝑡)]𝛼𝛼

𝛽𝛽 = 𝑉𝑉𝑚𝑚(− cos(𝛽𝛽) + cos(𝛼𝛼)). 

For the second integral, since the voltage remains constant at E over that interval, we have: 

� 𝐸𝐸
𝜋𝜋+𝛼𝛼

𝛽𝛽
 𝑑𝑑(𝜔𝜔𝑡𝑡) = 𝐸𝐸(𝜋𝜋 + 𝛼𝛼 − 𝛽𝛽). 

Combining these results, we express the average armature voltage as: 

𝑉𝑉𝑎𝑎 =
1
𝜋𝜋

[𝑉𝑉𝑚𝑚(cos(𝛼𝛼) − cos(𝛽𝛽)) + 𝐸𝐸(𝜋𝜋 + 𝛼𝛼 − 𝛽𝛽)]. 

This average armature voltage must equal the sum of the resistance drop and the back EMF. Thus, 

we can write: 

𝑉𝑉𝑎𝑎 = 𝐸𝐸 + 𝐼𝐼𝑎𝑎𝑅𝑅𝑎𝑎, 

where Ia is the armature current. Rearranging gives us: 

𝐸𝐸 = 𝑉𝑉𝑎𝑎 − 𝐼𝐼𝑎𝑎𝑅𝑅𝑎𝑎. 

Now, substituting our expression for Va into this equation, we have: 

𝐸𝐸 =
𝑉𝑉𝑚𝑚(cos(𝛼𝛼) − cos(𝛽𝛽)) + 𝐸𝐸(𝜋𝜋 + 𝛼𝛼 − 𝛽𝛽)

𝜋𝜋
− 𝐼𝐼𝑎𝑎𝑅𝑅𝑎𝑎. 

We can simplify this to isolate E: 



𝐸𝐸 �1 −
𝜋𝜋 + 𝛼𝛼 − 𝛽𝛽

𝜋𝜋 � =
𝑉𝑉𝑚𝑚(cos(𝛼𝛼) − cos(𝛽𝛽))

𝜋𝜋
− 𝐼𝐼𝑎𝑎𝑅𝑅𝑎𝑎. 

This gives us: 

𝐸𝐸 =
𝑉𝑉𝑚𝑚(cos(𝛼𝛼) − cos(𝛽𝛽))

𝛽𝛽 − 𝛼𝛼
−
𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎(𝛽𝛽 − 𝛼𝛼)

𝜋𝜋
. 

Next, we need to establish the relationship between torque and speed. We already know from 

previous lectures that the back EMF is given by: 

𝐸𝐸 = 𝐾𝐾𝜙𝜙𝜔𝜔𝑚𝑚, 

and the torque can be expressed as: 

𝑇𝑇 = 𝐾𝐾𝜋𝜋𝐼𝐼𝑎𝑎. 

From this, we can substitute for the armature current Ia in terms of torque: 

𝐼𝐼𝑎𝑎 =
𝑇𝑇
𝐾𝐾𝜋𝜋

. 

(Refer Slide Time: 27:23) 

 

Substituting this into our equation allows us to derive an expression for the motor speed: 



𝜔𝜔𝑚𝑚 =
𝑉𝑉𝑚𝑚(cos(𝛼𝛼) − cos(𝛽𝛽))

𝐾𝐾𝜙𝜙(𝛽𝛽 − 𝛼𝛼) −
𝑅𝑅𝑎𝑎𝑇𝑇(𝛽𝛽 − 𝛼𝛼)

𝐾𝐾𝜙𝜙𝜋𝜋
. 

Thus, the torque-speed characteristic for a separately excited DC motor operating under 

discontinuous conditions is established.  

Now, let us examine the torque-speed characteristic for continuous operation. 

In the case of continuous current, we observe the following characteristics: we have our voltage 

and back EMF, with the SCRs triggered at an angle α. This occurs at π and continues on to π + α. 

If we were to plot the current in this scenario, we would see that the current remains continuous, 

never dropping to zero.  

The voltage waveform is shaped accordingly, showing that we are triggering at angle α and 

maintaining this continuity all the way to π + α. To visualize this, the voltage waveform looks 

something like this. We mark 2π, π, and observe that the current waveform, denoted as Ia, remains 

continuous, never reaching zero.  

This represents a continuous current operation where there is no interruption in the current flow. 

The current is consistently maintained throughout both half-cycles, which simplifies our analysis. 

As a result, we don’t need to tackle the more complex equations associated with discontinuous 

current operation. 

In our next lecture, we will focus on deriving the average voltage equation and the torque-speed 

relationship specifically for continuous current operation. 


