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Speed Torque Characteristics of Separately Excited DC Motor and Series DC Motor 

Hello, and welcome to this lecture on the fundamentals of electric drives. In our previous 

session, we explored the speed control methods for separately excited and shunt excited DC 

motors. Today, we will briefly review those concepts and then move forward with our 

discussion.  
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This is the speed-torque characteristic of a separately excited DC motor. The speed, denoted 

by ωm, is given by the equation: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉
𝑘𝑘𝜙𝜙

−
𝑅𝑅𝑇𝑇
𝑘𝑘𝜙𝜙2 

where V is the terminal voltage, φ is the field flux, R is the armature resistance, and T is the 

torque. This characteristic forms a straight line, as we discussed in the last lecture. 

We explored various methods for controlling speed, starting with armature resistance control, 

where we adjust the value of R. When we change R, the slope of the speed-torque characteristic 



shifts, allowing us to control the speed of the motor. 

Initially, the characteristic corresponds to a resistance value R1, and the intersection of this 

characteristic with the load torque Tl determines the operating point. This intersection gives us 

the first operating speed ωm1.  

When we increase the resistance to R2, the characteristic shifts, and the new intersection point 

corresponds to a reduced speed ωm2. Increasing the resistance further to R3 moves the operating 

point again, yielding an even lower speed ωm3, and similarly for R4, where the speed decreases 

to ωm4. 

This method effectively reduces the speed, but it comes at a cost. Since the armature carries 

the full current, inserting resistance leads to significant I2 R losses, making this method less 

efficient. While it is simple to implement, requiring only a rheostat in the armature circuit to 

vary the resistance and control the speed, the energy loss makes it an inefficient approach. 

The issue with the armature resistance control method is that as the resistance R increases, the 

I2 R losses also increase, leading to inefficiency. To address this, we turn to a more efficient 

method: armature voltage control. 

In this second method, the speed-torque characteristic remains the same, but instead of varying 

the resistance, we control the applied voltage V. The armature resistance is kept constant at its 

minimum value, and we do not change it. 

Here’s how it works: we change the applied voltage V while keeping the armature resistance 

fixed. Recall that in a separately excited motor, the field is excited independently, and we apply 

a constant DC voltage to maintain the field current If almost constant. The field resistance is 

also fixed, meaning If remains steady. 

With the field current held constant, the armature circuit's resistance is left untouched, and we 

focus on varying the applied voltage V. This variation in voltage directly affects the armature 

current Ia. As we adjust V, the no-load speed, which is given by 𝑉𝑉
𝑘𝑘𝜙𝜙

, changes accordingly, where 

k φ represents a constant value since the flux φ remains unchanged. Since the resistance is kept 

constant, only the applied voltage alters the motor's speed. 

Thus, by controlling V, we effectively adjust the motor's speed without the inefficiencies 

caused by increasing resistance, making this a more energy-efficient method of speed control. 



When we change the voltage V, the no-load speed ωm0 adjusts accordingly. Initially, at voltage 

V1, the no-load speed is ωm01. As we decrease the voltage to V2, while keeping the slope 

constant, the no-load speed drops to ωm02. A further reduction in voltage to V3 results in a new 

speed, ωm03. When we continue lowering the voltage to V4, the speed becomes ωm04. 

As the voltage is decreased from V1 to V2, and subsequently to V3 and V4, the motor speed 

reduces correspondingly. The key point here is that the slope of the speed-torque characteristic 

remains unchanged, but the no-load speed shifts. The intersection of the motor characteristic 

with the load torque characteristic Tl determines the operating point.  

For V1, the operating speed is ω1, and as we reduce the voltage to V2, the speed drops to ω2. 

With further voltage reductions to V3 and V4, the speed declines to ω3 and then to ω4, 

respectively. This is how we manage the motor’s speed by controlling the applied voltage. 

Unlike the armature resistance control method, in this case, the armature resistance remains at 

its minimum value, making it a more efficient approach since we avoid the I2 R losses 

associated with resistance control. However, to vary the voltage V, we need access to a variable 

DC voltage source, which we will discuss later. 

Now, what happens if we vary the field flux φ? This is something we will explore next.  
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The third method of speed control is through field control, also known as field current control. 

In this approach, we focus on controlling the field current, which directly influences the 



magnetic flux φ of the motor. Imagine we have a separately excited motor with the armature 

connected to a voltage source V, and the field winding with resistance Rf also connected to the 

same voltage source.  

The key equation for the motor’s torque-speed characteristic is given by: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉
𝑘𝑘𝜙𝜙

−
𝑇𝑇𝑅𝑅
𝑘𝑘𝜙𝜙2 

In this method, by adjusting the field current, we change the flux φ. This results in both the no-

load speed and the slope of the characteristic being affected simultaneously. 

Let’s plot the speed-torque characteristic with speed ωm on the y-axis and torque T on the x-

axis. Suppose we have the curve for a given flux φ1. Now, as we reduce the flux, the no-load 

speed increases, and the slope becomes steeper. This gives us a new profile for the 

characteristic at a lower flux φ2. If we further reduce the flux to φ3, we get yet another profile, 

with a higher no-load speed. 

So, for each reduction in flux, we observe corresponding increases in the no-load speeds, ωm01, 

ωm02, ωm03, and so on. This method of speed control is particularly useful for achieving speeds 

higher than the motor’s rated speed, making it ideal for applications requiring operation beyond 

rated conditions. 

Here, the fluxes are ordered as φ1 > φ2 > φ3, meaning that as we decrease the field current and 

thereby reduce the flux, the motor speed increases. This control method is specifically applied 

for higher-speed operations.  

If we consider a constant load torque profile, the intersection points between the motor's speed-

torque characteristic and the load torque curve determine the operating speeds. For instance, at 

φ1, the operating speed is ωm1, while at φ2, the speed rises to ωm2. When the flux is reduced 

further to φ3, the speed increases to ωm3.  

Thus, by controlling the field, we achieve higher speeds in shunt or separately excited motors. 

Now, let's move on to examine how we can control the speed of a series motor. 

Now, let’s consider the operation of a series motor. In this type of motor, the field winding is 

connected in series with the armature winding. So, when we apply a voltage across the motor 



terminals, the same current Ia flows through both the armature and the field winding. The total 

resistance of the circuit, denoted by R, is the sum of the armature resistance and the field 

resistance: 

𝑅𝑅 = 𝑅𝑅armature + 𝑅𝑅field 
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The back EMF E appears across the armature, and the voltage equation for the series motor can 

be written as: 

𝑉𝑉 = 𝐸𝐸 + 𝐼𝐼𝑎𝑎𝑅𝑅 

Now, the back EMF E is proportional to the product of the flux φ and the motor speed ωm. 

Specifically, we can express the back EMF as: 

𝐸𝐸 = 𝑘𝑘𝜙𝜙𝜔𝜔𝑚𝑚 

Here, φ is the magnetic flux, and in a series motor, the flux is generated by the series field 

winding. Since the same current Ia flows through both the armature and the field, the flux is 

directly related to the armature current. Therefore, the flux φ in this motor is a function of the 

field current, which is the same as the armature current Ia: 

𝜙𝜙 = 𝑘𝑘𝑓𝑓𝐼𝐼𝑎𝑎 

Where kf is a constant representing the relationship between the current and the flux in the 



magnetic circuit. It’s important to note that this relationship assumes magnetic linearity, 

meaning the magnetic circuit behaves linearly with respect to the current. Under this 

assumption, as we vary the armature (or field) current, the flux changes proportionally. 

So, in a series motor, the field flux φ increases or decreases in direct proportion to the armature 

current, which affects both the torque and speed of the motor accordingly. 

Now, let's apply this to the torque equation. We know that torque T is given by the product of 

flux φ and armature current Ia. Mathematically, this is expressed as: 

𝑇𝑇 = 𝑘𝑘𝜙𝜙𝐼𝐼𝑎𝑎 

Since in a series motor the flux φ is directly proportional to the armature current Ia, we can 

substitute φ = kf Ia, giving us: 

𝑇𝑇 = 𝑘𝑘𝑘𝑘𝑓𝑓𝐼𝐼𝑎𝑎2 

This means that in a series motor, the torque is proportional to the square of the armature 

current. So, as the current increases, the torque increases quadratically. In other words, 

doubling the current will quadruple the torque, which makes the series motor ideal for high-

torque applications. 

Now, let's derive the motor's speed as a function of torque. We already have the following key 

equations: 

1. E = V - Ia R (voltage equation for the series motor, where E is the back EMF) 

2. 𝐸𝐸 = 𝑘𝑘𝜙𝜙𝜔𝜔𝑚𝑚 = 𝑘𝑘𝑘𝑘𝑓𝑓𝐼𝐼𝑎𝑎𝜔𝜔𝑚𝑚 

Substituting the expression for E into the voltage equation, we get: 

𝑘𝑘𝑘𝑘𝑓𝑓𝐼𝐼𝑎𝑎𝜔𝜔𝑚𝑚 = 𝑉𝑉 − 𝐼𝐼𝑎𝑎𝑅𝑅 

From this, we can solve for the motor speed ωm: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

𝑘𝑘𝑘𝑘𝑓𝑓𝐼𝐼𝑎𝑎
−

𝑅𝑅
𝑘𝑘𝑘𝑘𝑓𝑓

 

This equation relates the speed ωm with the armature current Ia. However, we are ultimately 



interested in expressing speed as a function of torque. Using the torque equation: 

𝑇𝑇 = 𝑘𝑘𝑘𝑘𝑓𝑓𝐼𝐼𝑎𝑎2 

We can solve for Ia in terms of torque: 

𝐼𝐼𝑎𝑎 = �
𝑇𝑇
𝑘𝑘𝑘𝑘𝑓𝑓

 

Now, substituting this expression for Ia into the speed equation, we get: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

𝑘𝑘𝑘𝑘𝑓𝑓�
𝑇𝑇
𝑘𝑘𝑘𝑘𝑓𝑓

−
𝑅𝑅
𝑘𝑘𝑘𝑘𝑓𝑓

 

This equation now expresses the speed of the series motor as a function of the torque. It shows 

that as the torque increases, the speed decreases, reflecting the typical behavior of a series 

motor, which delivers high torque at low speeds. 
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By substituting the value of Ia from equation (4) into equation (5), we get the expression for 

motor speed ωm as: 



𝜔𝜔𝑚𝑚 =
𝑉𝑉

𝑘𝑘𝑘𝑘𝑓𝑓√𝑇𝑇
−

𝑅𝑅
𝑘𝑘𝑘𝑘𝑓𝑓

 

Let’s break this down. In the previous step, we replaced Ia with �
𝑇𝑇
𝑘𝑘𝑘𝑘𝑓𝑓

, so when we substituted 

this into the equation, some terms canceled out, and the final form of the equation becomes: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

�𝑘𝑘𝑘𝑘𝑓𝑓 ⋅ √𝑇𝑇
−

𝑅𝑅
𝑘𝑘𝑘𝑘𝑓𝑓

 

This equation shows the relationship between the speed ωm and the torque T for a series motor. 

Now, let’s visualize this by plotting the speed-torque characteristic, where torque T is on the 

x-axis, and speed ωm is on the y-axis. 

At zero torque (i.e., when T = 0), if we substitute T = 0 into the equation, the first term 𝑉𝑉

�𝑘𝑘𝑘𝑘𝑓𝑓⋅√𝑇𝑇
 

approaches infinity, which indicates that the no-load speed is theoretically infinite. This means 

that when no torque is required, the motor can run at very high speeds, which is a characteristic 

of series motors. 

The form of the equation can be rewritten as: 

𝜔𝜔𝑚𝑚 =
𝐴𝐴
√𝑇𝑇

+ 𝐵𝐵 

Where 𝐴𝐴 = 𝑉𝑉

�𝑘𝑘𝑘𝑘𝑓𝑓
 and 𝐵𝐵 = − 𝑅𝑅

𝑘𝑘𝑘𝑘𝑓𝑓
, with B being a negative constant. This implies that as torque 

increases from zero, the motor speed decreases. When torque is initially zero, the speed is very 

high (infinity). As the torque increases, the speed drops steadily. Eventually, when the two 

terms in the equation become equal (i.e., when the torque is large enough), the speed 

approaches zero. 

So, in summary, we arrive at the torque-speed characteristic of a series motor. It is quite 

fascinating to note that at T = 0, the speed theoretically approaches infinity. This presents a 

critical point: a series motor should never be started under no-load conditions. When the torque 

is zero, the speed could reach dangerously high levels, potentially causing severe damage to 

the mechanical components due to the immense centrifugal forces generated. 

Hence, it is imperative to avoid starting a series motor without any load attached. This brings 



us to the discussion of the speed-torque characteristic. Now, how do we vary the speed? We 

can achieve this by controlling both the armature voltage and the armature resistance. Let's first 

focus on armature resistance control.  

Recall the equation: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

�𝑘𝑘𝑓𝑓𝑘𝑘
√𝑇𝑇 −

𝑅𝑅
𝑘𝑘𝑓𝑓

 

In this context, we are attempting to change the resistance R. As we adjust R, we need to 

consider how the characteristic curve is affected. Torque is plotted on the x-axis, while speed 

is on the y-axis. Let's visualize the original characteristic curve, which intersects the x-axis at 

a certain point corresponding to R = R1. 

Now, if we increase the resistance, say to R = R2, the second term becomes a negative quantity 

that subtracts from the first term. This means that for the same voltage and torque values, the 

resulting speed decreases. In other words, a higher resistance leads to a reduced speed. As a 

result, the new characteristic curve will appear somewhat like this, shifting downwards from 

the original profile for R = R1 to a new profile for R = R2. 

If we further reduce the resistance, making it R = R3, the characteristic will shift again, this 

time moving towards the left. This illustrates how decreasing the resistance continues to affect 

the speed-torque relationship of the series motor, providing a clear demonstration of the impact 

of armature resistance control on motor performance. 

As we continue to increase the resistance, the profile continues to shift in this manner. For 

example, this curve corresponds to R = R3, and the next one corresponds to R = R4, where the 

resistances follow the order R1 < R2 < R3 < R4. So, as we progressively increase the resistance 

R, we naturally achieve speed control.  

Now, if we consider a load torque profile like this, the speed is determined by the intersection 

of the load profile and the motor characteristic. Initially, we have a speed value ωm1. As the 

resistance increases to R2, the speed reduces to ωm2. With further increase to R3, the speed 

decreases to ωm3, and finally, for R4, we obtain ωm4. This demonstrates how speed control is 

achieved as resistance is varied.  

This method is relatively straightforward, as you can simply place a rheostat in the armature 



circuit, adjust it, and the motor speed will change accordingly. However, the major drawback 

of this approach remains the same as before, there is a significant increase in I2 R losses as 

resistance increases. This inefficiency makes it less desirable. 

Now, let's move on to another method: the applied voltage control, or more specifically, the 

terminal voltage control. 
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Let’s delve into the details regarding the speed-torque characteristics of the motor. The 

relationship can be expressed as  

𝜔𝜔𝑚𝑚 =
𝑉𝑉

�𝑘𝑘𝑘𝑘𝑓𝑓
√𝑇𝑇 −

𝑅𝑅
�𝑘𝑘𝑘𝑘𝑓𝑓

. 

In this scenario, we focus on changing the voltage V while keeping the resistance R constant. 

When we adjust the voltage, we observe the impact on the motor speed. The speed ωm is plotted 

on the y-axis, and the torque is represented on the x-axis. 

Now, let's consider the profile for an initial voltage V1. If we increase the voltage to V2, the no-

load speed will change accordingly. Conversely, if we decrease the voltage, the speed will also 

decrease. Thus, as the voltage changes from V1 to V2 and then to V3, where V1 > V2 > V3, we 

can visualize the corresponding characteristics for these voltages.  

For a constant load torque profile Tl, the speed is determined by the intersection of this load 



with the motor characteristic. This intersection corresponds to the initial speed ωm1. If we 

decrease the voltage to V2, the speed adjusts to ωm2, and further reduction to V3 yields ωm3. 

This illustrates how we can control the motor speed by managing the terminal voltage V. 

Next, we move to the third method of control, known as field control. The equation remains 

the same: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

�𝑘𝑘𝑘𝑘𝑓𝑓
√𝑇𝑇 −

𝑅𝑅
�𝑘𝑘𝑘𝑘𝑓𝑓

. 

So, what does field control entail? In this configuration, the field winding is connected in series 

with the armature. By implementing field control, we utilize a diverter resistance to effectively 

reduce the field current. This means we connect a resistance in parallel with the field winding, 

thereby decreasing the field current flowing through it. This approach is essential for 

controlling the motor's performance while optimizing its efficiency. 
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When we introduce a diverter resistance into the circuit, the effective field current is 

diminished. This happens because the diverter resistance draws some current away from the 

field winding, resulting in a decrease in the current flowing through it. Consequently, this 

reduction in current leads to a decrease in the magnetic flux generated by the field winding. 

Thus, field control emerges as an effective method for regulating the motor's speed. We will 

discuss this topic and explore its implications in our next lecture. 


