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Hello and welcome to this lecture on the fundamentals of electric drives! In our previous session, 

we explored the concept of traction drives and examined the speed-time curve of a locomotive as 

it travels from one station to another. Today, we will build upon that knowledge by deriving 

expressions for both the distance covered and the drive rating of a locomotive during its journey. 

So, let’s take a closer look at our speed-time curve, which will serve as a foundation for our 

calculations. 
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We have defined several key phases in our analysis: constant torque, constant power, free running, 

coasting, and braking. To better understand the relationship between speed and time, we will 

approximate the speed-time curve as a trapezoid. Let’s label the various sections of this trapezoidal 

curve as A, B, C, and D. 



To illustrate this, we can drop perpendicular lines from the curve to the time axis, labeling these 

points E and F. This gives us a clear representation of the speed-time curve. Here, we denote α as 

the acceleration, measured in kilometers per hour per second. In this context, we have a constant 

acceleration represented by the value α. 

We also need to consider the deceleration during the braking phase, which we will denote as β, 

also in kilometers per hour per second. For reference, we define the time intervals as follows: t1 

corresponds to the time from point A to point B, t2 is the duration of constant speed, and t3 

represents the braking period. The total time of travel is denoted by T. 

To find the distance traveled, we must calculate the area under the curve. This area corresponds to 

the distance. The angle associated with this trapezoid represents the acceleration. We can express 

t1 as the time required to reach maximum speed Vm, which is measured in kilometers per hour. 

Thus, we can determine that: 

𝑡𝑡1 =
𝑉𝑉𝑚𝑚
𝛼𝛼

 

This gives us the time taken to accelerate from A to E. Similarly, for the braking phase, t3 is defined 

as the time taken to decelerate from Vm to a stop: 

𝑡𝑡3 =
𝑉𝑉𝑚𝑚
𝛽𝛽

 

The area D under the trapezoidal curve can be expressed as: 

𝐷𝐷 =
𝑉𝑉𝑚𝑚
2

(𝑡𝑡1 + 𝑡𝑡2 + 𝑡𝑡3) 

To simplify this expression, we factor out 𝑉𝑉𝑚𝑚
2

: 

𝐷𝐷 =
𝑉𝑉𝑚𝑚
2

(𝑡𝑡1 + 2𝑡𝑡2 + 𝑡𝑡3) =
𝑉𝑉𝑚𝑚
2

(2𝑇𝑇 − 𝑡𝑡1 + 𝑡𝑡3) 

Next, we can substitute the values of t1 and t3 into this equation: 



𝐷𝐷 =
𝑉𝑉𝑚𝑚
2 �2𝑇𝑇 −

𝑉𝑉𝑚𝑚
𝛼𝛼

+
𝑉𝑉𝑚𝑚
𝛽𝛽 �

 

This allows us to further simplify our calculation of the distance covered during the locomotive’s 

journey. 
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The expression we have derived for the distance traveled is given by: 

𝐷𝐷 =
𝑉𝑉𝑚𝑚

7200 �
2𝑇𝑇 −

𝑉𝑉𝑚𝑚
𝛼𝛼

+
𝑉𝑉𝑚𝑚
𝛽𝛽 �

 

In this formula, Vm is measured in kilometers per hour, and since we are working with time in 

seconds, we need to convert Vm to kilometers by dividing by 3600. This conversion ensures that 

our final expression accurately represents the distance in kilometers. Thus, the factor of 1
3600

 is 

applied to our calculations, leading us to the simplified form in kilometers. 

It's important to note that t1, t2, and T are all expressed in seconds, while the acceleration values α 

and β are in kilometers per hour per second. Therefore, when we seek to determine the distance 

covered between the two stops, we arrive at the final expression: 



𝐷𝐷 =
𝑉𝑉𝑚𝑚

7200 �
2𝑇𝑇 −

𝑉𝑉𝑚𝑚
𝛼𝛼

+
𝑉𝑉𝑚𝑚
𝛽𝛽 �

 (in kilometers) 

Next, we must address the concept of drive rating, which requires us to calculate the tractive effort. 

As the train moves, several components contribute to the overall tractive effort. In a steady state, 

these include train resistance, frictional forces, internal friction, external friction, and wind 

resistance. However, we also need to consider the situation when the train is accelerating. The train 

does not simply maintain a constant speed; it accelerates from a standstill to its maximum velocity.  

So, let's discuss the tractive effort required when the train is accelerating from zero speed to a 

certain speed. Understanding these dynamics will help us accurately calculate the necessary 

tractive effort during acceleration. 

Let’s discuss the tractive effort and drive rating in detail. The tractive effort must accomplish 

several critical functions. First and foremost, it needs to accelerate the train's mass horizontally—

that is, it has to enable the train to move forward. Additionally, the tractive effort must also 

accelerate the rotating masses, which include components such as the wheels, gears, and motor 

rotors. 

Furthermore, when the train is traversing a gradient, the tractive effort must be sufficient to 

overcome the gravitational force. This means it must counteract the effects of gravity when the 

train is moving uphill or downhill. Lastly, the tractive effort must also be capable of overcoming 

train resistance, which can stem from various factors including friction and air resistance. 

To quantify these functions, we can denote the different components of tractive effort as follows:  

• To accelerate the train horizontally, we will call the tractive effort Fa1.  

• To accelerate the rotating masses such as wheels, gears, axles, and motor rotors, we will 

refer to this as Fa2.  

• The tractive effort required to overcome the gravitational force will be represented as Fg.  

• Lastly, the force needed to counteract train resistance will be labeled Fr. 

So, the total tractive effort can be expressed as: 



Tractive Effort = 𝐹𝐹𝑎𝑎1 + 𝐹𝐹𝑎𝑎2 + 𝐹𝐹𝑔𝑔 + 𝐹𝐹𝑟𝑟 

Now, let’s take a closer look at each of these components to evaluate their contributions to the 

overall tractive effort required for efficient train operation. 

(Refer Slide Time: 13:12) 

 

To begin with, we need to evaluate the tractive effort required to accelerate the train's mass 

horizontally. The expression for this tractive effort can be given as: 

𝐹𝐹𝑎𝑎1 = 1000 × 𝑀𝑀 × 𝛼𝛼 ×
1000
3600

 

where Fa1 is expressed in Newtons (N). Here, M represents the mass of the locomotive in tonnes, 

and since 1 tonne equals 1000 kg, we multiply by 1000 to convert it. The variable α denotes the 

acceleration, measured in kilometres per hour per second. 

To convert this acceleration into metres per second squared, we must convert kilometres into 

metres by multiplying by 1000, and we need to convert hours into seconds by multiplying the hour 

component by 3600. Therefore, we can simplify Fa1 to: 

𝐹𝐹𝑎𝑎1 = 277.8 × 𝑀𝑀 × 



with the unit being Newtons (N). 

Next, we need to consider the tractive effort required to accelerate the rotating parts of the train. 

The primary rotating parts include the wheels and the motors. For our calculations, we will neglect 

the moment of inertia of the axles, as this can be effectively combined with that of the wheels. 

Let’s denote Nx as the number of axles, with each axle supporting two wheels. Thus, the total 

number of wheels is 2 × 𝑁𝑁𝑥𝑥. When discussing the driving motors, we denote the number of driving 

motors as N. 

Now, each motor drives its corresponding wheel via an axle. In our configuration, we have two 

gears: one on the motor side and another on the axle side. We can denote the number of teeth on 

the motor side gear as n1 and on the axle side gear as n2.  

The gear ratio a is defined as: 

𝑎𝑎 =
𝑛𝑛1
𝑛𝑛2

 

This ratio indicates that the wheel speed is the same as the axle speed, as the wheel is directly 

connected to the axle. However, since the motor is not directly connected to the wheel but rather 

to the axle via a fixed gear, we can express the relationship between the wheel speed and motor 

speed accordingly. 

Lastly, let R be the radius of the wheel, expressed in metres. Each wheel has its own radius, which 

plays a crucial role in the overall dynamics of the tractive effort. This radius R is an essential 

parameter in our calculations, as it influences the torque transmitted from the motor to the wheels.  

Let’s discuss the details of the moments of inertia involved in our system. First, we denote Jw as 

the moment of inertia of a single wheel, while Jm represents the moment of inertia of a single 

motor, specifically the rotor of the motor.  

To calculate the total moment of inertia for all the wheels, we start with Nx, the number of axles. 

Since each axle has two wheels, the total number of wheels becomes 2 × 𝑁𝑁𝑥𝑥. Consequently, the 

total moment of inertia of all wheels can be expressed as: 



𝐽𝐽1 = 2 × 𝑁𝑁𝑥𝑥 × 𝐽𝐽𝑤𝑤 

Now, moving on to the total moment of inertia of all motors, we have: 

𝐽𝐽2 = 𝑁𝑁 × 𝐽𝐽𝑚𝑚 

where N is the total number of motors, and Jm is the moment of inertia of a single motor.  
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Next, we need to refer the moment of inertia of the motors to the wheels because the motors are 

positioned before the wheels in the drive system, connected through gears. To convert this inertia 

Jm to the wheel side, we apply the gear ratio. Thus, the referred moment of inertia of the motors to 

the wheel side can be expressed as: 

𝐽𝐽𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐽𝐽𝑚𝑚
𝑎𝑎2

 

where a is the gear ratio, defined as the number of teeth on the motor side gear to the number of 

teeth on the axle side gear. 

Now, the total moment of inertia of the motors referred to the wheels becomes: 



𝐽𝐽2 = 𝑁𝑁 ×
𝐽𝐽𝑚𝑚
𝑎𝑎2

 

In our calculations, we are effectively referring all variables to the wheel side, establishing J1 and 

J2 as our moments of inertia for wheels and motors, respectively. 

Lastly, we need to consider the acceleration in our calculations. While we have been discussing 

acceleration in kilometres per hour per second, to convert this into metres per second squared, we 

apply the following conversion: 

Acceleration = 𝛼𝛼 ×
1000
3600

 

This conversion ensures that we maintain consistency in our units across the calculations. 

When considering the acceleration in a rotating system, it’s crucial to convert our linear 

acceleration into radians per second squared. This is done by dividing by the radius of the wheel, 

R, which is measured in meters. Thus, we establish that: 

Angular Acceleration =
𝛼𝛼 × 1000

3600
𝑅𝑅

 

Now, let's discuss the tractive effort required to drive or accelerate all the rotating parts. The total 

tractive effort for this purpose is given by the equation: 

𝐹𝐹𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐽𝐽1 + 𝐽𝐽2) × Angular Acceleration 

In our case, the angular acceleration can be expressed as: 

Angular Acceleration =
𝛼𝛼 × 1000

3600
𝑅𝑅

 

Thus, we can rewrite our tractive effort equation as: 

𝐹𝐹𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐽𝐽1 + 𝐽𝐽2) ×
𝛼𝛼

3.6𝑅𝑅
 



Now, let's consider the total acceleration. The total accelerating force Fa is the sum of the linear 

and rotational components: 

𝐹𝐹𝑎𝑎 = 𝐹𝐹𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐹𝐹𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 

The linear component is given by: 

𝐹𝐹𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 = 277.8 × 𝑀𝑀 × 𝛼𝛼. 

and the rotational component as previously derived: 

𝐹𝐹𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐽𝐽1 + 𝐽𝐽2) ×
𝛼𝛼

3.6𝑅𝑅
 

Combining these two forces, we arrive at: 

𝐹𝐹𝑎𝑎 = 277.8 × 𝑀𝑀 × 𝛼𝛼 + (𝐽𝐽1 + 𝐽𝐽2) ×
𝛼𝛼

3.6𝑅𝑅
 

This allows us to express the total force in a more compact form: 

𝐹𝐹𝑎𝑎 = 277.8 × 𝑀𝑀𝑒𝑒 × 𝛼𝛼. 

Where Me represents the effective mass of the train, calculated as: 

𝑀𝑀𝑒𝑒 = 𝑀𝑀 +
(𝐽𝐽1 + 𝐽𝐽2)

3.6𝑅𝑅
 

This effective mass takes into account both the linear acceleration and the angular acceleration of 

the rotating mass, resulting in a value that is typically about 10% higher than the actual mass of 

the train. Therefore, instead of using M, we should utilize Me, which accurately reflects the 

dynamics involved in both linear and angular acceleration. 

Lastly, we must consider the tractive effort required to overcome gradients in our calculations. 

The tractive effort required to overcome the force due to gravity is a critical consideration in 

locomotive performance. Typically, we define the gradient G in terms of elevation over a distance 

of 1,000 meters. This means that G represents the change in elevation across this specified distance. 



Imagine a track that is inclined, with our locomotive moving along it—either ascending or 

descending.  
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When the locomotive is moving uphill, the gravitational force acting on it can be expressed as Mg, 

where M is the mass of the locomotive. This mass has a component acting along the incline, which 

we can describe using the angle θ. Notably, this angle θ corresponds to the gradient, where we can 

define the gradient as the elevation over 1,000 meters. To find the gravitational force acting on the 

locomotive, we use the formula: 

𝐹𝐹𝑔𝑔 = 𝑀𝑀𝑀𝑀 ⋅ sin(𝜃𝜃) ≈
𝑀𝑀𝑀𝑀 ⋅ 𝐺𝐺
1000

 

This simplifies to: 

𝐹𝐹𝑔𝑔 = 9.81 𝑀𝑀 ⋅ 𝐺𝐺 (in Newtons) 

This expression captures the gravitational force acting on the locomotive, which can either be 

positive (for an uphill gradient) or negative (for a downhill gradient). 

Next, we must consider train resistance, which can be a complex factor to estimate. The resistance 

experienced by the train is generally expressed as a function of its speed V. Due to the intricacies 



involved in accurately assessing train resistance, we often rely on an approximate formula. We 

typically express train resistance as a function of the mass of the train, noting that it is significantly 

smaller in magnitude compared to the force required for acceleration. Thus, we approximate train 

resistance as approximately 20 Newtons per tonne.  

Consequently, we can express the train resistance R as: 

𝑅𝑅 ≈ 𝑟𝑟 ⋅ 𝑀𝑀 (in Newtons) 

where r represents the train resistance in Newtons per tonne of mass. 

Finally, to calculate the total tractive effort, we sum the accelerating effort, the force required to 

overcome the gradient, and the train resistance. Therefore, we arrive at the equation: 

Total Tractive Effort = Accelerating Effort + Gradient Force + Train Resistance 
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Substituting the expressions we’ve discussed, we get: 

Total Tractive Effort = 277.8 𝑀𝑀𝑒𝑒 ⋅ 𝛼𝛼 + 9.81 𝑀𝑀 ⋅ 𝐺𝐺 + 𝑟𝑟 ⋅ 𝑀𝑀 

This equation provides a comprehensive understanding of the total tractive effort exerted by the 

train, enabling it to overcome various forces and continue moving forward effectively, powered 



by the motor's efforts. 

To calculate the drive rating, we can proceed with the following steps. First, let's consider the 

torque at the wheel. The torque at the wheel can be expressed as: 

Torquewheel = 𝑅𝑅 × 𝐹𝐹𝑡𝑡 

where R is the radius of the wheel and Ft is the tractive force. Next, we can determine the torque 

at the motor, which is related to the torque at the wheel by the transmission efficiency (ηt). 

Therefore, the torque at the motor can be calculated using the formula: 

𝑇𝑇𝑚𝑚 =
Total Torque

Number of Motors
=
𝑅𝑅 ⋅ 𝐹𝐹𝑡𝑡
𝜂𝜂𝑡𝑡

 

Here, Tm is the torque per motor, and its unit is Newton meters. The transmission efficiency ηt 

accounts for any losses in the system. 

We previously discussed that the tractive effort is composed of several components: the effort to 

accelerate the train, the effort required to overcome the gradient, and the effort necessary to 

counteract train resistance. If we wish to determine the time taken to reach a certain speed, we 

must evaluate the tractive effort perceived by the train, which is represented by this essential 

expression. 

It is crucial to remember this expression and apply it appropriately in relevant contexts, as it plays 

a vital role in our calculations. 

In this lecture, we have covered how to calculate the distance traveled by the train, explored the 

various components of tractive effort, and finally evaluated the torque per motor, which is derived 

from the total torque divided by the number of motors. With that, we stop here for todays lecture 

and hopefully we have been able to touch upon the important topics in this course. So thank you 

very much. 


