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Steady State Stability, Load Equalization

Hello and welcome to this lecture on fundamental of electric drives. Today, we will be

discussing about the steady state stability of the drive system.
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We know that when a motor drives a load, the speed remains constant in steady-state operation,
meaning there is no acceleration, or mathematically, d;’—tm = 0. Picture a motor driving a load
via a mechanical shaft, which couples the motor to the load. The motor speed wm matches the
load speed, while the motor torque T is counteracted by the opposing load torque Ti. The total

moment of inertia of the entire system is denoted by J.

In the previous lecture, we discussed that for such a motor-load system, we can express the

dynamics with a fundamental equation of motion. The equation is written as:

dwy,
]7+TF+TL=T



Here, | d::—tm represents the inertial torque (proportional to angular acceleration), Tr is the

viscous friction or frictional torque, and T is the useful load torque. Together, these terms must

balance the motor torque T.

To simplify, we assume there is no friction, or we can combine the frictional torque into the

load torque Ti, which gives us the simplified version of the equation. Now, in steady state, since

dZ‘;—tm = 0, the inertial torque vanishes. This leads us to the steady-state condition:

TL:T

In other words, the load torque equals the motor torque when the system is in steady-state

equilibrium.

To determine the operating point of the motor-load system, we look at the speed-torque
characteristic curves. On a speed-torque plane, with om on the x-axis and torque T on the y-
axis, the operating point is found at the intersection of the motor's characteristic curve and the
load's characteristic curve. The motor will operate at the speed corresponding to this

intersection, with the corresponding torque as well.
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Now, the important question arises: Is this operating point stable or unstable? This is critical to
determine because a stable operating point means that if there are slight disturbances, the

system will return to equilibrium, while an unstable point would cause the system to deviate



further from equilibrium.

Next, let's explore how we can analyze and decide whether this intersection point is stable or

unstable.

Let's consider two examples to illustrate this concept. We have a graph with speed, om, on the
y-axis and torque, T, on the x-axis. In both cases, the motor's characteristic curve is represented
by T, and the load characteristic is represented by Ti. In the first example, the intersection of
the motor and load curves occurs at point A, and in the second example, the intersection is at

point B. These points, A and B, represent potential operating points of the system.

Now, our task is to determine which of these equilibrium points, A or B, is stable, and which
one is unstable. At both points, we have the condition T = Ti, meaning the motor torque matches
the load torque, indicating an equilibrium. However, we need to analyze how the system

behaves if we introduce a small disturbance around these points, specifically a change in speed.

Let's say we slightly increase the speed from its equilibrium value at one of these points, for
example, from point A. This disturbance in speed results in a change in torque. If we increase
the speed by a small amount, Aw,,,, we move from the initial speed wm1 to a new speed w,,,; +

Aw,,.

Now, examine the situation after this speed change. The motor torque T decreases, but the load
torque Ti remains higher than the motor torque, creating a situation where T < Ti. This

imbalance means that the load is exerting more torque than the motor can provide.

So, what happens in this situation is that the system exhibits a tendency for the speed to
decrease when disturbed because the load torque exceeds the motor torque. Since the motor
torque is insufficient to match the load, the load naturally slows the motor down, causing the
speed to drop. As the speed decreases, the system will eventually return to the original

equilibrium point.

Now, consider disturbing the speed in the opposite direction by the same amount, Aw,,, but
this time decreasing it. This brings us to a new equilibrium point at w,,,; — Aw,,. At this lower
speed, the motor torque is higher than the load torque, meaning the motor now exerts more
force than the load requires. As a result, the motor will accelerate the load, causing the speed
to increase. This behavior will continue until the speed stabilizes back at the original



equilibrium point.

Therefore, in this case, point A is a stable equilibrium point. Any disturbance, whether
increasing or decreasing the speed, will naturally bring the system back to this point, making
it stable.

Now, let’s analyze point B. Here, we again observe the intersection of the motor and load
characteristics at an equilibrium point. Initially, the system operates at om2 and the
corresponding torque T2, with the motor torque matching the load torque. When we introduce
a disturbance by increasing the speed slightly by Aom, the new speed becomes w,,, + Aw,,.

At this increased speed, we find that the motor torque is greater than the load torque.

However, at this point, the motor will try to further accelerate the load because the motor torque
exceeds the load’s demand. This means the speed will continue to rise instead of stabilizing,
causing the system to move away from the equilibrium point. This behavior indicates that point
B is an unstable equilibrium point because any disturbance causes the system to deviate from

its original state.

Thus, while point A is a stable equilibrium point, point B is unstable due to the system's

tendency to move away from it when disturbed.

So, in this scenario, when the motor torque T is greater than the load torque Ti, the motor exerts
more power than the load requires. This imbalance causes the speed to keep increasing, leading
to what we call divergence. The system, therefore, moves away from the equilibrium, and the
speed will continuously rise, driving the system further from point B. This behavior shows that
point B is an unstable equilibrium point.

Now, consider what happens if we decrease the speed slightly by an amount Awm. The new
speed becomes wm2 - Aom, and in this case, the motor torque is less than the load torque. Since
the motor provides less torque than what the load demands, the speed will continue to drop. As
a result, the system will move away from point B, confirming that the operating point will

diverge further, reinforcing the conclusion that point B is unstable.

To summarize, we have two distinct scenarios. In the first case, the system reaches a stable
equilibrium point where any disturbance, whether an increase or decrease in speed, will bring

the system back to its original state. In the second case, the system reaches an unstable



equilibrium point, where any deviation causes the system to drift away from the equilibrium.

This observation means that not all motor and load combinations are stable. Some
combinations will lead to a stable system, while others will result in instability. We’ve just
explained and understood this behavior graphically, but can we also determine stability

mathematically?

Indeed, there is a mathematical rule for determining stability. The condition for stability is that

if dd% (the slope of the load torque curve) is greater than ddTT (the slope of the motor torque
m m

curve) at the equilibrium point, then the equilibrium point is stable. This condition serves as a

criterion for stability.

If the condition is satisfied, we classify the equilibrium point as stable. If the condition is not
met, we identify the equilibrium point as unstable. Now, let us proceed to prove this

mathematically.

(Refer Slide Time: 13:45)
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Let's examine the motor torque equation, which is represented by the load torque plus the

. . d .
inertial torque]%, ie.

dw

Now, let’s introduce a small perturbation, a slight disturbance to the system. This results in a



modified, perturbed equation, which reflects the change in system behavior. If we call the
original equation as equation (1) and the perturbed equation as equation (2), we can subtract
equation (1) from equation (2) to derive the small signal model.

When we perform this subtraction, we obtain the small signal equation:
d
AT = AT, +] = (Aw,,)

This equation captures the small changes, or perturbations, in motor torque AT, load torque
AT, and angular velocity Aom. This small signal equation plays a critical role in determining
the stability of the system.

Next, let’s analyze the changes in torque due to perturbations. We know that AT, the change in

motor torque, can be expressed as:

AT =——A
dw,y, @m

This represents the slope of the motor characteristic at the equilibrium point multiplied by the

small perturbation Aom. Similarly, for the load torque, we have:

dT,
ATl = W A(l)m
m

This represents the slope of the load characteristic at the equilibrium point. These equations

describe how small disturbances in speed affect the motor and load torques.

Now, let's substitute these expressions for AT and AT into our small signal equation. This gives

us.

ar AT
doo, 20m = g, A0m ] Gy (Bom

We can further simplify this equation by isolating the terms involving Awm:

d(A )_(dT dTl)A
Jge Bom) =G~ g ) A9m

Finally, we move everything to one side:



S g Bom) +\ g~ go ) A0m =

This is the simplified equation that we use to assess the stability of the system.

Now, this is a crucial equation, as it is a first-order differential equation with respect to
%(Awm). To solve this equation, we must consider its structure. The solution will take the

following form:

1/dT; dT
Aw,, = Awpyo (1 — exp (— - <— - —) t))

Here, Aomo represents the initial disturbance in speed, and this expression gives the evolution

of the speed disturbance over time.

Now, let’s analyze the meaning of this result. If we disturb the system by a small amount Awmo,
eventually, as time progresses, the disturbance should vanish, meaning the system will return

to its original equilibrium point. For that to happen, ast — oo, Amm must tend to zero.

In this case, for Aw,, = 0 ast — oo, the coefficient in the exponential must be positive. This

means the term dd% — ddTT should be positive. In other words:
dT; dT

-——>0
dw,, dw,

This condition ensures that the exponential term decays to zero over time. Thus, if the motor
speed is disturbed and left to stabilize, it will naturally return to the equilibrium pointast —

oo, provided this condition holds.

Additionally, since J, the moment of inertia, is always positive, the only requirement for

stability is that:

dT, dT
> _
dw, dwy

Therefore, we have mathematically proven that for the system to be stable, the slope of the load

torque curve j% must be greater than the slope of the motor torque curve ddTT.

m
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For steady-state stability, we can express the condition as A0 2T This means, at the

dwm Wm
equilibrium point, we must check whether this inequality holds. If it does, we can confidently
say that the operating point is stable. Conversely, if the condition is not satisfied, we know the

operating point is unstable.

In an unstable scenario, any small disturbance will cause the speed to diverge, meaning it won't
return to that equilibrium point. Therefore, it's essential to avoid unstable equilibrium points.
Our goal should always be to ensure that the motor and load torque combination remains stable.
Stability ensures that the system responds predictably and returns to equilibrium after any

disturbances.

Now, let’s move forward and discuss the concept of load equalization. What exactly do we
mean by load equalization? As we’ve seen, loads can vary in nature, whether it's a fan load, a
traction load, or a constant power load. But there are also special types of loads that are
pulsating in nature. These loads don't maintain a constant torque; instead, the load torque

fluctuates over time, increasing and decreasing periodically.

Take, for instance, a sugarcane juice-making machine. When the sugarcane is being pressed
through the machine, there’s a significant load torque applied. But when the sugarcane exits,
the load torque drops to zero, and this cycle repeats continuously. A similar situation occurs in

a steel rolling mill. As the ingot moves in and out of the rollers, the load torque pulses



accordingly, resulting in a fluctuating or pulsating load.

(Refer Slide Time: 22:23)
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To visualize this, imagine a load torque that oscillates over time. We can plot this on a graph,
where the load torque varies between a high value and a low value over time. On the y-axis,
we have the load torque, and on the x-axis, we have time. The torque reaches a high value, Th,
for a period tn, and then drops to a low value, Ti, for a period ti. This is a typical example of a

pulsating load torque.

Now, the important question arises: if we have such a pulsating load, how should we size the
motor? Should the motor be selected based on the high value of the load torque or the low
value? ldeally, the motor torque should be balanced somewhere between the high and low
values, allowing it to supply the load torque in a smooth and manageable way. Therefore, the
motor’s torque response should fluctuate in alignment with the varying load, ensuring it can
handle both the high and low points effectively.

The motor torque should neither be excessively high nor too low. We denote the motor torque
as T, and the load torque as Ti, with the motor torque fluctuating between a minimum value,
Tin, @and @ maximum value, T,,.«. In steady-state operation, the motor torque oscillates between

these two limits. But how do we achieve this controlled variation in torque?

We achieve this by connecting a flywheel to the motor-load system. Imagine a motor connected

to a load, and to stabilize the system, we attach a flywheel. Now, what exactly does the flywheel



do? Essentially, it acts as a load equalizer. Even though the load torque fluctuates significantly,
the motor torque variation is much less extreme because the flywheel absorbs and supplies the

differential torque.

In technical terms, the flywheel increases the system's effective inertia. With higher inertia, the
motor-load combination can handle larger variations in load torque. The total system inertia,
denoted as J, is now the combined inertia of both the motor and the flywheel. So, when we add
a flywheel, we need to carefully calculate its required inertia. The key question becomes: what

should the flywheel’s inertia be to achieve the desired values of T,,;, and T;,..?

To answer this, we can refer to the motor’s characteristic curve, which shows the relationship
between speed and torque. On a graph where speed mm is plotted on the y-axis and torque on
the x-axis, the motor’s behavior typically follows a drooping profile. Understanding this

behavior is crucial to determining the appropriate flywheel inertia.

With that, we wrap up this discussion, and we will continue from this in the next lecture.



