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Hello and welcome to this lecture on the fundamentals of electric drives! In our last session, 

we delved into the fascinating world of switched reluctance motors, and today, we'll be 

continuing from where we left off.  

We established that in a switched reluctance motor, the rotor features a slotted design, which 

plays a crucial role in its operation. Our primary focus is on the strategic switching of the stator 

current at positive 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

 to maximize torque. This approach is essential for achieving optimal 

performance from the motor. Let’s explore this concept further! 
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In our previous lecture, we explored the intriguing workings of a switched reluctance motor. 

Let’s recap what we discussed.  

We have a stator and a rotor; the rotor features a slotted design and notably does not contain 

any windings, while the stator is equipped with windings. For this particular example, we are 



examining an 8-pole stator, labeled as AA', BB', CC', and DD', paired with a 6-pole rotor, 

identified as poles 1 through 6. This setup serves as a valuable foundation for our understanding 

of the motor's operation and characteristics. 
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We have an 8-pole stator paired with a 6-pole rotor, and there are a few additional parameters 

we need to consider. In addition to these poles, we are given the tooth-to-tooth pitch, or more 

specifically, the ratio of pole arc to pole pitch, which is 0.4. This means that 40% of the pole 

pitch is occupied by the pole arc itself. 

To calculate the stator pitch, we find that it measures 45 degrees, since we have 8 stator poles. 

For the rotor, with its 6 poles, the rotor pole pitch is calculated as 360∘ / 6 = 60∘. As we 

mentioned, the stator pole arc takes up 40% of the pole pitch, which results in a stator pole arc 

of 45∘ × 0.4 = 18∘. Consequently, the stator slot arc is the remainder, giving us 45∘ - 18∘ = 

27∘. 

For the rotor, the pole arc is calculated as 60∘ × 0.4 = 24∘, while the rotor slot arc is 60∘ - 24∘ 

= 36∘.  

Now, let’s visualize this with a developed diagram. We can think of the motor as a cylindrical 

structure that we've "unwrapped" into a linear form. This development allows us to clearly 

distinguish the stator and rotor poles in a linear representation.  

In this diagram, we see that the stator pole arc is 18∘ and the stator slot arc is 27∘. Similarly, the 



rotor pole arc is 24∘ and the rotor slot arc is 36∘.  

As the rotor moves under the stator, it does so gradually and in a specific manner. The stator is 

equipped with windings, one of which is depicted here. As the rotor pole arc comes under the 

stator pole arc, the inductance of this winding will gradually increase due to the overlap. This 

overlap continues for 18∘ and then increases further until it reaches 24∘, which corresponds to 

the rotor pole arc. After this point, the trailing edge of the rotor will align with the leading edge 

of the stator, marking a critical moment in the motor's operation. 
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After that point, the inductance of the stator will gradually decrease. We can observe the 

variation of the inductance in the developed diagram here. The rotor is moving in this direction, 

and the inductance varies from a minimum value to a maximum value, which we can denote 

as 𝐿𝐿max. The inductance increases linearly up to 18∘, remains constant until 24∘, and then 

decreases until it reaches 42∘. Following this, it drops to a low minimum value up to 60∘. Since 

this is a repetitive waveform, the same pattern will repeat after 60∘. 

Now, if we plot 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

, the rate of change of inductance with respect to the rotor angle θ, we can 

see that from 0∘ to 18∘, the inductance remains constant. Between 18∘ and 24∘, the 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

 is constant 

as well. This is because, during this interval, the inductance is increasing, leading to a derivative 

of zero. 

Then, from 24∘ to 42∘, the inductance begins to decrease, which results in a negative derivative 



during this range. We can identify the intervals here: 6∘ from 24∘ to 30∘, another 6∘ from 30∘ to 

36∘, and continuing in 6∘ increments until we reach 60∘.  

The resulting graph of 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

 resembles a square wave with segments of zero value in between. 

Our objective here is clear: the currents should only flow during the positive 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

 intervals to 

maximize the torque. Thus, it's crucial to ensure that the switching occurs at the right times. 

This principle is fundamental to the operation of the switched reluctance motor. 
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In our switching circuit, we can visualize the winding inductance as follows: our goal is for the 

current to be present only during the intervals of positive 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

. When switch T is turned on, 

current begins to flow through the circuit, resulting in a positive voltage across the winding, 

specifically, V = +Vdc. However, when switch T is turned off, the diode conducts, allowing the 

current to continue flowing in this direction. 

As a result, on the other side of the circuit, the voltage becomes V = -Vdc. This setup illustrates 

the relationship between voltage and current effectively. If we integrate this voltage over time, 

we can derive the flux, which is dependent on the rotor angle, denoted as θ.  

Now, let's consider the current. The current is related to the flux linkage through the inductance, 

represented as 𝑁𝑁 ⋅ 𝜙𝜙 divided by the inductance L. Therefore, the current is also a function of 

the rotor angle θ. As θ increases, the flux will correspondingly increase, and as we continue to 



increase θ, the current will rise as well.  

However, it's essential to note that the current is inversely proportional to both the speed of the 

rotor and the inductance. This means that as the speed increases or as the inductance changes, 

we can expect variations in the current flowing through the system. 
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Let's examine how we switch the various voltages in our system. When we plot the variation 

of inductance against the rotor angle θ, we find that the graph resembles a trapezoidal signal. 

This inductance starts at zero, and our objective is to ensure that the current only exists during 

the rising phase of this inductance.  

Now, let's consider the flux. If we plot the flux, we observe that it increases linearly. This linear 

increase is due to the applied voltage, which is initially constant and then begins to decrease. 

The behavior of the current is closely related to this flux. The nature of the flux is such that, 

when we apply a positive voltage V (specifically, +Vdc), by closing the transistor switch, the 

situation changes when we open the switch, leading to a negative voltage of -Vdc. 

It is crucial to ensure that the current drops to zero before the trailing edge of the inductance 

occurs. Now, if we plot the current in this scenario, we see that the current behaves in a specific 

manner: it rises alongside the inductance. This rise occurs when the inductance is at its 

minimum, represented as Lmin, and peaks at Lmax.  

This relationship arises because the current is inversely proportional to the inductance. We can 



express this relationship mathematically as 𝐼𝐼 = 𝑁𝑁Φ
𝐿𝐿

. If we simplify this further, we find that I 

can be expressed as 𝑉𝑉𝑑𝑑𝑑𝑑𝜃𝜃
𝜔𝜔𝐿𝐿

. Thus, we see that when the inductance is very low, the applied voltage 

causes the current to rise to its maximum possible value. This illustrates how the dynamics of 

the inductance directly influence the current in the system. 

As the inductance begins to increase, we notice that the rise of the current, despite having a 

positive voltage applied, is somewhat restricted. This interplay involves various variables: the 

inductance, the flux, the applied voltage in the winding, and the current itself. The current's rise 

is impeded because the inductance is gradually increasing on this rising side. 

To manage this increase in inductance, we need to quench the current. We do this by applying 

a negative voltage, specifically -Vdc. As a result, the current will gradually decrease, ensuring 

that it drops to zero just before the onset of -𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

. This strategic switching allows us to maintain 

the current only during the positive 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

. 

This process repeats in every cycle, allowing us to maximize the current during the positive 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

, 

which in turn maximizes the torque. Now, if we look at the expression for torque, it can be 

represented as: 

Torque =
1
2
𝐼𝐼2
𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

. 

Since 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

 remains constant during the rising edge of the inductance, we can express it as 𝐾𝐾 ⋅ 𝐼𝐼2. 

Therefore, we can derive that: 

𝐼𝐼 = 𝐾𝐾
𝑉𝑉𝑑𝑑𝑑𝑑2 𝜃𝜃2

𝜔𝜔2 . 

Given that the current predominantly rises when the inductance is at its minimum, it approaches 

its peak just before the positive 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

 begins. This leads us to express the inductance as 𝐿𝐿 = 𝐿𝐿min, 

indicating that we are indeed considering the situation at or near Lmin. 

Furthermore, in this scenario, we can describe the current as: 

𝐼𝐼 =
𝑉𝑉𝑑𝑑𝑑𝑑𝜃𝜃0
𝜔𝜔𝐿𝐿min

. 



Here, θ0 represents the advanced angle, which signifies that we are applying the voltage θ0 in 

advance of the commencement of the positive 𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

. This technique is essential for optimizing the 

performance of the system. 

Before the inductance begins to rise, we apply the voltage Vdc prior to reaching the advanced 

angle, θ0. Now, let’s take a closer look at the expression for torque. At low speeds, we notice 

that the current rises very rapidly. In such cases, we need to impose limits on the current to 

avoid excessive levels, which is why the converter operates in chop mode. 

So, we have different modes of operation. During low-speed conditions, since ω is low, the 

current I can rise quickly. Therefore, to manage this rapid increase, the converter must be 

operated in chop mode to effectively limit the current. In this chop mode, the current rises 

swiftly but is contained within a specific band. This means that we repeatedly apply and remove 

the voltage, allowing the current to operate within this constrained range. 

Now, as the speed increases, the dynamics change. Observing the equation, we can see that the 

current does not continue to rise as quickly because the speed is increasing. To maintain a 

constant current as the speed escalates, we must increase the advanced angle θ0.  

At medium speeds, for instance, the advanced angle θ0 is carefully controlled to ensure that the 

current remains constant. This adjustment is vital, as keeping the current steady means that θ0 

must increase in tandem with ω. So, as the speed goes up, θ0 is also incrementally increased to 

maintain that constant current. 

However, it’s important to note that the power will also remain approximately constant in this 

scenario. To clarify, the power can be expressed as: 

Power = 𝑇𝑇 ⋅ 𝜔𝜔 ≈ 𝐾𝐾 ⋅ 𝑉𝑉𝑑𝑑2 ⋅
𝜃𝜃02

𝜔𝜔 ⋅ 𝐿𝐿min
. 

Thus, we conclude that the power stays approximately constant because we keep the current 

stable by appropriately increasing θ0. This careful coordination is essential for optimizing the 

performance of our system.  

We will be dividing our operating zone into several distinct regions, and these zones can be 

illustrated on a torque versus speed graph. In this representation, we designate a base speed, 

referred to as ωbase. During this phase, we maintain a constant current through chop mode. The 



graph includes not only the torque but also the current and the advanced angle θ0. 
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Initially, θ0 is kept constant while we operate in chop mode, which is specifically known as 

current chopping mode. As we progress, we gradually increase θ0 to maintain that constant 

current. What we observe here is that the current I remains steady, which in turn allows the 

product 𝑇𝑇 ⋅ 𝜔𝜔 to also stay constant. The power can be expressed as proportional to θ02. 

In this scenario, we essentially maintain constant power, which is also referred to as constant 

torque-speed operation. This phase is characterized by advanced angle control, where the 

advanced angle θ0 increases. However, it’s important to note that while the advanced angle is 

rising, the torque itself decreases.  

Once the advanced angle reaches its maximum permissible value, we then keep θ0 constant. 

Beyond this point, any further increase in the advanced angle will lead to a decline in both 

current and torque. This particular region is defined by the relationship 𝑇𝑇 ⋅ 𝜔𝜔2 = constant. 

So, the modes of operation of a switched reluctance motor reveal that initially, below the base 

speed, we maintain constant torque by operating in chop mode. As we subsequently increase 

the advanced angle, the torque decreases, yet the power remains constant. This behavior 

continues until we reach a certain threshold for θ0, at which point we must carefully manage 

the system to maintain optimal performance. 

We have reached the maximum possible advanced angle, denoted as 𝜃𝜃0max. Beyond this point, 



we cannot increase the advanced angle any further. If we maintain this constant advanced angle 

while simultaneously increasing the speed, we will observe a decrease in current. Since the 

current is decreasing, the power will also inevitably decline. Therefore, as we increase the 

speed, the power output decreases. 

In this scenario, we recognize that while 𝑇𝑇 ⋅ 𝜔𝜔2 remains constant, this principle is central to the 

operation of the switched reluctance motor. The converter plays a crucial role here, ensuring 

that the appropriate voltage is applied to the stator windings. By effectively controlling the 

converter, we can operate the motor in various modes, thereby allowing us to manage the torque 

of the switched reluctance motor with precision. 

As previously mentioned, this motor is particularly advantageous for space applications due to 

its rotor design, which does not incorporate any windings. Now, let us transition to an important 

category of drives that are utilized for traction applications. So, what do we mean by traction 

drives? Let's delve into the concept of traction drives and explore their significance. 
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Our next discussion will focus on traction drives. When we refer to traction drives, we primarily 

mean electric trains, which represent one significant category. Additionally, we include electric 

buses, trams, and trolleys in this classification. Electric trains are designed for higher power 

applications, typically operating in the megawatt range, with a typical rating of around 6,000 

horsepower or even more. 



In contrast, electric buses, trams, and trolleys cater to medium and low power applications. 

However, all these vehicles utilize traction motors, and their torque-speed characteristics 

exhibit similar patterns. Now, let’s delve into the drive features used in electric trains.  

Electric trains operate on fixed rails, and there are primarily two types of trains: mainline trains 

and suburban trains, which we often refer to as metro trains. Mainline trains are designed for 

long-distance travel, while suburban trains or metro trains are intended for shorter distances.  

Typically, long-distance trains do not experience frequent starts and stops; the number of stops 

is limited. Conversely, suburban or local trains, including metro trains, have multiple starts and 

stops along their routes. Consequently, we need to accelerate and decelerate suburban trains 

more frequently than we do with mainline trains.  

Let’s begin our discussion with mainline trains. In the case of mainline trains, we should 

examine the supply systems that power the electric motors. 

In electric locomotives, we can utilize overhead transmission lines to supply power, 

particularly for mainline trains. There are primarily two types of power sources for mainline 

trains: one is the overhead transmission line, and the other is a diesel generator found in diesel-

electric locomotives.  

The diesel generator operates on an internal combustion engine and generates electricity to 

power the electric motors. Ultimately, in all these locomotives, the driving force behind the 

wheels comes from electric motors. But why do we prefer electric motors? The answer lies in 

their ability to accelerate smoothly and provide seamless speed control. Unlike traditional 

mechanical systems, there are no gears to change, making operation much more 

straightforward. Electric motors also facilitate easy reversal of direction and allow for effective 

braking without any hassle. 

Now, when we compare the overhead transmission lines to diesel generators, it’s important to 

note the operational costs. Diesel generators typically have a high running cost due to fuel 

consumption, which means that this class of locomotive can be more expensive to operate over 

time. However, they often come with a lower capital cost since the initial investment in 

infrastructure is less. On the other hand, electric locomotives powered by overhead 

transmission lines generally have a lower running cost, although they require a higher initial 

capital investment due to the need to erect the transmission lines.  



Therefore, when deciding between electric locomotives and diesel-electric locomotives, we 

must weigh these factors carefully to determine which option best suits our needs. 


