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Hello and welcome to this lecture on the fundamentals of electric drives! In our previous 

session, we explored the salient pole synchronous motor and learned that it features two distinct 

synchronous reactances: one aligned along the direct axis and the other along the quadrature 

axis. Today, we will take the next step and draw the phasor diagram for the salient pole 

synchronous motor. Let’s dive in! 
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In this discussion, we are focusing on the two synchronous reactances present in the salient 

pole synchronous motor. We have the direct axis, denoted as Xsd, and the quadrature axis, 

represented as Xsq. To accurately illustrate this, we need to draw the phasor diagram for the 

salient pole synchronous motor. 

In this system, the field excitation generates flux in the direct axis, which we denote as Φf. 

Surrounding the rotor is a cylindrical stator, which houses the windings. As the field rotates at 



a certain speed, it induces an electromotive force (EMF) in the stator conductors, represented 

as E.  

With that background in mind, we can begin constructing the phasor diagram, starting with the 

direct axis. Let’s proceed! 
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We are now focusing on the axes of the field pole, which we represent using a pole structure. 

Here, we have the direct axis, or d axis, and perpendicular to it is the quadrature axis, denoted 

as the q axis.  

Next, let’s consider the stator current, represented as Is. The current and the magnetomotive 

force (MMF) are aligned in the same direction, where MMF is simply the product of the current 

and the number of turns in the winding. The stator current Is can be resolved into two 

components: one along the d axis and the other along the q axis. The component along the d 

axis is referred to as Isd, the direct axis stator current, while the component along the q axis is 

labeled Isq, the quadrature axis stator current. 

We also have the field current If directed along the d axis. This field current generates an 

induced EMF, denoted as E, which is the standard induced EMF we previously observed in 

cylindrical rotor machines. To calculate the total induced EMF E, we need to account for two 

voltage drops: one across the d axis reactance and another across the q axis reactance. 

Starting with the d axis, we identify the reactance drop as j Isd Xsd. Here, the reactance drop is 



at a right angle to the current Isd, which is directed as shown. Therefore, we include a j torque 

to represent this phase difference.  

Next, we consider the reactance drop along the q axis, represented as j Isq Xsq. Again, this 

reactance drop is perpendicular to the current Isq.  

To find the total voltage V, we combine these two phasors. Thus, the expression for voltage V 

becomes the vector sum of the induced EMF E, the d axis reactance drop j Isd Xsd, and the q 

axis reactance drop j Isq Xsq.  

In summary, the total voltage can be expressed as: 

𝑉𝑉 = 𝐸𝐸 + 𝑗𝑗𝐼𝐼𝑠𝑠𝑠𝑠𝑋𝑋𝑠𝑠𝑠𝑠 + 𝑗𝑗𝐼𝐼𝑠𝑠𝑠𝑠𝑋𝑋𝑠𝑠𝑠𝑠 

Since we are dealing with two distinct reactances, it is crucial to multiply each reactance by its 

corresponding current to obtain the total voltage V. 

Finally, the torque angle, defined as the angle between the induced EMF E and the terminal 

voltage V, is noteworthy. Additionally, the angle between the voltage V and the current is 

known as the power factor angle.  

This completes our phasor diagram! 

We can determine the input power, denoted as 𝑃𝑃input, using the equation: 

𝑃𝑃input = 3𝑉𝑉𝐼𝐼𝑠𝑠 cos 𝜃𝜃. 

In this context, we've disregarded losses, which allows us to equate this to the output power 

𝑃𝑃out, which is also equivalent to the mechanical power. Our next step is to express 𝐼𝐼𝑠𝑠 cos 𝜃𝜃, in 

a more usable form. The term 𝐼𝐼𝑠𝑠 cos 𝜃𝜃, represents the projection of Is along V and can be 

expressed in terms of the current components: 

𝐼𝐼𝑠𝑠 cos 𝜃𝜃 = 𝐼𝐼𝑠𝑠𝑠𝑠 cos 𝛿𝛿 + 𝐼𝐼𝑠𝑠𝑠𝑠 cos(90∘ + 𝛿𝛿) 

Since the angle between the d axis and the q axis is 90∘, we can simplify this further to: 

𝐼𝐼𝑠𝑠 cos𝜃𝜃 = 𝐼𝐼𝑠𝑠𝑠𝑠 cos 𝛿𝛿 − 𝐼𝐼𝑠𝑠𝑠𝑠 sin 𝛿𝛿. 

Now, let's find the expression for Isd. From our phasor diagram, Isd appears at a specific point, 



and we can derive its value by analyzing the voltage components. If we take the projection of 

the voltage along the q axis and subtract the induced EMF E from V, we obtain: 

𝐼𝐼𝑠𝑠𝑠𝑠𝑋𝑋𝑠𝑠𝑠𝑠 = 𝑉𝑉 cos 𝛿𝛿 − 𝐸𝐸 

Thus, we can express Isd as: 

𝐼𝐼𝑠𝑠𝑠𝑠 =
𝑉𝑉 cos 𝛿𝛿 − 𝐸𝐸

𝑋𝑋𝑠𝑠𝑠𝑠
 

Let's label this as Equation 1. Now, for Equation 2, we need to consider the Isq component. 

Similarly, we find the reactance drop for Isq: 

𝐼𝐼𝑠𝑠𝑠𝑠𝑋𝑋𝑠𝑠𝑠𝑠 = 𝑉𝑉 sin 𝛿𝛿, 

From this, we can express Isq as: 

𝐼𝐼𝑠𝑠𝑠𝑠 =
𝑉𝑉 sin 𝛿𝛿
𝑋𝑋𝑠𝑠𝑠𝑠

 

We’ll label this as Equation 3. Now that we have Equations 1, 2, and 3, we can substitute the 

values of Isd and Isq from Equations 2 and 3 into Equation 1.  

Substituting gives us: 

𝐼𝐼𝑠𝑠 cos𝜃𝜃 = 𝐼𝐼𝑠𝑠𝑠𝑠 cos 𝛿𝛿 − 𝐼𝐼𝑠𝑠𝑠𝑠 sin 𝛿𝛿, 

Replacing Isq and Isd yields: 

𝐼𝐼𝑠𝑠 cos𝜃𝜃 = �
𝑉𝑉 sin 𝛿𝛿
𝑋𝑋𝑠𝑠𝑠𝑠

� cos 𝛿𝛿 − �
𝑉𝑉 cos 𝛿𝛿 − 𝐸𝐸

𝑋𝑋𝑠𝑠𝑠𝑠
� sin 𝛿𝛿, 

We can now simplify this. The product of sin δ and cos δ can be expressed as: 

sin 𝛿𝛿 cos 𝛿𝛿 =
1
2

sin 2 𝛿𝛿, 

Substituting this back in allows us to condense the equation: 

𝐼𝐼𝑠𝑠 cos 𝜃𝜃 =
𝑉𝑉
𝑋𝑋𝑠𝑠𝑠𝑠

⋅
1
2

sin 2 𝛿𝛿 −
𝑉𝑉
𝑋𝑋𝑠𝑠𝑠𝑠

⋅
1
2

sin 2 𝛿𝛿 −
𝐸𝐸
𝑋𝑋𝑠𝑠𝑠𝑠

sin 𝛿𝛿, 



Thus, we arrive at a final expression for Is cos θ. Knowing the value of Is cos θ now enables us 

to compute the power output. The equation for the output power Pm is given by: 

𝑃𝑃𝑚𝑚 = 3𝑉𝑉𝐼𝐼𝑠𝑠 cos 𝜃𝜃, 

By substituting the derived expression for Is cos θ in terms of voltage, reactances, and δ, we 

can simplify and ultimately derive the desired power expression.  
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This expression can be formulated as: 

𝑃𝑃𝑚𝑚 = 3 ⋅ 𝑉𝑉𝐸𝐸 sin 𝛿𝛿 ⋅
1
𝑋𝑋𝑠𝑠𝑠𝑠

+
𝑉𝑉2 ⋅ �𝑋𝑋𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑠𝑠𝑠𝑠�
2𝑋𝑋𝑠𝑠𝑠𝑠𝑋𝑋𝑠𝑠𝑠𝑠 sin 2 𝛿𝛿

 

Let’s designate this as Equation 4. From Equation 4, once we multiply by V and simplify, we 

arrive at an equation that represents the power output for a salient pole synchronous motor. 

Knowing this power allows us to compute the torque, as torque is defined as power divided by 

speed. Here, the speed refers to the synchronous speed. 

Therefore, we can express the torque as: 

𝑇𝑇 =
𝑃𝑃𝑚𝑚
𝜔𝜔𝑚𝑚𝑚𝑚

 

Substituting Pm into the equation gives us: 



𝑇𝑇 =
3
𝜔𝜔𝑚𝑚𝑚𝑚

�𝑉𝑉𝐸𝐸 sin 𝛿𝛿 ⋅
1
𝑋𝑋𝑠𝑠𝑠𝑠

+
𝑉𝑉2�𝑋𝑋𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑠𝑠𝑠𝑠�
2𝑋𝑋𝑠𝑠𝑠𝑠𝑋𝑋𝑠𝑠𝑠𝑠 sin 2 𝛿𝛿

� 

In the context of a salient pole synchronous machine, we observe that torque T is a function of 

δ, specifically dependent on sin δ and sin 2δ. This is a result of the salient nature of the machine, 

leading to 𝑋𝑋𝑠𝑠𝑠𝑠 ≠ 𝑋𝑋𝑠𝑠𝑠𝑠. Consequently, the torque expression includes the term sin 2δ. 

The first term represents the torque associated with the field winding, commonly referred to as 

the synchronous motor or field torque. The second term is known as the reluctance torque. 

Notably, Xsd is greater than Xsq for a wound field synchronous machine, which results in a 

positive reluctance torque for the salient pole synchronous motor. 

Additionally, there exists a class of synchronous motors known as synchronous reluctance 

motors. In these machines, the field winding is removed, and they operate under the condition 

where the excitation EMF is zero. Now, let us delve into a discussion about synchronous 

reluctance motors. 
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In a synchronous reluctance motor, the field winding is absent, which means that the field 

current If is equal to zero, resulting in an induced EMF E that also equals zero. Let's denote this 

observation as Equation 5. By substituting E = 0 into our equations, the first term vanishes, 

leaving us with a new expression for torque in a synchronous reluctance machine. The torque 

T can then be expressed as: 



𝑇𝑇 =
3𝑉𝑉2

𝜔𝜔𝑚𝑚𝑚𝑚
⋅
𝑋𝑋𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑠𝑠𝑠𝑠
2𝑋𝑋𝑠𝑠𝑠𝑠𝑋𝑋𝑠𝑠𝑠𝑠

⋅ sin(2𝛿𝛿) 

Notably, the torque does not depend on the field, as the field has been removed and the field 

current is zero. Instead, this torque becomes a function of the applied stator voltage V2 and 

varies with sin(2δ. This phenomenon is quite intriguing, despite the absence of a field winding, 

the machine continues to develop torque. 

However, one significant disadvantage of a synchronous reluctance motor is that, since the 

field flux is zero, the armature must generate the flux. As a result, the power factor tends to be 

poor. While the motor can indeed produce torque, it operates at a notably low power factor. 

Having discussed the fundamental equations governing synchronous motors, both cylindrical 

and salient pole types, let's consider the implications of feeding these motors with a variable 

voltage and variable frequency supply. To achieve variable speed operation, we must alter the 

synchronous speed, which necessitates changing the supply frequency.  

Now, there are two types of variable speed synchronous motor drives: one is referred to as true 

synchronous mode, and the other is known as self-controlled mode. To achieve variable speed 

in a synchronous machine, the key option is to vary the frequency. In the true synchronous 

mode, the frequency is controlled independently, allowing us to adjust it without affecting other 

parameters. 
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On the other hand, in the self-controlled mode, the frequency is controlled as a function of the 

rotor speed. This means that the stator frequency is influenced by rotor position feedback. 

Typically, the drives operating in true synchronous mode are open-loop systems, lacking 

position feedback. In contrast, self-controlled mode drives operate as closed-loop systems, 

incorporating feedback mechanisms to enhance control and performance.  

Let’s delve into a scheme for the true synchronous mode, specifically focusing on the open-

loop drive system in this configuration. In this case, we employ what’s known as a V/f control 

drive in open-loop operation. To illustrate this, let’s draw a block diagram. 

At the outset, we have a reference frequency that can change independently. This reference 

frequency is fed into a delay block. Following this delay circuit, we have a Voltage Source 

Inverter (VSI) that supplies power to multiple synchronous motors, which we will denote as 

SM1, SM2, and SM3. The stator of each motor receives power from the VSI, forming a three-

phase system. 

To provide context, the DC link in this system is powered by a controlled rectifier. This DC 

link includes a DC link filter designed to eliminate ripple from the rectified output. The process 

begins with a three-phase AC input, which is rectified to produce a DC voltage, and 

subsequently, this DC voltage is converted back into an AC voltage using the inverter. 

Now, the frequency output from the delay circuit is fed directly into the VSI. Here, we also 

have a V/f function generator that produces a frequency output. This generator is crucial, as its 

output gives rise to the reference voltage, denoted as V*. Following this, a triggering circuit is 

employed, which provides the angle α necessary for controlling the VSI's switching voltage. 

In this system, the inverter output frequency is denoted as f. As we adjust the frequency, the 

voltage also changes accordingly, ensuring that the V/f ratio remains approximately constant. 

At higher frequencies, when operating at low speeds, we may need to introduce a resistor drop, 

similar to what is done in induction motor drives. 

This drive configuration allows for effective control under true synchronous mode. When we 

modify the reference frequency, the actual frequency changes after a brief delay, and 

simultaneously, the voltage is adjusted to maintain a nearly constant V/f ratio. For today’s 

lecture, we will conclude here. In our next session, we will continue our discussion on 

synchronous motor drives, exploring further nuances and applications. 


