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Analysis of Half Converter-fed Separately Excited DC Motor 

Hello and welcome to this lecture on the fundamentals of electric drives! In our last session, we 

discussed the half-controlled converter-fed DC motor drive, and today, we will continue our 

exploration of that topic. To start, let's take a closer look at the circuit diagram. 
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Now, let’s take a closer look at the circuit diagram of a half-controlled converter. In this 

configuration, we have two Silicon Controlled Rectifiers (SCRs) and a diode, which supply power 

to the armature of a DC machine, specifically a separately excited DC motor. The armature consists 

of resistance, inductance, and the back electromotive force (EMF), denoted as E.  

As we discussed previously, this setup can operate in two different modes: discontinuous current 

operation and continuous current operation. First, we'll focus on the discontinuous current 



operation that we covered in the last lecture.  

In this mode, we trigger the SCR, say T1, at an angle α during the positive half-cycle of the AC 

supply. When we trigger T1, it becomes forward-biased because the anode is positive, allowing it 

to conduct. Consequently, the current begins at zero and gradually increases.  

When the SCR is in conduction, the side connected to the SCR is positive, while the other side is 

negative. Both the SCR and the diode are forward-biased, enabling conduction through T1 and 

subsequently through the armature, with the current returning via the diode, which we’ll refer to 

as D1.  

During the conduction of SCR T1 and diode D1, the input supply voltage is effectively available at 

the armature, represented as Va. This constitutes the duty interval where we’ve triggered at angle 

α.  

The equation governing the armature voltage Va can be expressed as the sum of the resistance 

drop, the inductance drop, and the back EMF, which equals the supply voltage. Thus, we have: 

𝑉𝑉𝐴𝐴 = 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎 + 𝐿𝐿𝑎𝑎
𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑑𝑑

+ 𝐸𝐸 = 𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝑡𝑡) 

Here, Vm represents the peak voltage of the AC supply 𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝑡𝑡). This equation is a first-

order differential equation, which we are familiar with from our previous discussions. 

So, when we solve this equation, we obtain both the transient part and the steady-state part. The 

transient response is well-known, and it can be distinguished from the steady-state behavior. We 

must also consider the impedance Z of the armature circuit, which comprises both resistance and 

reactance. The angle θ represents the impedance angle or the power factor angle. 

Initially, the current starts from zero and increases until it reaches a specific value when ω t = π. 

We plot ω t on the X-axis, and at ω t = π, the current value is denoted as 𝐼𝐼𝑎𝑎𝜋𝜋. If we substitute this 

into Equation 1, we find that: 

𝐼𝐼𝑎𝑎𝜋𝜋 =
𝜔𝜔𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝜋𝜋 − 𝜃𝜃) −
𝐸𝐸
𝑅𝑅𝑎𝑎

+
𝐸𝐸
𝑅𝑅𝑎𝑎

−
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃) ⋅ 𝑒𝑒−(𝜋𝜋−𝛼𝛼) cot(𝜃𝜃) 



Here, θ is defined as tan−1 �𝜔𝜔𝐿𝐿
𝑅𝑅𝑎𝑎
�. 

From π onwards, this equation remains valid for the duty interval spanning from α to π. However, 

at ω t = π, the voltage attempts to go negative. This negative voltage scenario is prevented by the 

diodes; we have two diodes present, D2 and the SCR T2.  

As we move from π to β, the operation enters a freewheeling phase because we still have some 

inductive current flowing. This inductive current contains stored energy, which will flow through 

diodes D1 and D2.  

During this freewheeling interval, the output voltage Va becomes equal to zero. As a result, the 

current begins to decrease. The reason for this decrease is that the back EMF, which is equal to E, 

opposes the current. Consequently, the current experiences an exponential decay due to this 

opposing back EMF. 
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This is how the current decreases during what we refer to as the freewheeling interval. In this 

interval, we encounter a simplified equation. By substituting the value of the constant A, which 

we determine when we set ω t = π and Ia = Iaπ, we arrive at the final equation for the current during 

the freewheeling interval, which exhibits this specific behavior. 



At ω t = β, the current again reaches zero. This point corresponds to the angle β. By substituting 

this condition into our equation, we have: 

𝐼𝐼𝑎𝑎 = 0. 

This equation incorporates sine and exponential functions. We already have the expression for Iaπ 

provided in Equation 2, so we can substitute that value into our current equation. The result is a 

transcendental equation, specifically Equation 6, which consists of sine and exponential functions. 

It's important to note that this is not an algebraic equation. 

Consequently, we cannot derive a closed-form solution for β. Instead, we need to determine the 

point at which the current decreases to zero through iterative methods. Therefore, Equation 6 must 

be solved iteratively to find the value of β. 
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Now, let's examine the average voltage. We have seen in the voltage waveform that the back EMF, 

denoted as E, is present, while the armature voltage is represented as Va. Our goal is to determine 

the average armature voltage, Va.  

To calculate this, we need to integrate over two specific intervals: from α to π and then from β to 

π + α. It's important to note that the voltage is zero between π and β due to freewheeling occurring 



during this interval. Therefore, we don't need to include this section in our integration.  

The integration will effectively be performed from α to π and then from β to π + α. Mathematically, 

the average output voltage can be expressed as: 

𝑉𝑉avg = � 𝑉𝑉𝑚𝑚
𝜋𝜋

𝛼𝛼
sin(𝜔𝜔𝑡𝑡)  𝑑𝑑𝜔𝜔𝑡𝑡 + � 𝐸𝐸

𝜋𝜋+𝛼𝛼

𝛽𝛽
 𝑑𝑑𝜔𝜔𝑡𝑡. 

Upon solving this, we find that: 

𝑉𝑉avg =
1
𝜋𝜋

(𝑉𝑉𝑚𝑚 cos𝛼𝛼 + 1) + (back EMF term)(𝜋𝜋 + 𝛼𝛼 − 𝛽𝛽). 

This gives us the expression for the average armature voltage. We know that the armature circuit 

comprises resistance, inductance, and back EMF. Specifically, we have Ra, La, and E. 

With the average armature voltage Va applied, we can assert that the average inductance drop is 

zero. Consequently, we can express the armature voltage as: 

𝑉𝑉𝐴𝐴 = 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎, 

where Ia is the instantaneous armature current. Although the instantaneous current is Ia, the average 

value is denoted as Ia. The back EMF E represents the drop across the inductance, which we have 

established to be zero on average after the inductance. 

Since the inductor is considered an ideal inductor, it has no resistance, which means the average 

voltage drop across the inductor is zero. Our objective now is to derive the speed-torque 

characteristic. To achieve this, we can substitute the value of Va from the previous equation. The 

expression becomes: 

𝑉𝑉𝑚𝑚
1 + cos𝛼𝛼

𝜋𝜋
+ 𝐸𝐸

𝜋𝜋 + 𝛼𝛼 − 𝛽𝛽
𝜋𝜋

= 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎 + 𝐸𝐸. 

Now, we can rearrange this equation to isolate the terms effectively. By moving the terms around, 

we simplify it to: 



𝐸𝐸
𝜋𝜋 + 𝛼𝛼 − 𝛽𝛽

𝜋𝜋
− 1 = 𝑉𝑉𝑚𝑚

1 + cos𝛼𝛼
𝜋𝜋

− 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎. 

Simplifying further, we find that the E terms lead to a cancellation of π in the numerator, yielding: 

𝛽𝛽 − 𝛼𝛼
𝜋𝜋

= 𝑉𝑉𝑚𝑚
1 + cos𝛼𝛼

𝜋𝜋
. 

From our knowledge of torque, we can express the relationship as: 

𝑇𝑇 = 𝐾𝐾Φ𝐼𝐼𝑎𝑎 or 𝐼𝐼𝑎𝑎 =
𝑇𝑇
𝐾𝐾Φ

. 

Substituting this expression for Ia into our equation, we have: 

𝐸𝐸
𝜋𝜋 + 𝛼𝛼 − 𝛽𝛽

𝜋𝜋
= 𝑉𝑉𝑚𝑚

1 + cos𝛼𝛼
𝜋𝜋

− 𝑅𝑅𝑎𝑎 �
−𝑅𝑅𝑎𝑎𝑇𝑇
𝐾𝐾Φ �. 

Additionally, since the back EMF E can be expressed as K Φ ωm, we can reformulate our equation 

to find: 

𝐾𝐾Φ𝜔𝜔𝑚𝑚 = 𝑉𝑉𝑚𝑚
1 + cos𝛼𝛼
𝛽𝛽 − 𝛼𝛼

−
𝑅𝑅𝑎𝑎𝑇𝑇
𝐾𝐾Φ

⋅
𝛽𝛽 − 𝛼𝛼
𝜋𝜋

. 

This leads to the speed expression: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉𝑚𝑚(1 + cos𝛼𝛼)

𝛽𝛽 − 𝛼𝛼
−

𝑅𝑅𝑎𝑎𝑇𝑇𝜋𝜋
𝐾𝐾Φ2(𝛽𝛽 − 𝛼𝛼). 

Thus, this equation represents the torque-speed characteristic of a half-controlled converter fed 

separately excited DC motor operating under discontinuous current conditions. Now, let’s consider 

what happens when the current is continuous. In the case of continuous current, the flow is 

maintained, resulting in a different type of voltage and current waveform. 

Now, let's consider the case of continuous current operation. In this scenario, the input voltage gets 

rectified, and we observe that we are triggering the device at an angle α. This corresponds to π, 

and subsequently, at π + α, we trigger T2 during the negative half cycle. The origin is set at zero, 

with ω t represented on the X-axis, extending up to 2π.  
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In continuous conduction mode, there is typically some back EMF, denoted as E. Here, we note 

that the speed is relatively low, resulting in a lower back EMF. The current waveform in this mode 

does not drop to zero; instead, it begins from a certain value and maintains a continuous flow 

throughout its cycle. This characteristic shape illustrates that the current never reaches zero. 

Now, examining the voltage waveform, we trigger at an angle α. The input voltage waveform 

exhibits free-wheeling behavior from α to π, marking the beginning of the free-wheeling interval, 

which lasts from π to π + α. After this point, we trigger again, and the voltage waveform takes on 

a specific shape. 

In steady-state operation, we see that the voltage waveform is periodic. The armature voltage and 

armature current are both captured within this periodic behavior. To evaluate the average output 

voltage Va, we can approach it straightforwardly since there is no back EMF to consider and no 

intervals of zero current. We only need to integrate from α to π, because between π and π + α, the 

voltage is zero, and the same applies from 0 to π. 

Therefore, we can express the integration as follows: 

𝑉𝑉𝐴𝐴 = � 𝑉𝑉𝑚𝑚
𝜋𝜋

𝛼𝛼
sin(𝜔𝜔𝑡𝑡)  𝑑𝑑(𝜔𝜔𝑡𝑡). 



Upon completing this integration, we find: 

𝑉𝑉𝐴𝐴 =
1
𝜋𝜋

(1 + cos𝛼𝛼)𝑉𝑉𝑚𝑚, 

which represents the average output voltage for continuous conduction. This scenario typically 

occurs at lower speeds. 

Now, if we were to draw the torque-speed characteristic for continuous conduction, we can use a 

simpler equation. The relationship can be expressed as: 

𝐼𝐼𝑎𝑎𝑅𝑅𝑎𝑎 + 𝐸𝐸 = 𝜔𝜔𝑚𝑚 =
𝑉𝑉𝑚𝑚(1 + cos𝛼𝛼)

𝜋𝜋
𝐾𝐾Φ −

𝑇𝑇𝑅𝑅𝑎𝑎
𝐾𝐾Φ2. 

This equation elegantly captures the dynamics of the torque-speed characteristic for a system 

operating under continuous conduction conditions. 

This equation we just discussed is valid for continuous conduction. Now, let’s take a moment to 

compare it with the previous equation we derived for the speed-torque relationship under 

discontinuous current conduction. We have two distinct equations: one for discontinuous 

conduction and another for continuous conduction. This allows us to effectively draw the torque-

speed characteristic. 

One important observation to note is the range of the firing angle α. The range for α extends from 

0 to 180 degrees. Within this full range, the average voltage remains positive during continuous 

conduction. This means that, in the case of a half-controlled converter, the average armature 

voltage can never become negative.  

Consequently, this is classified as a one-quadrant converter, which operates exclusively within a 

single quadrant since the average voltage cannot be negative. As a result, there is a free-wheeling 

path where the voltage can drop to zero.  

When we draw the torque-speed characteristic, we will utilize the continuous conduction case 

represented by this equation. Each line on the graph corresponds to different values of α. For 

instance, let’s label these straight lines, starting with the first one. We can denote subsequent lines 

for various angles: α = 0∘, α = 30∘, α = 60∘, α = 90∘, α = 120∘, and so forth. 



On the graph, the speed is plotted on the Y-axis while torque is plotted on the X-axis. For low 

torque values, the speed equation will be governed by a different equation related to discontinuous 

conduction, indicated by dotted lines. This illustrates the boundary between continuous and 

discontinuous conduction. 

Even for α = 120∘, we still observe regions of discontinuous conduction, leading to a no-load speed. 

Thus, we can clearly delineate the regions: one for continuous conduction and another for 

discontinuous conduction.  

If we designate the equation for discontinuous conduction as Equation A and the equation for 

continuous conduction as Equation B, we can better analyze the differences in their respective 

torque-speed characteristics. 

This situation is governed by Equation B, while the previous scenario is described by Equation A. 

Now, let's discuss the no-load speed for discontinuous conduction. For α values ranging from 0 to 

90 degrees, the no-load speed can be expressed as: 

𝜔𝜔𝑀𝑀0 =
𝑉𝑉𝑚𝑚
𝐾𝐾Φ

 

This indicates that when α is greater than 0 but less than 90, and the conduction is discontinuous, 

the no-load speed is indeed given by the above equation. 

When we refer to a no-load condition, it implies that the torque is zero. Now, how can the torque 

be zero? The torque will be zero when the current is also zero. Since we are dealing with a 

separately excited DC motor, we know that torque is a function of both flux and current. Therefore, 

if we say that the torque is zero, it follows that the current must also be zero. 

In this case, when the current is zero, the back EMF reaches its maximum possible value, which 

is equal to Vm. Hence, when the back EMF E is equal to Vm, the no-load speed can be calculated 

as: 

𝜔𝜔𝑀𝑀0 =
𝑉𝑉𝑚𝑚
𝐾𝐾Φ

 

This represents the no-load speed for α values between 0 and 90 degrees. Now, if α exceeds 90 



degrees, we must use a different equation to determine the no-load speed in that scenario. 
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In this scenario, the no-load speed is expressed as: 

𝜔𝜔𝑀𝑀0 =
𝑉𝑉𝑚𝑚 sin𝛼𝛼
𝐾𝐾Φ

 

This is because Vm sin α represents the maximum voltage achievable when α exceeds 90 degrees. 

To ensure that the armature current Ia equals zero, the back EMF must equal this maximum 

possible armature voltage, which is Vm sin α. 

Now, let's consider the motoring case, which is quite straightforward. In the context of motoring, 

we have a half-controlled bridge configuration, consisting of thyristors and diodes, supplying the 

armature circuit. The field is partially excited, and we are dealing with a single-phase AC input. 

In this motoring scenario, the armature voltage Va is positive, the current is positive, and 

consequently, the speed is also positive. However, when we shift our focus to braking, the process 

is not as direct. To initiate braking, we must reverse the back EMF. This reversal is crucial because, 

in this case, we are still using the same half-controlled converter circuit. 

It’s important to note that regenerative braking cannot be achieved here. In order to reverse the 



back EMF, we can either reverse the speed or the field. Suppose we initially have a motor speed 

of ωm > 0. If the speed ωm is reversed, the back EMF will also reverse, provided that the field is 

separately excited and remains constant. In this configuration, the armature continues to be 

supplied by the AC voltage Va. 

In this scenario, the armature voltage Va is supplied by the converter. Importantly, the current 

remains in the same direction because the converter circuit only permits current to flow in one 

direction. Consequently, we find that Va is positive, the current is positive, and, in contrast, the 

speed is negative. This results in the power, P, also being negative.  

This situation describes the braking phase; however, it's crucial to note that the power generated 

in this context cannot be fed back into the supply. Here, the mechanical power Pm is negative 

because, despite the torque being positive, the speed is negative. Previously, we had both positive 

torque and positive speed, but in this case, we have positive torque alongside negative speed. 

As a result, the mechanical power is negative, in contrast to our earlier scenario where it was 

positive. This form of braking is referred to as "plugging," and more specifically, it is termed 

"reverse plugging" because the speed has reversed direction.  

In the context of a half-controlled converter, regenerative braking is not achievable. This limitation 

arises because the converter cannot reverse either the voltage or the current. Thus, during electrical 

braking, the energy dissipated is wasted in the armature resistance.  

In summary, we see that while the half-controlled converter allows for forward motoring, it only 

facilitates reverse plugging during braking. We will continue our discussion in the next lecture. 
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