
Basic Electric Circuits 

Professor Ankush Sharma 

Department of Electrical Engineering 

Indian Institute of Technology Kanpur 

Module 12 - Analogous Systems 

Lecture 58 - Modelling of the Rotational Motion of Mechanical Systems 

 

Namshkar. In last class we discussed about the mathematical modelling of translational motion 

of mechanical system. Today we will discuss about the mathematical modelling of rotational 

system. So, let us start the discussion of today’s lecture.  
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So, the rotational motion of a body can be defined as motion about a fixed axis. The extension 

of Newton’s law of motion for rotational motion states that the algebraic sum of moments or 

torque about a fixed axis is equal to the product of the inertia and the angular acceleration about 

the axis. So, we define that total sum of torques which is applicable on a body, which is rotating 

is equal to 𝐽𝛼, 𝐽 denotes the inertia and 𝛼 is the angular acceleration. So, other variables which 

we generally use to describe the motion of rotation are angular velocity 𝜔, and angular 

displacement 𝜃. So, if you take 
𝑑𝜃

𝑑𝑡
, you will get angular velocity 𝜔, and 

𝑑2𝜃

𝑑𝑡2  gives the angular 

acceleration, 𝛼. 
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Now, the elements involved in the rotational motions are first inertia. So, inertia is considered 

as the property of an element that stores the kinetic energy of the rotational motion. So, you 

can correlate it with respect to the mass m which we discussed in case of translational motions. 

So, here also the inertia is the property of element which stores the kinetic energy of rotational 

motion.  

Now, the inertia of a given body depends on the geometric composition about the axis of 

rotation and its density. So for instance, if the inertia of a circular disk or shaft of radius r and 

mass M, the value of inertia about its geometric axis is given as, 𝐽 =
1

2
𝑀𝑟2.  
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Now, when the torque is applied to a body with inertia  𝐽, if you see the figure, the body which 

is rotating having inertia  𝐽 and it is having 𝜃 as the displacement and when the torque is applied, 

the governing equation which you can write is  

𝑇(𝑡) = 𝐽𝛼(𝑡) = 𝐽
𝑑𝜔(𝑡)

𝑑𝑡
= 𝐽

𝑑2𝜃(𝑡)

𝑑𝑡2
 

So, here 𝜃(𝑡) is the angular displacement; 𝜔(𝑡) the angular velocity; and 𝛼(𝑡), the angular 

acceleration.  
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Now, like the spring, linear spring which we saw in case of translational motion, we can also 

define torsional spring. Torsional spring let us say we have a torsional spring constant 𝐾 that 

is given in torque per unit angular displacement, so we can devised to represent the compliance 

of a rod or a shaft when it is subject to applied torque. So, torsional spring is the property of 

the shaft or the rod which is connected to your rotating body.  

So, when you give torque it twists slightly which give the property of torsional spring. So, what 

you will write? Simple torque spring system can be represented by this equation that is T, 

𝑇(𝑡) = 𝐾𝜃(𝑡) . Now, if the torsional spring is preloaded by a torque say 𝑇𝑃, the above equation 

can be modified as 𝑇(𝑡) − 𝑇𝑃 = 𝐾𝜃(𝑡) . 
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Now, similar to what we saw in case of translational motion, in this case also we will see 

various frictions. What are those frictions? First is viscous friction that is torque 𝑇(𝑡) =

𝐵
𝑑𝜃(𝑡)

𝑑𝑡
 . This B is called a viscous friction coefficient. Then static friction, in that case the 

friction torque 𝑇(𝑡) = ±𝐹(𝑠)|𝜃̇=0  that is the object is just about to move.  

In that case the value of friction is given by 𝐹(𝑠), plus minus is basically used to show the 

direction of the friction which will be applicable in the body. Then Coulomb friction, Coulomb 

friction 𝑇(𝑡) = 𝐹𝑐

𝑑𝜃(𝑡)

𝑑𝑡

|
𝑑𝜃(𝑡)

𝑑𝑡
|
. So, this is how we define viscous friction, static and Coulomb friction 

in the rotating body. 
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Now, let us take one example so that we can understand how we will create the mathematical 

model of mechanical system. So, in this mechanical system we have one motor connected to a 

load through shaft which has the friction coefficient as we will rather say stiffness coefficient 

as 𝐾 which defines the torsional spring coefficient. Now, 𝑇𝑚 is the mechanical torque applied 

by the motor and 𝜃𝐿 is the displacement at any time t for the load which is having inertia equal 

to 𝐽𝐿.  

Motor inertia is 𝐽𝑚 and viscous friction coefficient is 𝐵𝑚. Now, in this case the motor is coupled 

to an inertial load through a shaft with a spring constant 𝐾. The non-rigid coupling between 

two mechanical components which we see here often causes torsional resonance that can be 

transmitted to all parts of the system.  
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Now, let us see how we can create the free body diagram. The variable which we will use to 

define free body diagram of this mechanical system. The variables are 𝑇𝑚, 𝑇𝑚 is nothing but 

motor torque, 𝐵𝑚 is viscous-friction of the motor, so this is viscous friction coefficient related 

to motor, 𝐾 is spring constant of the shaft, 𝜃𝑚 is motor displacement, 𝜔𝑚 is given as motor 

velocity, 𝐽𝑚 is motor inertia, 𝜃𝐿 we consider it as load displacement, 𝜔𝐿 is load velocity and 𝐽𝐿 

is the load inertia. So, we will use these variables to define the free body diagram of the system. 
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So, from the motor side, if you see the free body diagram you will see that the torque 𝑇𝑚 when 

it is applied, you will have the viscous friction part plus spring torque part applicable in the 

opposite direction of the motor torque applied. The torque equations of the system are  



𝑑2𝜃𝑚(𝑡)

𝑑𝑡2
= −

𝐵𝑚

𝐽𝑚

𝑑𝜃𝑚(𝑡)

𝑑𝑡
−

𝐾

𝐽𝑚

[𝜃𝑚(𝑡) − 𝜃𝐿(𝑡)] +
1

𝐽𝑚
𝑇𝑚(𝑡)  

𝐾[𝜃𝑚(𝑡) − 𝜃𝐿(𝑡)] = 𝐽𝐿

𝑑2𝜃𝐿(𝑡)

𝑑𝑡2
 

(Refer slide time: 10:57) 

 

 

Now, in this case the system contains 3 energy storage elements that is 𝐽𝑚, 𝐽𝐿 and 𝐾. So, what 

we will do, we will find 3 state variables in this case. The equations which we just saw in case 

of the motor side and the load side free body diagram, we came with these 2 equations that is  

𝑑2𝜃𝑚(𝑡)

𝑑𝑡2
= −

𝐵𝑚

𝐽𝑚

𝑑𝜃𝑚(𝑡)

𝑑𝑡
−

𝐾

𝐽𝑚

[𝜃𝑚(𝑡) − 𝜃𝐿(𝑡)] +
1

𝐽𝑚
𝑇𝑚(𝑡)  



𝐾[𝜃𝑚(𝑡) − 𝜃𝐿(𝑡)] = 𝐽𝐿

𝑑2𝜃𝐿(𝑡)

𝑑𝑡2
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Now, let us assume that we have 3 state variables 𝑥1(𝑡) = 𝜃𝑚(𝑡) − 𝜃𝐿(𝑡),    𝑥2(𝑡) =

𝑑𝜃𝐿(𝑡)

𝑑𝑡
,  𝑎𝑛𝑑 𝑥3(𝑡) =

𝑑𝜃𝑚(𝑡)

𝑑𝑡
. So, the state equations which you can write, if you differentiate,  

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝑥3(𝑡) − 𝑥2(𝑡) 

𝑑𝑥2(𝑡)

𝑑𝑡
=

𝐾

𝐽𝐿
𝑥1(𝑡) 



𝑑𝑥3(𝑡)

𝑑𝑡
= −

𝐾

𝐽𝑚
𝑥1(𝑡) −

𝐵𝑚

𝐽𝑚
𝑥3(𝑡) +

1

𝐽𝑚
𝑇𝑚(𝑡) 

(Refer slide time: 15:38) 

 

We can represent the state equations which we have just got using the signal flow graph. So, 

how we will represent? We have defined the state variables as 𝑥1(𝑡) = 𝜃𝑚(𝑡) − 𝜃𝐿(𝑡),, 

  𝑥2(𝑡) =
𝑑𝜃𝐿(𝑡)

𝑑𝑡
,  𝑎𝑛𝑑 𝑥3(𝑡) =

𝑑𝜃𝑚(𝑡)

𝑑𝑡
.  

Now, for the first equation what you are getting, 
𝑑𝑥1(𝑡)

𝑑𝑡
= 𝑥3(𝑡) − 𝑥2(𝑡), so here you have x3, 

you have x2, you have x3 minus x2. So, x3 will be having gain of 1, x2 will be having gain of 

minus 1, when you sum up you get 
𝑑𝜃𝑚(𝑡)

𝑑𝑡
−

𝑑𝜃𝐿(𝑡)

𝑑𝑡
 that is, nothing but equal to 

𝑑𝑥1(𝑡)

𝑑𝑡
, So, from 

first equation what you have got is these two links.  

Now, from 
𝑑𝑥2(𝑡)

𝑑𝑡
=

𝐾

𝐽𝐿
𝑥1(𝑡). So, we will take the loop from 𝑥1 with gain 

𝐾

𝐽𝐿
 and connect it to 

the   𝜃𝐿̈ . Now, 𝜃𝐿̈ if you integrate you will get 𝜃𝐿̇, that is nothing but 𝑥2, so you have 1 integrator 

link with the 𝑠−1 that is nothing but 1/𝑠.  

Then when you again integrate 
𝑑𝜃𝑚(𝑡)

𝑑𝑡
−

𝑑𝜃𝐿(𝑡)

𝑑𝑡
, you will get 𝑥1 so again you create 1 integrator 

block and you get the 𝑥1. Now, next is the equation that is 
𝑑𝑥3(𝑡)

𝑑𝑡
= −

𝐾

𝐽𝑚
𝑥1(𝑡) −

𝐵𝑚

𝐽𝑚
𝑥3(𝑡) +

1

𝐽𝑚
𝑇𝑚(𝑡), so we put 𝑇𝑚 as a input note and then we put 𝜃𝑚̈ =

𝑑𝑥3(𝑡)

𝑑𝑡
.  



So, we use this equation and find out the links. So, first is −
𝐾

𝐽𝑚
𝑥1(𝑡), so from 𝑥1 we get −

𝐾

𝐽𝑚
, 

then from 𝑥3 we get −
𝐵𝑚

𝐽𝑚
, so from 𝑥3 we connect the link again with gain of −

𝐵𝑚

𝐽𝑚
 and then 

you have 
1

𝐽𝑚
𝑇𝑚. So, 𝑇𝑚 is connected to 𝜃𝑚̈ that is with the gain 

1

𝐽𝑚
. So, with this you complete 

the summation at 𝜃𝑚̈. Now, 𝜃𝑚̈ is connected to 𝑥3 with integrator with integration. If you take 

the integral of 𝜃𝑚̈, you will get 𝑥3. So, using these 3 equations, you have now created the signal 

flow graph presentation of the system. 
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Now, let us talk about the gear train. So, gear train or lever or the timing belt over a pulley is a 

mechanical device that transmits energy from one part of the system to another in such a way 

that force, torque, speed and displacement may be altered. So, these devices can also be 

regarded as matching devices used to attain maximum power transfer. Now, we see these in 

the figure, we see 2 gears are coupled together. The inertia and friction of the gears are 

neglected when you consider the ideal case. In this case 𝑇1 through these gears is transferred 

to the second gear that is having torque 𝑇2. 
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Now, how we will create the relationship between 𝑇1 and 𝑇2? So, the relationship between 

torque 𝑇1 and 𝑇2 and then angular displacement 𝜃1 and 𝜃2 and the teeth numbers in the gear 

that is 𝑁1 and 𝑁2 can be correlated with the following facts. First is the number of teeth on the 

surface of the gear is proportional to the radius 𝑟1 and 𝑟2 of the gears, so in that case we can 

define 𝑟1𝑁2 = 𝑟2𝑁1 because 𝑟1 is proportional to 𝑁1 and 𝑟2 is proportional to 𝑁2.  

So, using this you can correlate that 𝑟1𝑁2 = 𝑟2𝑁1. Now, the distance travelled along the surface 

of each gear is same. Therefore, you can write 𝜃1𝑟1 = 𝜃2𝑟2. Now, third one is that the work 

done by 1 gear is equal to that of others, since there are assumed to be no losses. In that case 

𝑇1𝜃1 = 𝑇2𝜃2. 
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So, using these 3 correlations, we can write that  

𝑇1

𝑇2
=

𝜃2

𝜃1
=

𝑁1

𝑁2
=

𝜔2

𝜔1
=

𝑟1

𝑟2
 

So, this is the most important correlation which we use in case of gear system to correlate the 

various parameters from one side to other side. Now, in practice the gears also have inertia and 

friction between the coupled gear teeth and that often cannot be neglected.  

So, in that case the equivalent representation of the gear train with viscous friction, Coulomb 

friction and inertia as lumped parameters is considered, which is shown in the figure. So, here 

you have the Coulomb frictions, then 𝐵1 and 𝐵2 are the viscous frictions, T is the torque applied 

from the gear 1, so the opposite torque which is T1 applied on the gear N1 and translated to 

gear 2 is T2 and the energy transferred from gear 2 the object which is having inertia equal to 

J2. 
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Now, since we have 2 gears, so we need 2 torque equations, so for gear 2 what we can write? 

That is  

𝑇2(𝑡) = 𝐽2

𝑑2𝜃2(𝑡)

𝑑𝑡2
+ 𝐵2

𝑑𝜃2(𝑡)

𝑑𝑡
+ 𝐹𝑐2

𝜔2

|𝜔2|
 

Now, the torque equation on the first side what you can write, the applied torque  

𝑇(𝑡) = 𝐽1

𝑑2𝜃1(𝑡)

𝑑𝑡2
+ 𝐵1

𝑑𝜃1(𝑡)

𝑑𝑡
+ 𝐹𝑐1

𝜔1

|𝜔1|
+ 𝑇1(𝑡)  

Now, we have got these 2 equations related to gear 1 and gear 2.  
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Using the previous correlation,  

𝑇1(𝑡) =
𝑁1

𝑁2
𝑇2(𝑡) = (

𝑁1

𝑁2
)

2

𝐽2

𝑑2𝜃1(𝑡)

𝑑𝑡2
+ (

𝑁1

𝑁2
)

2

𝐵2

𝑑𝜃1(𝑡)

𝑑𝑡
+

𝑁1

𝑁2
𝐹𝑐2

𝜔2

|𝜔2|
   

So, this indicates that it is possible to reflect inertia, friction, compliance, torque, speed and 

displacement from one side of the gear train to other.  

So, when you see this equation, you can correlate these equations with respect to the 

transformer equations, which we derived in earlier discussions so you can also see that as we 

saw in case of transformer, we transfer the power from one side to other side, similarly the gear 

is the mechanical arrangement which transfers power from one side to other side. So, in this 

way you can see that how closely the mechanical system of gears is analogous to the electrical 

system of the transformers. 

(Refer slide time: 27:05) 

 

Now, the following quantities we obtained when reflecting from gear 2 to gear 1 we define 

them as the inertia that is (
𝑁1

𝑁2
)

2

𝐽2, viscous friction coefficient we say as (
𝑁1

𝑁2
)

2

𝐵2, torque 
𝑁1

𝑁2
𝑇2, 

angular displacement we say with respect to the gear 1, that is 
𝑁1

𝑁2
𝜃2 . Similarly, angular velocity 

we convert into the gear one side is 
𝑁1

𝑁2
𝜔2, Coulomb friction coefficient is 

𝑁1

𝑁2
𝐹𝑐2

𝜔2

|𝜔2|
.  
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So, if you consider the equivalent of all those components what we can write total torque T you 

can just put the value of  

𝑇(𝑡) = 𝐽1𝑒

𝑑2𝜃1(𝑡)

𝑑𝑡2
+ 𝐵1𝑒

𝑑𝜃1(𝑡)

𝑑𝑡
+  𝑇𝐹 

𝑇𝐹 is equivalent Coulomb torque.  

So, 𝐽1𝑒 = 𝐽1 + (
𝑁1

𝑁2
)

2

𝐽2, 𝐵1𝑒 = 𝐵1 + (
𝑁1

𝑁2
)

2

𝐵2 and 𝑇𝐹 = 𝐹𝑐1
𝜔1

|𝜔1|
+

𝑁1

𝑁2
𝐹𝑐2

𝜔2

|𝜔2|
. So, if you see 

these equations you can easily correlate, in case of transformer also when you transfer the 

resistance and reactance value from secondary side to primary side you will see similar kind of 

relationship, as we see in this case of gear, the reflection of the various properties from gear 2 

to gear 1. So, in this way you can say that the gear arrangement is closely an`alogous to the 

electrical system in case of the transformer.  

So, with this we can close our today’s discussion. In this discussion we mainly focussed about 

the rotational motion, so from next lecture onwards we will discuss about the correlation 

between electrical and the mechanical or other than the mechanical system so that you can 

understand how the mechanical system can be equivalently represented with the help of 

electrical circuit. Thank you. 


