
Basic Electric Circuits  

Professor Ankush Sharma 

Department of Electrical Engineering, 

Indian Institute of Technology, Kanpur 

Module 06  

Laplace Transform and its Application 

Lecture 30  

Inverse Laplace Transform 

 

Namashkar. In the last class, we were discussing about the various properties of Laplace transform. 

So, in today's class, we will discuss about the Inverse Laplace Transform.  
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So, let us start the discussion of today's lecture. Before going into the inverse Laplace transform, 

let us understand what we discussed in the last class related to the properties of the Laplace 

transform. First we discuss about linearity where, ℒ[𝑎1𝑓1(𝑡) + 𝑎2𝑓2(𝑡)]=𝑎1𝐹1(𝑠) + 𝑎2𝐹2(𝑠). 

Scaling property, where, ℒ[𝑓(𝑎𝑡)] = 
1

𝑎
𝐹 (

𝑠

𝑎
). Now, in case of time shift if your signal is shifting 

by some time, say a, the Laplace transform of that function would be 𝑒−𝑎𝑠𝐹(𝑠). 
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Now, then, we discussed about frequency shift. So, it means that, if we have a function 𝑒−𝑎𝑡𝑓(𝑡), 

the Laplace transform of that would be 𝐹(𝑠 + 𝑎). That means that wherever we have s in case of 

the Laplace transform of 𝑓(𝑡), we will replace it by 𝑠 + 𝑎. Then we discussed about the time 

differentiation, means that the derivative of f, 
𝑑𝑓

𝑑𝑡
, then ℒ [

𝑑𝑓

𝑑𝑡
]= 𝑠𝐹(𝑠) − 𝑓(0−).  

 

So, we can generalize also by saying that the nth derivative of the function, then the Laplace 

transform of nth derivative of f would be, 

 ℒ [
𝑑𝑛𝑓

𝑑𝑡𝑛
] = 𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1𝑓(0−) − 𝑠𝑛−2𝑓′(0−) − ⋯ . . −𝑠0𝑓𝑛−1(0−) 

So, this will give you the Laplace transform for nth derivative of our function. 

 

Then, we discussed about the time integration. If you have a function, ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
 and you are asked 

to find the Laplace transform of the integral, it is Laplace transform would be  
1

𝑠
𝐹(𝑠), where 𝐹(𝑠) 

is the Laplace transform of function 𝑓(𝑡).  

 

Now, frequency differentiation, if you have a function 𝑡𝑛𝑓(𝑡), so its Laplace transform would be 

(−1)𝑛
𝑑𝑛𝐹(𝑠)

𝑑𝑠𝑛
. So, particularly this function and this, the Laplace Transform, in case of frequency 



shift and frequency differentiation will be used most frequently when we will do the inverse 

Laplace transform. So, all those, the properties which we have discussed, you must keep in mind 

because these will be used frequently in the, calculation of inverse Laplace transform.  
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Now, next the time periodicity, we discuss that if the function can be given by a periodic series 

𝑓1(𝑡) + 𝑓1(𝑡 − 𝑇)𝑢(𝑡 − 𝑇) + 𝑓1(𝑡 − 2𝑇)𝑢(𝑡 − 2𝑇)+... you can represent our periodic function, as 

a combination of various functions. And the first function is the, the value of this periodic function 

at first time period. And then others will be like compilation of the first function with time shift 

conditions. So, this is time shifted by T then time shifted by 2T and so on.  

 

Now, if you are asked to find out the Laplace transform of 𝑓(𝑡), you will say  

𝐹(𝑠) =
𝐹1(𝑠)

1−𝑒−𝑇𝑠
, where F1(s) is the Laplace transform of f1(t). We also discussed initial value and 

final value theorems. We calculated that if we want to find out the initial value of a function, the 

initial value can be directly given by lim
𝑠→∞

[𝑠𝐹(𝑠)] = 𝑓(0+)]. Similarly, in case of final value 

theorem, we discussed that the value of function at infinity will be  

𝑓(∞) = lim
                     𝑠→0

[𝑠𝐹(𝑠)].  
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Now, these we have discussed in the previous class. So, let us start the discussion about the inverse 

Laplace transform. In this case, we are given the value of F(s) and now we need to transform it 

back to the time domain and obtain the corresponding value of f (t). So, if you have F(s) in the 

general form like 𝐹(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
, where N(s) is the numerator polynomial and D(s) is the denominator 

polynomial. 

 

Now, roots of N(s) equal to 0 are called the ‘zeroes of transfer function F(s)’ and roots of D(s) 

equal to 0 polynomial are called the ‘poles of function, transfer function F(s)’. Now, we must keep 

in mind that F(s) is Laplace transform of one function which cannot necessarily be a transfer 

function. So, this we must keep in mind, so that we are not confused with the transfer function and 

the Laplace transform. 
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To find out the, the value of function f(t), we use partial fraction expansion method to break the 

function F(s). So, when you break the function F(s), you will break into simpler terms, so that you 

can easily find the inverse Laplace transform of F(s). So, what are the steps are involved in the 

computation of inverse Laplace transform. We use two steps. One is, we will first decompose the 

function F(s) into simple terms using partial fraction expansion. And then we find the inverse 

Laplace transform of each term, which we have found in the first step. Now, there are three possible 

forms of the Laplace transform.  

 

First form is when you have simple poles. If you have a Laplace transform F(s), which is 

represented as a numerator polynomial divided by denominator and where you can have the 

denominator as shown in equation (1). The denominator polynomial is in the form of product of 

factors (𝒔 + 𝒑𝟏)(𝒔 + 𝒑𝟐)…… (𝒔 + 𝒑𝒏). Then you can use the simple pole approach to find out 

the Inverse Laplace Transform. 
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Now, what are the p1, p2 and pn. So, these are the simple poles of the Laplace Transform function. 

Now, these poles are distinct. Now, if we assume that the degree of N(s) is less than the degree of 

D(s) that means the highest degree of s in denominator is greater than the highest degree of s in 

numerator we can apply the partial fraction expansion method to decompose the Laplace 

Transform which was shown in the previous equation. 

  

So, this is the Laplace Transform and we want to decompose it.  How will decompose? We can 

represent this function as decomposed terms like  

𝐹(𝑠) =
𝑘1

𝑠+𝑝1
+ 

𝑘2

𝑠+𝑝2
+⋯…… . . +

𝑘𝑛

𝑠+𝑝𝑛
 



where expansion coefficients k1, k2, . . . , kn are known as the residues of F(s). Now, there are many 

ways through which you can find these values of expansion coefficients. The one, the most popular 

technique is residue method.  
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Now, in this, what we will do, we will multiply both sides by s plus p1. So, if you see the expression 

for Laplace Transform, which we decompose into various terms, so that you can solve it. The first 

term has the denominator (s + p1). So, what we will do first, we will multiply both side by (s + p1). 

So, when you multiply, this will become  

 



(𝑠 + 𝑝1)𝐹(𝑠) = 𝑘1 +
(𝑠 + 𝑝1)𝑘2
𝑠 + 𝑝2

+⋯……+
(𝑠 + 𝑝1)𝑘𝑛
𝑠 + 𝑝𝑛

 

Now, if you set the value of s = −p1 at both sides, the right side terms other than the k1 will become 

0. 

 

So, you can simply say that  

(𝑠 + 𝑝1)𝐹(𝑠)|𝑠=−𝑝1 = 𝑘1 

The whole product of   this would be calculated at s = −p1. So, when you solve, you will get the 

value of 𝑘1. So, now in more general form, you can simply write for any factor  

𝑘𝑖 = (𝑠 + 𝑝𝑖)𝐹(𝑠)|𝑠=−𝑝𝑖 

So, this will give you the value of constant term 𝑘𝑖. Now, this particular property is called the 

‘Heaviside Theorem’.  
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Now, once the value of 𝑘𝑖 are known, we can easily find out the inverse Laplace transform for 

F(s). How? Because now we know that it is decomposed into this form. Now, if you see this, this 

is nothing, but the Laplace transform of 𝑘1𝑒
−𝑝1𝑡. So, this is nothing but frequency shift property. 

So, if you recollect the frequency shift property, you can simply find out the value of inverse 

Laplace transform of first term.  

 



So, this will become 𝑘1𝑒
−𝑝1𝑡 and similarly, for other times also you can find out the inverse 

Laplace transform. So finally, when you club all of them, you will get the inverse Laplace 

transform of the function F(s). That means the inverse Laplace transform of F(s) is  

𝑓(𝑡) = (𝑘1𝑒
−𝑝1𝑡 + 𝑘2𝑒

−𝑝2𝑡 +⋯……… . . 𝑘𝑛𝑒
−𝑝𝑛𝑡 

Now, second case is that when you have repeated poles, means suppose if the Laplace Transform 

F(s) has n repeated poles at s = −p. Then what you can write, you can write simply,  

𝐹(𝑠) =
𝑘𝑛

(𝑠+𝑝)𝑛
+ 

𝑘𝑛−1

(𝑠+𝑝)𝑛−1
+⋯……+

𝑘2

(𝑠+𝑝)2
+

𝑘1

(𝑠+𝑝)1
+ 𝐹1(𝑠) 

The last 𝐹1(𝑠) is the remaining part of 𝐹(𝑠), which does not have pole at s = −p. This is the 

remainder of the, the Laplace Transform, which is not represented in this form. Now, as we did in 

the previous case here also, we can find out the value of 𝑘𝑛. So, 𝑘𝑛 would be given as,  

𝑘𝑛 = (𝑠 + 𝑝)𝑛𝐹(𝑠)|𝑠=−𝑝  
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Now, how to find the value of kn−1? For finding out the value of kn−1, we must multiply each term 

by (s + p)n as we did in the previous case. Now, in this case, you will have kn as a constant term, 

but we need to find out kn-1 because kn we have already calculated. So, what we can do, we can get 

kn, if you differentiate the whole expression. 

 

So, we get, 

𝑘𝑛−1 =
𝑑

𝑑𝑠
[(𝑠 + 𝑝)𝑛𝐹(𝑠)]|𝑠=−𝑝 

 

Similarly, for others also you  



𝑘𝑛−2 =
1

2!

𝑑2

𝑑𝑠2
[(𝑠 + 𝑝)𝑛𝐹(𝑠)]|𝑠=−𝑝 

The mth term becomes 

𝑘𝑛−𝑚 =
1

𝑚!

𝑑𝑚

𝑑𝑠𝑚
[(𝑠 + 𝑝)𝑛𝐹(𝑠)]|𝑠=−𝑝 
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So, now you have all the constants in your hand. Now, if you remember the inverse Laplace 

transform  

ℒ −1 [
1

(𝑠 + 𝑎)𝑛
] =

𝑡𝑛−1𝑒−𝑎𝑡

(𝑛 − 1)!
 

This is nothing but with the help of frequency, differentiation property, you can find out the value 

of inverse Laplace transform of 
1

(𝑠+𝑎)𝑛
.  

 

So, if you compile the individual terms, for first one, you can simply write 𝑘1𝑒
−𝑝𝑡, for second you 

can write 𝑘2𝑡 𝑒
−𝑝𝑡 and for third term similarly, you can write 

𝑘3

2!
𝑡2 𝑒−𝑝𝑡 and so on. So, for the kth 

term you will, for the nth term, you will write 
𝑘

(𝑛−1)!
𝑡𝑛−1𝑒−𝑝𝑡 plus 𝑓1(𝑡). That is the inverse 

Laplace transform of reminder of the function that is 𝐹1(𝑠). So, with this way, you can find out the 

inverse Laplace transform or function 𝑓(𝑡).  
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Now, we have a third case, where we have complex poles. Now, pair of complex poles is simple, 

if it is not repeated and if it is repeated, then complex poles have double or multiple poles. Now, 

simple complex poles maybe handled the same way, we handle the simple real poles. But since we 

have a complex Algebra involved, the result may be a little bit cumbersome.  

 

So, we will use an alternative approach to find out the inverse Laplace transform in case we have 

complex poles. So, the approach is the method which is known as completing the square. Now, 

what does it mean? This is the idea to express each complex pole pair in the denominator as a 

complete square such as (s + α)2 + β2. So, whatever we have in the denominator, we can represent 

them as set of complete square plus remainder of the term which are there in the denominator. 

Then we can easily find the inverse Laplace transform of the function F(s). 
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What does it mean, like how we will solve it? Let us take one simple example, so that you can 

understand how we can proceed for this kind of condition. Since N(s) and D(s) always have real 

coefficients. So, the complex roots of the polynomial with real coefficients will always occur in 

conjugate pairs. So, we will keep this in mind and try to solve the, try to find out the inverse 

Laplace transform, F(s).  

 

Suppose the inverse Laplace transform F(s) is given to you and you want to find out its inverse 

Laplace transform. F(s) can be decomposed into two parts. First is  

𝐹(𝑠) =
𝐴1𝑠 + 𝐴2
𝑠2 + 𝑎𝑠 + 𝑏

+ 𝐹1(𝑠) 

where you do not have any complex poles. So, 𝐹1(𝑠) is the remaining part of 𝐹(𝑠), which does not 

have pair of complex poles.  

 

Now, what you must do next, in the denominator, you have term 𝑠2 + 𝑎𝑠 + 𝑏. You need to 

complete the square in the denominator. So, we add few terms in the polynomial and subtract few 

of them in the polynomial and rearrange in such a way that it looks like 𝑠2 + 2𝛼𝑠 + 𝛼2 + 𝛽2.  

 

So, if you can rearrange the polynomial in such a way, you can simply say that this particular 

polynomial can be represented as (𝑠 + 𝛼)2 + 𝛽2. Similarly, in the numerator also, you can arrange 

the polynomial in such a way that 𝐴1𝑠 + 𝐴2 = 𝐴1(𝑠 + 𝛼) + 𝐵1𝛽.  
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So, when you rearrange numerator as well as denominator, what you get, you can simply represent 

the function  

𝐹(𝑠) =
𝐴1(𝑠 + 𝛼)

(𝑠 + 𝛼)2 + 𝛽2
+

𝐵1𝛽

(𝑠 + 𝛼)2 + 𝛽2
+ 𝐹1(𝑠) 

 

Now, if you see the first term, if you remember when we, when we were discussing about the 

Laplace transform, we discuss that cos𝑤𝑡 ⇔  
𝑠

𝑠2+𝑤2  

 

So, using that expression for cos𝑤𝑡 that is you can find out the inverse Laplace transform because, 

if you see this expression, this is nothing but the frequency shift property plus the cos βt term. So, 

what you can simply write, you can simply write, the inverse Laplace transform of this would be 

𝐴1𝑒
−𝛼𝑡 because here, you have 𝑠 + 𝛼. We will use frequency shift property and you will say that 

it is 𝐴1𝑒
−𝛼𝑡 cos βt. Similarly, for this case also, you can write 𝐴2𝑒

−𝛼𝑡 sin βt because here also you 

will see, that this particular segment is nothing but the Laplace transform of sin βt plus the 

frequency shift because here you have 𝑠 + 𝛼.  

 

So, you will simply write 𝐴2𝑒
−𝛼𝑡 sin βt + 𝑓1(𝑡) which is the inverse Laplace transform of 𝐹1(𝑠). 

So, when you have complex poles, you can rearrange the expressions in such a way that it can be 

arranged in a particular fashion. Then you can easily find out the inverse Laplace transform.  

 



So, whether the pole is simple, repeated or complex, the general approach that can always be used 

in finding the expression is the method of Algebra. That means that whatever did in Algebra, the 

same can be applied here also, if you want to find out the, the constant components in any case of 

the Laplace Transform, which we discussed till now.  
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So, to understand these concepts, let us understand with the help one example, so that you are more 

clear about how to proceed with finding out the inverse Laplace transform. So, let us take one 

example. We have been given a Laplace transform 𝑭(𝒔) =
𝒔𝟐+𝟏𝟐

𝒔(𝒔+𝟐)(𝒔+𝟑)
 . 

So, here you can see in the denominator, you can clearly distinguish all three poles. That is poles 

are at s is equal to 0, at s equal to minus 2, at s is equal to minus 3. So, this expression can be 

represented as  

𝑠2 + 12

𝑠(𝑠 + 2)(𝑆 + 3)
=
𝐴

𝑠
+

𝐵

𝑠 + 2
+

𝐶

𝑠 + 3
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Now, next task is that you need to find out the value of the unknown constants which are A, B, C. 

So, we can use the residue method, which we discussed just now. So, in this case we will first 

multiply the Laplace transform with s and equate it for s is equal to 0.  

𝐴 = 𝑠𝐹(𝑠)|𝑠=0 =
𝑠2 + 12

(𝑠 + 2)(𝑠 + 3)
|𝑠=0 =

12

(2)(3)
= 2 

𝐵 = (𝑠 + 2)𝐹(𝑠)|𝑠=−2 =
𝑠2 + 12

𝑠(𝑠 + 3)
|𝑠=−2 =

4 + 12

(−2)(1)
= −8 

𝐶 = (𝑠 + 3)𝐹(𝑠)|𝑠=−3 =
𝑠2 + 12

𝑠(𝑠 + 2)
|𝑠=−3 =

9 + 12

(−1)(−3)
= 7 

 

  



(Refer Slide Time: 28:28) 

 
 

 



 
So, with this you can easily find out the inverse Laplace transform. Another method is that you 

can use simple algebraic method, which you generally use for solving the general expressions. So, 

here we will apply those technique to find out the inverse Laplace transform. So, what we can do, 

we can multiply both sides by s(s + 2)(s + 3).  

 

So, what we get? So, if you see the expression here, 𝑠2 + 12 is there in the numerator and in the 

denominator, we have s(s + 2)(s + 3). So, if you multiply the both sides by this, what you get, you 

will say that the 𝑠2 + 12 = 𝐴(𝑠 + 2)(𝑠 + 3) + 𝐵𝑠(𝑠 + 3) + 𝐶𝑠(𝑠 + 2). 

So, if you see here, if you multiply both sides by s(s + 2)(s + 3), so what you will get? Denominators 

will cancel out and the numerator, what you get is 𝑠2 + 12 = 𝐴(𝑠 + 2)(𝑠 + 3) + 𝐵𝑠(𝑠 + 3) +

𝐶𝑠(𝑠 + 2). So, this is what we got from the multiplication.  

 

Now, what next you have to do, you have to just equate the coefficients of like powers of s. So, 

for constant terms, if you equate the only constant terms, you will simply get the value of A = 2. 

When you equate, only the terms having s, you can, you will get the value of expression. You will 

get the equation that is 3B + 2C = −10 and when you equate the terms of s2, you will get another 

equation that is B + C = −1.  

 



Now, you have two equations and two unknowns, you can solve and you will get the value again 

as A = 2, B = −8, C = 7. So, either you use this method or the previous method, which we discussed 

that is the residue method, you will get the same results.  

 

And finally for the, given Laplace transform 𝐹(𝑠), you can get the inverse Laplace transform by 

simply decomposing, you can easily say that the inverse Laplace transform of Fs is, 𝑓(𝑡) =

2𝑢(𝑡) − 8𝑒−2𝑡 + 7𝑒−3𝑡 provided the time 𝑡 ≥ 0, because this is applicable for 𝑡 ≥ 0. 

 

So, now you can easily understand that how you can proceed with finding out the inverse Laplace 

transform. So, with this we can close our today's session, where we discuss about how to proceed 

with finding out the inverse Laplace transform. So, next week we will continue our utilization of 

Laplace transform in analyzing the various circuits.  

 

So, remember if we, when we discussed the first order, second order circuits, we saw that there 

were, various second order and first order differential equations, which are sometimes difficult to 

solve. So, we will use the Laplace transform techniques and see how we can easily solve those 

kind of equations, when we see the second order or first order circuits, thank you. 

 

  

 


