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Properties of the Laplace Transform 

Namaskar, so in last class we were discussing about the few major properties of the Laplace 

transform. In this class also we will continue our journey on discussing the few important 

properties of the Laplace transform.  
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Let’s see what we discussed in the previous class related to properties of the Laplace transform. 

We discussed about linearity, so in that we demonstrated that if the Laplace transform of f1(t) 

and f2(t) are F1(s) and F2(s). So, their linear combination will be like, 𝑎1𝑓1(𝑡) + 𝑎2𝑓2(𝑡). If you 

take the Laplace transform of the linear term you will get,  

ℒ[𝑎1𝑓1(𝑡) + 𝑎2𝑓2(𝑡)]=𝑎1𝐹1(𝑠) + 𝑎2𝐹2(𝑠) 

Similarly, for scaling, the Laplace transform of 𝑓(𝑎𝑡) will be  

ℒ[𝑓(𝑎𝑡)] = 
1

𝑎
𝐹 (

𝑠

𝑎
) 

Now, in case of time shift if your signal is shifting by some time, say a, the Laplace transform 

of that function would be 𝑒−𝑎𝑠𝐹(𝑠). So, these three we discussed in the last class.  
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Now let us talk about the frequency shift. Now 𝐹(𝑠) is the Laplace transform of 𝑓(𝑡) then 

Laplace of 𝑒−𝑎𝑡𝑓(𝑡) would be,  

ℒ[𝑒−𝑎𝑡𝑓(𝑡)] = ∫ 𝑒−𝑎𝑡𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡 = ∫ 𝑓(𝑡)𝑒−(𝑠+𝑎)𝑡𝑑𝑡
∞

0

= 𝐹(𝑠 + 𝑎)
∞

0

 

ℒ[𝑒−𝑎𝑡𝑓(𝑡)]= 𝐹(𝑠 + 𝑎) 

So you can say that in case of frequency shift, ℒ[𝑒−𝑎𝑡𝑓(𝑡)] can be obtained from the Laplace 

transform of 𝑓(𝑡) by replacing every 𝑠 with 𝑠 + 𝑎. So, this particular property is called as 

frequency shift or frequency translation. 
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Now let’s take an example. We know, 

cos 𝑤𝑡 ⇔  
𝑠

𝑠2 + 𝑤2
 

and    

sin 𝑤𝑡 ⇔  
𝑤

𝑠2 + 𝑤2
 

 

Now if we use shift property we need to obtain the Laplace transform of the damped sinusoids  

that is damped sine and cosine functions means we are multiplying cos 𝑤𝑡 or in sin 𝑤𝑡 with 

𝑒−𝑎𝑡. 

Then its Laplace transforms can be given by simply replacing 𝑠 with 𝑠 + 𝑎. So,  

ℒ[𝑒−𝑎𝑡 cos 𝑤𝑡)] =
𝑠 + 𝑎

(𝑠 + 𝑎)2 + 𝑤2
 

ℒ[𝑒−𝑎𝑡 sin 𝑤𝑡)] =
𝑤

(𝑠 + 𝑎)2 + 𝑤2
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Now let’s talk about the time differentiation if 𝐹(𝑠) is the Laplace transform of 𝑓(𝑡) then we 

need to find out the Laplace transform of its derivative, i.e., ℒ [
𝑑𝑓

𝑑𝑡
]. So, we use the standard 

definition of Laplace transform as,  

ℒ [
𝑑𝑓

𝑑𝑡
] = ∫

𝑑𝑓

𝑑𝑡
𝑒−𝑠𝑡𝑑𝑡

∞

0−

 

Now, how you will solve this particular type of integral? We will use the integration by parts 

method. So, the same property we will use for finding out the integral of this equation. So here 

let u = e−st , du = −se−st dt, and dv =(df/dt) dt = df (t), v = f (t). Then  

ℒ [
𝑑𝑓

𝑑𝑡
] = 𝑓(𝑡)𝑒−𝑠𝑡|0−

∞ − ∫ 𝑓(𝑡)[−𝑠𝑒−𝑠𝑡𝑑𝑡
∞

0−

 

                                          = 0 − 𝑓(0−) + 𝑠 ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡 = 𝑠𝐹(𝑠) − 𝑓(0−)
∞

0−

 

ℒ [
𝑑𝑓

𝑑𝑡
]= 𝑠𝐹(𝑠) − 𝑓(0−) 
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So now similarly, you can take the second derivative of f (t) also. So, you will get ℒ [
𝑑2𝑓

𝑑𝑡2]? 

ℒ [
𝑑2𝑓

𝑑𝑡2] = 𝑠ℒ[𝑓′(𝑡)] − 𝑓′(0) = 𝑠[𝑠𝐹(𝑠) − 𝑓(0−)] − 𝑓′(0) 

= 𝑠2𝐹(𝑠) − 𝑠𝑓(0−) − 𝑓′(0) 

ℒ[𝑓′′(𝑡)]= 𝑠2𝐹(𝑠) − 𝑠𝑓(0−) − 𝑓′(0) 

If you continue in this manner you can create more generic Laplace transform that is for nth 

derivative of f (t)  which you can write as,  

ℒ [
𝑑𝑛𝑓

𝑑𝑡𝑛
] = 𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1𝑓(0−) − 𝑠𝑛−2𝑓′(0−) − ⋯ . . −𝑠0𝑓𝑛−1(0−) 

The value of derivative that is first derivative at zero and so on up to the value of derivative n 

minus 1 at derivative at zero. So, this is your genetic expression for finding out the Laplace 

transform of 
𝑑𝑛𝑓

𝑑𝑡𝑛 . 
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Now let us talk about the time integration. Now F(s) is the Laplace transform of f (t) then 

Laplace transform of its integral is, 

ℒ [∫ 𝑓(𝑡)𝑑𝑡
𝑡

0

] = ∫ [∫ 𝑓(𝑥)𝑑𝑥
𝑡

0

] 𝑒−𝑠𝑡𝑑𝑡
∞

0−
 

 To integrate this by parts, we let 

                                              𝑢 = ∫ 𝑓(𝑥)𝑑𝑥,              𝑑𝑢 = 𝑓(𝑡)𝑑𝑡
𝑡

0
   



And                        

                                              𝑑𝑣 = 𝑒−𝑠𝑡𝑑𝑡,                        𝑣 = −
1

𝑠
𝑒−𝑠𝑡 
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So, when you use the integration by parts property you will get the function  

ℒ [∫ 𝑓(𝑡)𝑑𝑡
𝑡

0

] = [∫ 𝑓(𝑥)𝑑𝑥
𝑡

0

] 𝑑𝑡 (−
1

𝑠
𝑒−𝑠𝑡𝑑𝑡)|

0−

∞

− ∫ (−
1

𝑠
) 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

∞

0−

 

Now if you see carefully this particular expression what you will see when the term t tends to 

infinity? Let us talk about the first expression, first term which you have in this expression.  

For the first term on the right-hand side of the equation, evaluating the term at t = ∞ yields zero 

due to e−s∞ and evaluating it at t = 0 gives 
1

𝑠
∫ 𝑓(𝑥)𝑑𝑥

0

0
= 0.   Thus, the first term is zero. Finally 

what we are left with is,  

ℒ [∫ 𝑓(𝑡)𝑑𝑡
𝑡

0

] =
1

𝑠
 ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

∞

0−

=
1

𝑠
𝐹(𝑠) 

ℒ [∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
]= 

1

𝑠
𝐹(𝑠)
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Now let’s talk about the frequency differentiation. If F(s) is the Laplace transform of f (t), then 

𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 

Taking the derivative with respect to s, 

                          
𝑑𝐹(𝑠)

𝑑𝑠
= ∫ 𝑓(𝑡)(−𝑡𝑒−𝑠𝑡)𝑑𝑡 = ∫ (−𝑡𝑓(𝑡))𝑒−𝑠𝑡𝑑𝑡 = ℒ[−𝑡𝑓(𝑡)]

∞

0

∞

0
 

So,  

ℒ[𝑡𝑓(𝑡)] = −
𝑑𝐹(𝑠)

𝑑𝑠
 

For more generic you can write like,  

ℒ[𝑡𝑛𝑓(𝑡)] = (−1)𝑛
𝑑𝑛𝐹(𝑠)

𝑑𝑠𝑛
 

This expression will give you the frequency differentiation property.  
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Now let’s talk about the time periodicity, if the function f (t) is a periodic function which is 

shown in the figure it is periodic with period t. So, it can be represented as the sum of time 

shifted functions, how? Let us see in the next line, so if you have this function you can divide 

this periodic function into three parts. 

(Refer Slide Time: 14:21)  

 

So, one is say 𝑓1(𝑡) which have a period between 0 to t. Second is 𝑓2(𝑡) which has a period 

between t to 2t and third is having the period between 2t to 3t. Now if you are compiling the 

function  

𝑓(𝑡) = 𝑓1(𝑡) + 𝑓2(𝑡) + 𝑓3(𝑡) + ⋯ .. 



You can write the above expression in terms of  the step functions as,  

𝑓(𝑡) = 𝑓1(𝑡) + 𝑓2(𝑡) + 𝑓3(𝑡) + ⋯ .. 

                =𝑓1(𝑡) + 𝑓1(𝑡 − 𝑇)𝑢(𝑡 − 𝑇) + 𝑓1(𝑡 − 2𝑇)𝑢(𝑡 − 2𝑇)+.. 

Now if you are asked to find out the Laplace transform of the periodic function that is 𝐹(𝑠) 

what you will write? You will write the Laplace transform of function f1(t) that is F1(s). Then 

we will use the time shift property and we will write the Laplace transform of the second term 

that will become 𝐹1(𝑠)𝑒−𝑇𝑠. For third term it will become 𝐹1(𝑠)𝑒−2𝑇𝑠 and so on. You will 

finally get the expression,  

𝐹(𝑠) = 𝐹1(𝑠) + 𝐹1(𝑠)𝑒−𝑇𝑠 + 𝐹1(𝑠)𝑒−2𝑇𝑠 + 𝐹1(𝑠)𝑒−3𝑇𝑠 + ⋯. 

                                   =  𝐹1(𝑠)[1 + 𝑒−𝑇𝑠 + 𝑒−2𝑇𝑠 + 𝑒−3𝑇𝑠 + ⋯ ] 
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So now if you sum up the series 

1 + 𝑥2 + 𝑥3 + ⋯ . =
1

1 − 𝑥
 

if |x| < 1. So now if you use this particular property you can simply write  

𝐹(𝑠) =
𝐹1(𝑠)

1 − 𝑒−𝑇𝑠
 



So, what we can observe from this? We can observe that F1(s) is the Laplace transform of f1(t) 

that means it is the Laplace transform of function defined over its first period only. Now what 

we get? If you want to find 𝐹(𝑠) that is the Laplace transform of complete periodic function 

we have to divide F1(s) by 1 − e−T s then we will get the Laplace transform of complete periodic 

function.  
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Now let us talk about two important properties, the initial value and the final value theorems.  

These two theorems are very important in finding out the initial and final values of function. 

So that means this allow us to find the value of function at time t is equal to 0 and the value of 

function at infinity. And we can find out these two values directly with the help of Laplace 

transform of f (t) that is F(s). 

How we will get? Let us try to understand. Let us take the differentiation property of the 

function that is the ℒ [
𝑑𝑓

𝑑𝑡
] so what we write? We write ℒ [

𝑑𝑓

𝑑𝑡
] = ∫

𝑑𝑓

𝑑𝑡
𝑒−𝑠𝑡𝑑𝑡

∞

0
 is nothing but 

𝑠𝐹(𝑠) minus the value of function at zero. Now if we let s →∞ then the integrand in the above 

equation will vanish because of the damping exponential factor. So, if you put the value s as 

infinity we get lim
𝑠→∞

[𝑠𝐹(𝑠) − 𝑓(0+)] = 0. 

So, the whole of the expression to the right of ℒ [
𝑑𝑓

𝑑𝑡
] will become zero. So when it will become 

zero you can simply write it as lim
𝑠→∞

[𝑠𝐹(𝑠) − 𝑓(0+)] = 0 or you can write because these value 

will be a constant value, so you can simply write lim
𝑠→∞

[𝑠𝐹(𝑠)] = 𝑓(0+)]. This particular 

property is known as the initial value theorem. 
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Now in case of final value theorem, we take the same property, i.e,  

𝑠𝐹(𝑠) − 𝑓(0+) = ℒ [
𝑑𝑓

𝑑𝑡
] = ∫

𝑑𝑓

𝑑𝑡
𝑒−𝑠𝑡𝑑𝑡

∞

0
. 

Now if s → 0 what we can write?  

lim
𝑠→0

[𝑠𝐹(𝑠) − 𝑓(0−)] = ∫
𝑑𝑓

𝑑𝑡
𝑒0𝑡𝑑𝑡 = ∫ 𝑑𝑓 = 𝑓(∞) − 𝑓(0−)

∞

0

∞

0

 

This will become the value of function at infinity minus value of function at zero. Now you 

have value of function at zero at both sides, those both will cancel out. So, finally what you 

will get? The value of function at infinity is  



𝑓(∞) = lim
                     𝑠→0

[𝑠𝐹(𝑠)] 

So, if you compare both of them here when s tends to infinity the value of function 𝑠𝐹(𝑠) will 

give you with the initial value. While in case of final value f infinity limit will tends to 0 and 

you will find the value of function 𝑠𝐹(𝑠) when limit s tends to 0. So you can simply remember 

it by understanding that when s tending to infinity means the value which you will get will be 

at origin and when s tends to 0 the value which you will get for the function is at infinity.  
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So, these two are very important theorems but the final value theorem has its own limitation. 

What are those limitations? The final value theorem will be valid only when all poles of F(s) 

must be in the left half of the s plane. What do you mean by poles? Let us say this function,  

𝑓(𝑡) = 𝑒−2𝑡 sin 5𝑡  ↔        𝐹(𝑠) =
5

(𝑠 + 2)2 + 52
 

You will simply take the denominator and equate it to 0 and you try to find out the roots of this 

expression. Since it is a second-order equation you will get two roots of s. So those two roots 

will be nothing but the poles of 𝐹(𝑠). You have to observe whether the value of those roots are 

having any negative real part or not. If poles are having negative real part than only you can 

apply the final value theorem in the function 𝐹(𝑠). The only exception in this case is the case 

when 𝐹(𝑠) simple pole at s equal to 0. Means if this expression is having another component 

like one by s then you will have one pole at s is equal to 0. 



So that is the only exception in finding out the final value theorem. So, these two things you 

have to always keep in mind, when you are asked to find the final value of the function. Now 

let us take the example,  

𝑓(𝑡) = 𝑒−2𝑡 sin 5𝑡  ↔        𝐹(𝑠) =
5

(𝑠 + 2)2 + 52
 

So, the final value theorem if you apply the value of f at infinity will be 

𝑓(∞) = lim
                     𝑠→0

[𝑠𝐹(𝑠)] = lim
  𝑠→0

5𝑠

𝑠2 + 4𝑠 + 29
= 0 

This is what you can see from the function f t also because you have a exponentially decaying 

component with the function. So final value will always be zero. 
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Now let us take another example, let us take the function  

𝑓(𝑡) = sin 𝑡 ↔   𝐹(𝑠) =
1

𝑠2 + 1
 

Now if you apply final value theorem  

𝑓(∞) = lim
                     𝑠→0

[𝑠𝐹(𝑠)] = lim
  𝑠→0

=
𝑠

𝑠2+1
= 0 

But this is wrong, why? Because the function f t that is sin t will always oscillate between plus 

1 and minus 1. And it will not have limit as t tends to infinity. 



Now the final value theorem cannot be used in this case because if you take the poles that is 

the roots of this particular second-order equation. You will see the poles has the value s = ±j 

which are not in the left half of s plane. These two poles do not have any negative real value, 

which means that in this case you cannot apply the final value theorem. So, you have to always 

keep in mind where you can apply the final value theorem where you cannot use the final value 

theorem. 
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You can summarize, that the final value theorem does not apply in finding the final values of 

sinusoidal functions. Because these functions are oscillatory in nature and does not have the 

final values. Now initial values and final value theorems shows the relationship between origin 

and the infinity in the time domain as well as in the s domain. These two theorem also serve as 

a useful check on Laplace transform. 
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So now let us see few of the example, so that we can understand what we discuss till now more 

clearly. Let us see there is function f t which is a combination of unit in pulse, unit step and the 

exponential function. You will use linearity property here & find out the value of the Laplace 

transform of f t. So, let us apply the linearity property. By the linearity property,  

F(s) = ℒ[δ(t)] + 2 ℒ[u(t)] − 3ℒ[e−2t ] 

=1 + 2
1

𝑠
− 3

1

𝑠+2
=

𝑠2+𝑠+4

𝑠(𝑠+2)
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Now let us take another example, if function f (t) = t2sin 2t u(t). So now what we know is that 

the  

ℒ[sin 2𝑡] =
2

𝑠2 + 22
 

Now what you have to do? You must use the frequency differentiation because you have a t 

square item. You have to double differentiate this particular term, that is,  

𝐹(𝑠) = ℒ [t2sin 2t] = (−1)2 𝑑2

𝑑𝑠2
(

2

𝑠2+4
) =

12𝑠2−16

(𝑠2+4)3
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Now next is if we are asked to find out the Laplace transform of gate function. So, what we 

can see here? This is a gate function which starts from two and completes at three. You can say 

that this particular function is combination of two unit step function, how? You can say this 

function g(t) = 10[u(t − 2) − u(t − 3)]. 

You can just take the Laplace transform of both unit step function delayed by their respective 

time period. The Laplace transfer will become  

𝐺(𝑠) = 10 (
𝑒−2𝑠

𝑠
−

𝑒−3𝑠

𝑠
) =

10

𝑠
(𝑒−2𝑠 − 𝑒−3𝑠) 

So now with these, we can close our today’s session. In this session discussed about the 

properties of the Laplace transform. And the next class we will discuss about the calculation of 

inverse Laplace transform thank you. 


