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Hello and welcome to NPTEL MOOC on Electromagnetic Waves in Guided and Wireless
Media. In this module, the first round up a couple of facts about wave guides that we have
been considering and then start discussion of a very important topic called as radiation.

Now as before, I mean, before we go to the radiation, let us recall couple of facts and then
introduce additional two, three facts waveguides which I would like to tell you.
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One is we already have seen the expression for the propagation constant of a given moode,
right, inside a rectangular waveguide and this is the expression that we have. And if you look
at this expression, of course, this expression is for a particular mode, which will have a index
of m and n and that would have a refractive index of, sorry, that would have a cut-off
frequency of f., and of course beta (f) will also be specific f of m and n.

Now we will keep m and n to be constant. For example, this could be a TE;y mode or this
could be a TM ;o mode or 11 mode or you can have a TE,; mode. Whatever the mode that we
are considering, we will keep the mode to be fixed, but once you fix m and n, the
corresponding value of 3 also gets fixed or at least it would be by given by this expression,
and you have to also notice that this B is a function of omega (w). That is B is actually
changing with respect to frequency. Okay.
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Now in the previous case where we had this waves in the free space, right, so we considered
the propagation of waves in the free space called as uniform plane wave propagation. In that
uniform plane wave propagation, you had the waves propagating as say e’ correct, as far as
the z propagation is concerned, and then we said that the relationship between ® and f, right,
was actually given by the ratio of ® to f was actually given by what is called as the phase
velocity u,. Okay.
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Now in this mode case, that is in the waveguides scenario, you still have the same kind of a
relationship between ® and P. Okay. So we will define, without worrying too much about
this, we will define what is ®/p, and we will call this as the phase velocity u,, and using



expression for B in this particular, you know, expression here in this expression, the second
expression, what you get here is w/oVpe multiplied by this factor, which 1-(f./f)>. Okay.

I can cancel o from both sides and then once I remove ® from the expression, what I get is
1/\pe. For a waveguide that is filled with & = &, and p = po meaning that the no material is
filled. 1/\pe will actually be equal to ¢, which is the speed of velocity or the velocity of light
in the free space or in the air medium, right? So, for air, € is approximately equal to €. So for
only for the air filled case, you have c/\N1-(f./f)>. Okay.
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If not, you can replace this one by say some ugy, which is my notation for the velocity of the

wave in the medium that is given by ¢ of ¢ whatever the different values of ¢ Epsilon and a
different values of p. Of course, in our consideration, p has been set to 1y and € can be set to
& times &.

So when you fill the rectangular waveguide with a material which is not air, but some other
dielectric material, which is characterised by the permittivity &, then the corresponding
velocity we will write it as uy, which is basically the expression for 1/Vue and the remaining

factor that I still have is 1-(f/f)*
(Refer Slide Time 04:07)
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Now we have said that for a particular mode to propagate, f has to be greater than f.. Now if f
is greater than f., f./f will be less than 1. So square of a quantity that is less than 1 will also be
less than 1. One minus of that quality will still be less than 1 and the square root of this will
also be less than 1, but because this factor is in the denominator, what you would actually
observe is that u, will be greater than c, right? So it kind of seems to indicate that the phase
velocities greater than the speed of light, right, when the material is filled with air, the speed
of the phase velocity u, happens to be greater than the speed of light, which, you know,
perhaps would contradict from our Theory of Relativity, which says that no information can
actually propagate at a speed which is greater than the velocity of light, which is c.
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So how is it that we can reconcile the two statements that u,, the phase velocity is greater than
¢, but is it also mean that can we signal or send information from one point of the waveguide
to another point of waveguide at a velocity greater than c? No, it does not mean that. Please
remember that no information is actually being conveyed by the phase velocity.

So no information is conveyed by this phase velocity u, meaning that see in the parallel plate
waveguide, we assume that the waves can be thought of as these bouncing back and forth
from the walls, right? So this bouncing back and forth with an oblique incidence and so on.
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What this phase velocity would simply tell you is that what is the velocity with which this
slanted ray or the obliquely incident ray should actually be moving. Because this length is
larger than this length to satisfy the condition that, you know, the waves actually have to
become the phase of this particular, I mean, segment and this segment should actually be in
phase, it means that the wave has to actually propagate a longer distance in the same
timeframe as you go to the horizontal distance, the distance that is propagated by this oblique
k vector or oblique this one should be larger, but this does not mean that information is
actually being conveyed because this is true only for some mathematical point of a phase,
okay, and knowing that or not knowing that, you cannot know any kind of an information.
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Rather information is contained only when the frequency changes or the phase changes, right,
or of course amplitude changes, but we will ignore the amplitude change for now. We will, so
for any change that or for any information that needs to be conveyed, the information has to
be in the form of some changing frequency or changing phase because if it isn’t changing,
then you're not conveying any information. Okay.

So what quantity measures this rate of change of information is what the velocity at which we
want to propagate. Okay. And that quantity happens to be what is called as group velocity.
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The basic idea of group velocity is that you can consider two sinusoidal signals of

frequencies ®; and ®, and then see that they are basically propagating along say with 3, and




B.. B1 and B, are the propagation constants at these two frequencies. We will assume that both
of these are of the same mood. For example, this could be the fundamental or the dominant
TE,, mode and different frequency, different propagation constant, which is allowed, but both
o and o, are obviously greater than the minimum of the cut-off frequency for the TE;, mode.
I am giving you an example of the TE . It could be any other mode, but we will assume it to
be of the same modes, right?
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So if you now look at the overall field or overall electric field to be the combination of these
two, what you would actually realise is that there will be two additional frequencies that are
introduced, which are o, + ®, perhaps by 2 and then there will be an ®, - ®, by 2, okay,
because this is a straightforward cosine addition. Okay. And you can see that this is a slower,
you know, a lower frequency. This one is a higher frequency.

So if you now sketch, what you would actually be able to see for a given z, the combination
would actually look something that would be very familiar to you. So you have this kind of a
combination, and then, you know, you have this carrier, which is what the frequency ; + ,
by 2 would look like, and then this is the envelope, which is changing, and this envelope
frequency would be proportional to ®; - .. Okay.
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So you have a slow frequency wave riding on the high-frequency carrier and you're not
interested in what speed that the carrier will move, right? So if you were interested in what
speed the carrier will move, you can mark of a point and then look at what is the distance, |
mean, what is the time taken for this point to go through a given phase reference of whatever
and that velocity will turn out to be u,. Okay.

However, if you're interested in knowing what is the rate at which this particular peak is
moving, right, or in some sense the envelope is moving, this entire slow varying envelope is
moving, that velocity will actually be u, or the group velocity. Okay. And you can show by
some detailed analysis, which we are going to skip now in the interest of time, that this d, I
mean, U, can actually be given by the derivative of B with respect to ® . Okay.
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So this is what you get u, as df/dw and it is the rate and it is this velocity with which
information will actually begin to propagate or information can be conveyed. So this is the
velocity of information that is being transmitted. So information velocity I can write this.
Okay. And this information velocity happens to be less than c, which is the speed of light or
in general it would be less than u,. Okay.
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Why? Because let us go back and look at the expression for B, which we've already written
there and then differentiate that expression of f. Okay. When you do that, you will see that
group velocity is given by in general uy,V1-(f./f)>. Okay.



So if this is fc and when you operate at an f, which is much, much higher than f. meaning that
this particular mode is now well represented, the ratio of f. to f will be almost 0. Sorry,
almost, yeah, almost 0, and this further implies that u, will be approximately u. All the time
it will actually be less than that, but this is an approximation, right?
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So as you move away from the cut-off frequency, the group velocity will actually approach
the phase velocity and in fact it does become independent of the frequency. So if you want a
good distortion less transmission, that is your pulse should not be distorted, you want to
operate at a frequency which is higher than the cut-off frequency, but there is also a catch
here that as I start increasing the operating frequency, there may be additional modes that

would come in.

For example, this could be TE,. This let’s say is TE . So if you take your frequency beyond
this, then you have to deal with the fact that there could be multiple such modes and
information will anyway be or the pulse will anyway be distorted. Okay. So this range where
you are going to operate between, you know, the first or the dominant mode and the onset of
the next higher-order mode is called of the single-moded region. Okay.

(Refer Slide Time 11:35)
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This is very similar to the fibre case that we discussed. So you had this v number and then
once your operating number became greater than some 2.405 and if it went beyond that, then
you would actually have these additional modes coming in, right?

So the fibre would not be single-moded beyond the cut-off frequency of 2.4 for a step index
profile. In that same type you have a single-moded rectangular waveguides, which may
become multi-moded as the operating frequency increases beyond a certain range. Okay. And
when it does happen, distortion will be introduced. Okay.

However, if you are operating within this, you still will have some amount of distortion
because this u, will not be approximately uy, but rather u, will be a mild function of
frequency. Okay.

In fact, let us do this. This is a more convenient way of looking at what is the phase velocity
and group velocity. Suppose I plot this B versus ®. Okay. I will assume that  is the
independent variable and then simply plot ®. You can, of course, switch the axes; doesn't
really matter.

What is interesting is there will be no real value of B until a particular cut-off frequency. This
in the case of a rectangular waveguide, this would be the TE;, mode. So until this cut-off
frequency occurs, the value of B will be imaginary and I am not representing that one in this
axis. Okay.

But once B or rather once o starts to increase from w.,  will actually start to increase. Okay.

(Refer Slide Time 13:04)
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In the asymptotic case, that if this is the kind of an asymptotic case, which I should actually
write it in this manner, okay, the ratio, at any point, the ratio of ® to B3, so this is some ®o; this
is some Py. The ratio of this one will give you u,.
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However, to obtain the u,, that is group velocity, you have to actually draw a tangent here and
then measure the slope of this tangent, which will give you u,. In fact, take it from me that the
product u, times u, will be uy®. Okay. So that's another check or that’s another way in which
you can obtain what is the value of u, given that you know what is u, as well as the phase
velocity u, at any given frequency. Okay.

(Refer Slide Time 13:46)



So we will stop discussion about the velocities here and then point out discussion, two

discussions here about the impedance.

See when we talked about the uniform plane wave, right, so we had this electric field
amplitude to the magnetic field amplitude ratio, and then we said that this ratio is what we are
going to call as the wave impedance or the characteristic impedance of the material medium.
But in the case of a waveguide, what could such a thing be?

Because you have the transverse mode, right, you also have the longitudinal mode. So I can't
simply tell the ratio of electric field to the magnetic field. I have to specify what is the ratio
that I am actually looking for.

So in the case of an obliquely incident wave on a medium interface for the TE or TM, we did
introduce the idea that you can always look for the tangential component to the boundary of
the electric field and then the magnetic field, corresponding magnetic field and call that as the
impedance, equivalent impedance. So you remember this 1} Sec 0 or 1, n Cos 6 being the two
types of impedances that we found, right?

In that same lines, we can actually go back. In fact, we can go back to Maxwell's equation,
find out the expression for Ex and Hy for the TE mode as well as for the TM mode.

(Refer Slide Time 15:05)
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Remember for the TE mode, E, = 0; for the TM mode, H, = 0 and you can find out the
expression for Ex and Hy and then take the ratio of Ex to Hy. Okay. If you do this for the TE
case, we will call this as Zrg and that would be the equivalent impedance of the mode that

would be propagating in the waveguide. So that is Zre, which you can show is given by n/V1-

(£./)".

How do you know this one? This is I will leave it is an exercise. Remember you have actually
written Ex as a function of del E; as well as del H,, right? So there you had written Ex as a
function of Z and H, derivatives.

(Refer Slide Time 15:50)
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Similarly, you would have written the function for Hy, right? This was the first step that we
talked about when solving the waveguide problems and from those expressions, setting
appropriately E, = 0 or H, = 0 you are going to get this equation. Either they would be op/3
or we by P/we. Okay. So when you substitute the appropriate value of B into that expression
that you're going to get under these two conditions, you can show that Z will be n by this
factor and you can show that Zry will be 1 times 1-(f./f)*.

(Refer Slide Time 16:27)
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So if you're looking at a particular mode that you're interested in, then what you can see is
that at f = f,, of course, before f = f; there is no concept of an equivalent impedance because
there is nothing really happening, but at f = f. what would happen is that this denominator
will be 1 and then the impedance Zrx will be infinity. So it’s like an open circuit out there and
then at f./f going to 0, Ze will eventually approach the value of characteristic impedance.
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So the line that I have drawn here corresponds actually to the characteristic impedance Z, or
the characteristic impedance 1, right? So in this particular case, 1) will simply be equal to V/e
for the material filled waveguide. For a free space, it would essentially be free space
characteristic impedance. Okay. So this is Zr.

(Refer Slide Time 17:20)
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What will you see for the Zrv? For Zrv, you will actually see that it would be 0 when f is
equal to f; and from being a short circuit it actually again increases and eventually it becomes
that of the characteristic impedance of n. So both TE as well as TM will start off with
different values, but as the frequency increases beyond the cut-off of that particular mode,
they both will converge to a common, I mean, common impedance of 1, which is the material
impedance. Okay.



So we stop our discussion of waveguide. So to kind of summarise what we have done, we
have seen waves in free space, right? So this justifies our wireless media propagation kind of
a, you know, subtitle for the course where we saw that the corresponding modes of the
waveguides were the uniform plane waves, right? These ways had the structure that their, you
know, electrical field and magnetic fields were, you know, kind of perpendicular to each
other. Therefore, they were also called as transverse electromagnetic waves.

(Refer Slide Time 18:25)
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We then saw parallel plate waveguide. Okay. We saw this one either as a metallic waveguide
or in terms of the dielectric waveguide. Here the modes were actually functions of x because
I assume that this was going along x thing, right? So the functions in the case of a rectangular
waveguide were exactly cosine and sine whereas for the dielectric waveguide they were
exponentially decaying out, and therefore they were actually somewhat like this, right? So
this was for the dielectric waveguide and this was for the metallic waveguide.
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And when you go to a fibre, so that would correspond to a cylindrical rod in the sense. So,

again, for the metallic waveguide, we haven't really shown what the solutions are, but you
can guess the solutions to be some sort of a Bessel functions. Okay. So the Bessel functions
would, of course, go to zero at the boundary because that's what the boundary condition for
the metal would be, but in the case of an optical fibre, this mode would actually be these
different modes HE,;, LPy; and so on. Okay.
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So for the case of a dielectric, I mean, for the case of a metallic waveguide, you still have the
hybrid electric and other modes, but the mode structure will be something like that would be
zero here whereas for the fibre, it would be some Bessel function followed by an exponential
decay, right? So you can also have this other kind of a thing. So these are all valid modes and



these are, so what these functions are now not just f(x), but they are rather f(x, y) or if you

prefer, you can write this as f(r, @), right?
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So now you see that the modes of the cylindrical rods waveguides or the fibres, they are
actually becoming functions of two variables r and ¢. Okay.

Then, finally, we also studied this rectangular waveguide in which case the functions were
again some function of x and function of y in the form of a sine and a cosine wave, but then
that also illustrates the fact that for the rectangular waveguide that we considered, right, the
mode functions are again sine or a cosine waveform, but then, you know, this is the
rectangular waveguide that we considered and this mode is essentially the transverse

distribution, which would be propagating, right?
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So what we've seen is that when I say something as mode, by mode what I mean is the set of
electric field and magnetic field patterns that would satisfy Maxwell's equations as well as it
would satisfy the boundary conditions. Okay. So that is what the propagation in different
media that we have already seen.

Now we haven't really addressed one very important question here. Okay. That question is
how did we generate the -- how did we generate uniform plane waves, right?
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What was our methodology to generate uniform plane waves? I mean, mathematically, you
could simply write a set of equation. We wrote that equation called as Helmholtz equation.

We found that the solutions of that could be something and since there was no boundaries, we




had the form of the solution and we called that as the uniform plane wave, and we also
figured out that the structure for transverse electric, I mean, electric field and magnetic fields
would be transverse to each other and we call it as a Tey wave. But who was generating those
waves, right?

Technically, uniform plane waves do not exist because they would imply certain other
conditions as we have treated earlier. They cannot be generated. However, waves which are
travelling from very far away distance, for example, light that is travelling from Sun and
falling onto the Earth, the wave front or the plane, you know, the face front of that one can be
approximated in a very, very good approximation as a plane wave. Okay.

Technically, they will be spherically as we will see sooner, but when the sphere radius
becomes very, very large, we are talking of thousands and millions of kilometres, what is
happening is that the curvature would be very small and you can almost treat the curvature to
be of infinity in the sense that you're treating them as a plane wave itself, right? So there has
to be some source which is kept far away from some distance and then as you keep moving
away and away from the source, you would see that the waves that are generated by that
source can be thought of as uniform plane waves.

Indeed what kind of sources are required and what is the mechanism that is generated or that
is, that is necessary or what is the mechanism that actually gives rise to waves, which may
not be just uniform plane waves? This was just an approximation. What are the actual waves
that are generated, right? And if they are generated, what of the devices can generate them
and what will happen for these waves as they propagate? Can they be recaptured? Can their
energy be tapped by some way? The question, the answer to these questions is what we are
going to occupy for the next few modules. Okay.

As a preparation to that topic, which we can combine or we can put it in the heading called
Radiation and Antennas, okay, radiation is the phenomenon in which the waves which are
generated from antennas actually propagate the mechanism, the waves, the way they
propagate is what radiation is, and the devices that does radiation or the devices that radiate
electromagnetic waves is called as the antennas. Okay. So antennas generate waves or
generate radiation and this radiation propagates. Okay.

So what we are going to do for the next few modules is to look at this radiation phenomena,
address some interesting, you know, effects of antennas and then we consider the radiation to
be very important because radiation leads to propagation because once the fields are radiated,
the radiated friends must propagate. Okay. And when they propagate, for example, in the
wireless net, you know, communication scenario, they will usually be also carrying
information. Okay.

So when there is an electrolytic wave, which propagates, and it suddenly sees a building,
what should the electromagnetic wave do? Should it go and hit the building and come back?
Well, if the building is made entirely of metal, it exactly does that, but if the metal, it's not a
metal, but it is some other kind of a building and maybe the building is not completely



infinity in every extent, it is just a small portion of the building or there is an obstacle
somewhere, you know, someone is standing there, I can’t model a person as a building, so
what will happen to the electromagnetic waves?

So all these questions become very important because answering these questions will tell us
many things about the way information itself can be changed by these obstacles, okay, and
that comes under what is normally called as the channel modelling. So we are going to look
at some aspects of the channel modelling after we have understood the fundamentals of
radiation.

As a preparation for radiation, let me begin with couple of very simple equations. Okay. Let
me write down this equation for you. I have this V X E, right, which is given by, usually, it
would be given by -Vb/Vt because you are normally in the range, I mean, considering in the
scenario of what is called as dynamic scenario, time is varying, but for now we will simply
assume that time is not of an important quantity. We will make that equal to 0 meaning that
we are in what is called as the static case. Static means nothing is changing with respect to
time. Time is not an important factor.
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So I have this equation V X E =0 and I also have an equation which says V X H = J. In this
case I can write V.E = p/e because you know in the free space on in the medium that we are
considering, in the static case, E and t are simply related by a constant of proportionality
which we will take it to be €. Of course, in our case we can imagine that € to be equal to €.

Okay. So no worries about that.

So in the medium that we are considering, we are considering the medium of a permittivity
€. You also have V.B = 0. Okay.

(Refer Slide Time 26:27)
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These are the equations of Maxwell's equations or rather these are the Maxwell's equations in

the static case. Okay.

Now vector analysis tells us that if the curl of some field is equal to 0 and provided the field
is continuous and satisfies certain conditions, then I can express that field as a gradient of a
scalar function. Okay. I have put a ‘minus’ sign because of the conventional that we use in
electric field. Okay. So don't worry about the ‘minus’ sign thing, but remember that if this is
true, then this can be done. Okay. And this is okay because gradient of a scalar will give you a
vector field, right? Okay.
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Another theorem from vector calculus tells you that if the divergence of a quantity, vector
field quantity is equal to 0, then you can express that vector quantity as curl of another field.
Okay.

So you may have seen these variables ¢ and A. This ¢ is called as electric scalar potential. It
is obvious that it is scalar because it doesn't have a vector thing and gradient operation on a
scalar will result in a vector, which is the electric field. This quantity, which you may not
have seen earlier or you may have seen but forgotten, is actually called as magnetic potential
or sometimes called as magnetic vector potential. Okay. And we will usually drop the word
vector because we kind of understand that when we are dealing with vector potentials, we
only deal with the vector potential corresponding to the magnetic field B. Okay.
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So I have these two relationships. Okay. If I use this Gauss’s Law and then substitute for the
electric field from this theorem, right, I will get -V that would be equal to p/e.

(Refer Slide Time 28:23)



EEEEEEE B EEEEEw fHL->-S<x ™ -3

L o) _Iuj e 1‘_W_ v P hJa 4
Roadiakin (& Hedeoves)

Divergence of the gradient, okay, I move minus onto the right-hand, divergence of the
gradient essentially gives you what is called as Laplacean and then you have V¢ = -p/e,.
This equation is called as Poisson’s equation. Okay. And when p = 0, you get what is called
as a Laplace’s equation. Okay.
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So with Laplace’s equation and Poisson's equation, we find the solutions of this scalar
potential and then we would also like to find the solutions of the magnetic vector potential.
We will do that in the next module.

Thank you very much.

[Music]
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