
Hello and welcome to NPTEL mooc on electromagnetic waves in guided and
wireless media.  In this mode we are going to look at how can we construct
structures,  which  can  guide  electromagnetic  waves  from  one  point  to
another point.  Now we have already seen such structures, okay. The first
structure is the one that has no structure at all, meaning that it was the free
space.  So in the free space, you know, if somehow we were able to generate
the electric and magnetic fields, whose electric field say is along X direction
and whose magnetic field is along the Y direction, then this would be the
electric and magnetic field picture that you would see, these are the electric
field lines and these are the magnetic field lines and these lines are kind of
cross or perpendicular to each other and this pattern essentially propagates
through  the  free  space  or  a  medium,  which  is  homogenous,  filled  with
dielectric or some permittivity epsilon are and the corresponding expression
in terms of the propagation was given by something like E Par J omega T,
where omega is the frequency of the sinusoidal wave times beta Z, okay.
and the amplitude was essentially constant. So if for example we are writing
the electric field, the electric field was the function only of the propagation
direction  Z  and  time as  well  and it  actually  had  a  constant  E0  and  this
constant vector if it is directed along the X axis that we have chosen, then
this we would have called as the X polarized plane wave, if  it  was Y, we
would have called it as a Y polarized plane wave and then the corresponding
expression for H also,  we have written,  right.   And what is  that we have
observed is that these waves are also going from point A to point B, they do
carry a pointing vector S, which is given by E cross H in the instantaneous
case  or  half  real  part  of  E  cross  H  conjugate,  when you  convert  all  the
quantities in terms of the phases, right.  So in some sense the pattern that
we have seen, the X and Y, you know, lines that you see here, this cross
pattern that you see can be thought of as the mode, and this mode which
satisfies Maxwell's equation as well as the boundary conditions, well in this
case there are no boundaries, so the only condition that you are satisfying is
the Maxwell's equation.  And any such pattern, which would satisfy Maxwell's
equation and if  there are boundary conditions,  can be called as a mode.
Therefore please take this as a take away of this you know, whatever, that
we have been discussing over the last few modules is that plane waves can
be considered as modes of the free space media or a homogenous media.,
okay.  So that was free space.  Unfortunately the problem with free space is
that  the  wave,  you know,  amplitude,  first  of  all  they are  not,  you know,
mathematically, well mathematically they are possible, but physically they
are not possible, because that would require the energy to be very high.  It
would actually be infinity, because you can imagine a cross section, which
could extend all  the way from minus infinity to plus infinity,  you know a
square  in  the X Y  plane,  and then you would  see that  electric  field  and
magnetic field in the corresponding S will be a constant in that entire space
and the overall power that you are going to get or energy that you are going
to get when you integrate the pointing vector would be non, I mean it would
actually go to infinity, because you can extend the area.  So moreover these



free  space,  the  uniform plane waves  that  we have taken do not  have a
focusing kind of a property.   Like you know, if  for example my, how do I
receive such uniform plane waves.  I mean, I can put up my receiver in some
way, we are going to talk about what kind of receivers we need to use, but
there is not… there is no focus.  I mean, this receiver is no more special then
a receiver that would be put at another position, right.  So because of this
they are not really being guided, more so they are kind of flowing.  So yes,
free space is also guiding waves, but in this sense, the word guide is not very
tightly defined for the free space waves.  We then found out a different kind
of a structure, in that in at least in the integrated optical circuits, what we
found was that if you take a slab of some permittivity as M1 and refractive
index N1 and then surround this slab of materials which have permittivity or
here refractive index N2 less than N1 and in this case N3 also less than N1,
then it is possible for us to have guided waves, which would propagate.  And
if  you  assume  for  a  minute  that  you  are  looking  at  the  electric  field
component of this one without bothering whether we are dealing with the TE
or TM modes, then this electric field actually had some function of X, correct,
because  I  am  assuming  that  this  direction  is  along  X  direction  and  this
direction is along Z directions.  The waves should propagate along Z. So in
terms of the phaser we had this E Par –J beta Z and this function F of X ray,
right.  And different type of functions were present.  So one example for the
symmetric case that we saw was that, in between you had, that is in the slab
you had a nice cosin wave, sorry or a cosin wave, right.  This is the center of
the slab that I have taken that is this particular line and then outside you had
actually this exponentially tapering off or exponentially decaying fields, right.
You could of course have a sin kind of a variation as well.   She this was
another mode that would also decay out and you could have more such kind
of decaying and that such kind of variations within the slab.  So these are all
correspondent to different sin and cosin functions, oscillating with respect to
whatever the KX oscillation corresponding to the KX value of these fields.
But it  was important to… it is important to distinguish that these are not
plane waves, which is very obvious, right.  You look at these two expressions.
Although we have not specified the form of F of X, I told you that these are
trigonometric cosin and sin functions. Such a function is absent in this E0,
right. So which clearly indicates that although in terms of the phaser, the
propagation part along Z is the same for both types of modes, this particular
mode  is  more  confined  in  the  slab  and  the  outside,  you  know,  of  this
particular slab, the energy basically decays rapidly, even exponential form.
And  this  is  you  know,  kind  of  matches,  this  kind  of  matches  without
expectation of how a mode or a wave would be guided inside a material,
right.  So you can imagine that I actually have this kind  of a slab, okay.  So
this is the slab that I have and then this is the Z axis.  So the mode which
would essentially look something like this and exponentially decaying, would
actually propagate along this particular direction. So the mode is actually
propagating from one point to another point.  It would be propagating along
this Z direction, okay.  So this was one type of a structure.  We also saw



another structure, although we did not discuss into great detail because the
equations  were  going to  be  very complicated,  but  we also  saw that  this
structure,  which  is  called  as  optical  fiber,  works  basically  on  the  same
principle that you have N1 les than… I mean N1 in the core and then N2 in
the cladding being less than frequent… I mean less than the refractive index
of the core.  And then again the solutions were slightly different.  They were
not really F of X, but they were kind of Bessel functions of appropriate order,
right.  So some J Nu of R, where R is the radial distance along the center,
right.   So  in  the  fundamental  case,  which  we  said  in  the  weak  guiding
approximation, you are going to get something called as linearly polarized
modes.  In this case you had LP01 or LP11, these are the different orders of
the modes and the mode structure was getting more and more complicated,
right.  In fact the basic difference between this integrated optical structure
that we saw and this one is not only that you have the mode function, which
is different from the previous mode functions like F of X becoming J Nu of R.
The point with this electric, sorry with this optical fiber is that you not only
have the X component, or in general you have all three components, ER, E
Phi, and EZ.  In the weak guiding approximation, you can have only ER and E
Phi, but there will be a very weak EZ or weak HZ, depending on which mode
that you are looking at.  So in general the two solutions of an optical fiber will
have all six non 0 components ER, E Phi, HR, H Phi, EZ, and HZ, but in the
weakly guided approximation you can say that EZ and HZ are kind of very
weak, compared to the transverse components ER and E Phi, E… HR and H
Phi and because R and Phi plane can be equally talked about in terms of X
and Y, can be converted into X and Y plane. We normally talk about EX, and
EY, and EZ.  EZ is in terms of magnitude very small, compared to EX and EY,
okay.  But the point is these two had a certain mode structure.  These modes
are  essentially  those  electromagnetic  solutions  or  solutions  of  the
electromagnetic equations, would satisfy Maxwell's equations and in addition
they would also satisfy  the boundary condition.   In  this  case you have a
boundary at R=A core and another boundary, which we are taking it to be
quite far away from the core itself.  So what I am trying to get to you is that,
when we say a mode, there is only two conditions that a mode has to satisfy,
one is Maxwell's equation, okay.  These have to be satisfied by all modes,
obviously, otherwise, if you have electric and magnetic fields, which are not
satisfying  Maxwell's  equations,  then  they  are  not  true  solutions  of
electromagnetic field model.  So clearly that cannot happen at least to our
situation that we have considered.  And then we have to satisfy the boundary
condition.  These waves have to satisfy appropriate boundary conditions and
depending  on  the  type of  a  geometry,  the  boundary  conditions  will  also
slightly  be,  the… will  result  in  components,  which are different  from one
component.  So for example, in the plane R slab case, the mode condition
was sinusoidal or the boundary conditions were on a plane and therefore the
solutions that you get F of X, were all trigonometric functions, but when it
comes  to  optical  fiber,  the  structure  is  cylindrical,  so  the  corresponding
variables have to be used.



(Refer Slide Time: 10:22)

In between this, we have also seen one more structure, in fact we started the
course  with  this  structure,  okay,  and  that  structure  happens  to  be  the
transmission line, right.  We have not really looked at the electromagnetic
analysis of this transmission line, but suffice to say that transmission lines
are essentially carrying this free space, the uniform plane wave types, okay.
If you instead of working with the voltage and the current, you work with the
electric field and the magnetic field, you will see that the wave structure that
will  be  present  on  this  transmission  line  will  have  the  same,  you  know,
characteristic in some sense.  So your electric field lines will be directed from
top to bottom and the magnetic field lines will  be curling around the top
structure, so it would be curling around in this around, it would be curling
here, and it would be curling in the opposite direction and you can actually
show that you can have a one to one relationship between free space and
the transmission line structures.  In fact we will look at the electromagnetic
analysis of transmission as a special lecture in some other, at the end of the
module,  where  we  will  also  look  at  the  equivalence  of  describing
transmission lines in terms of voltages and currents or in terms of electric
and magnetic fields.  So these are all the different structures that we have
seen.  Although the first one is really not a structure, but what is interesting



about these structures is that they do guide waves, okay.  Whether they will
be completely confined or partially confined, they are all different things, the
important point here is that they are not operating at the same frequency,
okay.   They  can  be  made  to  operate  at  the  same  frequency,  but  the
dimensions required will be very-very impractical. For example, you can have
a dielectric wave guide, which would be operating in say 1 K Hz, okay.  In
that case the core width that you have to, you know, have will be in a few
km, right.  You know, you have to construct an entire slab of a few hundreds
of meters to a kilometer so that the electromagnetic waves at 1 K Hz can
propagate, okay.  The reason for that will  become clear, when we talk of
detraction  in  some  other  module  after  a  few  modules  here,  but  that  is
essentially the point, the higher the frequency, it's kind of easier to squeeze
the modes in, and that is why these integrated optical frequencies work very
well at tera Hz, where the core widths can be just about 2 to 3 micrometers
and surrounded by of course the cladding of appropriate width, whereas this
optical fibers will operate also at tera Hz or 10s of tera Hz, whereas their core
diameters will  be somewhere around 8 to 50 micron, okay.  So 8 for the
single mode fiber and 50 for the multimode fibers.  So these structures on
the other hand, the transmission line structures are good, maybe up to about
say 2 GHz or maybe up to say 10 GHz, but again transmission lines are not
just a pair of wires, because a pair of wires are good at low frequencies, but
as you get to higher frequencies, you for example have to look at this micro
strip line as we have already talked about, right.  So you do have different
structures, which are tailored for different frequencies, simply because some
structures are useful in squeezing the modes at those frequencies, whereas if
you try to make the same structure for other frequencies, then the required
geometrical  parameters  will  be  so  huge  that  it  would  be  impossible  or
impractical to build such.
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Okay, so this is all guided waves that we have looked at.  Now we are going
to introduce a different wave guide, okay.  In fact this wave guide is very
similar to, you know, transmission line structure that we have looked at.  So
in some sense we are doing a transmission line analysis, but then this is not
a line, but this is a plane, okay.  The basic idea here is that, I am going to
introduce the basic idea, so we are going to look at… so let me, before I go to
that  one,  let  me  also  tell  you  that  the  confinement  mechanism  in  this
integrated optical  wave guides as well  as the optical fibers was what we
called as total  internal  reflection,  okay.   Whereas the confinement or  the
guided waves in this transmission line structures, the waves themselves are
called as TEM waves and sometimes these lines are called as TEM lines,
whereas the confinement actually or the guiding actually comes from the two
wires that we have actually taken, okay.  These wires are of course made out
of metals, so there is really no total internal reflection happening, it's a pure
reflection phenomenon that is happening, which we will look at it in this slide
or in this module now.
(Refer Slide Time: 14:55)



Imagine that  you have two planes,  okay.   These planes  actually  are  you
know,  assumed  to  be  wide  in  the  X  and  Y  directions,  let  me  get  the
coordinate system right.  So I am going to assume that this direction is along
the Z direction, this direction is the X direction and we will assume this one
to be at X=+A and X=-A. So I am actually putting two planes here, so you
just imagine that these two are two planes and then the horizontal distance
that is along this way be will be the Z direction and if you look form the top,
it would look like a big square and the square we will assume it to extend all
the way from X from minus infinity to plus infinity and Y from minus infinity
to  plus  infinity,  okay.  However,  because  you  have  considered  two  such
planes, there is a discontinuity in the X direction. So that is as you go, you
will not see a plate, then you will see a plate, then you go north, no plate,
then  you  will  see  a  plate,  and  then  again  you  will  go  and  see  a  plate.
However, on the Y axis if you move, you will only be seeing the plane, plane,
plane, you know, like you will be seeing only the plate-plate-plate essentially.
So these structures are called as parallel plate wave guides for very obvious
reasons  that  there  are  two  plates  and  these  plates  are  actually  kept  in
parallel with each other. The distance between these two plates, I have taken
it to be 2A. It is conventional to take the distance as D, but I just wanted to



put a symmetry around these two plates, so I just took them as X=A and X=-
A, okay.
(Refer Slide Time: 16:31)

Now… now I won't analyze, to analyze the mode function or modes of this
particular  wave  guide,  I  will  assume  that  the  lower,  this  one  can  be
neglected,  right.   That  is  the lower  plate,  I  am removing this,  okay.  And
instead I will imagine that light has been incident, okay.  I will, you know,
incident at an angle of say theta 1 and this is the electric field component
say E1, which I have written, or sorry, this is the direction of propagation,
which we will write it as K1, okay. So this is K1 and there will be an electric
field  component  associated  with  this,  okay.   These  plates  are  essentially
perfect electric conductors, which means their sigma goes off infinity, okay.
And you have this K1 as the direction.  Now you have to obviously ask me or
ask you know, pause the video and then think about a little bit, what way
should  I  put  the  electric  field  in,  because  I  know that  obliquely  incident
waves, electromagnetic waves can be either TE polarized or TM polarized
with  respect  to  the  plane  that  we  considering.   So  I  will  have  to  pick
something out. I am going to assume that the electric field is actually along
the Y direction, okay. So making transverse electric to be the case that I am
considering.  This has been done just to simplify some of the steps, however,



I  would  encourage,  and strongly  urge you to  actually  carry  out  a  similar
analysis using TM equations as well, okay. But for now we will look at only TE
case and get the basic ideas behind what kind of mode functions, I am going
to get, okay. Now this light has been incident… oh sorry, this electromagnetic
wave has been incident at an angle theta 1 with K1, what would be K1? K1 in
this case is obviously given by K1 cos theta along X direction + K1 sin theta
or theta 1 here along the Z direction, right. So this is the K1 vector that we
have. Now you have a perfect electric conduction. What should happen to
this wave as it  strikes a perfect electric conductor,  it's  a metal,  right.  So
metals won't absorb light and this is a perfectly electric conductor, so what it
actually  does  is  to  you  know,  reflect  of  this,  not  light,  reflect  of  this
electromagnetic  wave  at  the  same  angle  theta  1,  okay.  So  the
electromagnetic wave is now reflected off and then reflected wave will also
be… transfers electric polarized only, so we can call  this as EYR and this
amplitude as EYI, okay, and then this is reflected back.  Of course there will
be a magnetic field associated with this one, which you can easily find out,
but I am not interested in finding the magnetic field, I am interested in the
electric field itself, okay. Far away from the interface the total electric field in
region 1, which I am calling this as the region 1 will actually be equal to the
incident electric field and the you know, reflected electric field, correct.  So
EY… EYI and EYR, what would be the incident electric field, which is basically
some amplitude, which we will call as some E0 or let's say we will call this as
E0I and then you have E Par –J K1.R + E0 R E Par –J K2.R, right all of this is
actually along the Y direction, therefore I can take the Y as a common factor
out, okay. Now what is K2? You can see that the direction of K2 is such a way
that it is moving away from the X direction, right and when you decompose
this K2 in terms of its X and Y components, you will see that along Z it would
still remain the same, so it would be still K1 sin theta 1 Z. Can you tell me
why K1=K2? Think about it, okay. However, on the X1 it would be –K1 cos
theta 1 X Hat, okay. Your R vector of course is given by X X Hat plus Y Y Hat,
sorry, Z Z Hat, which basically describes any point in this plane, okay so this
is your position vector R. Now what is the boundary condition that we have
on a perfect electric conductor, the tangential component must be equal to
0, right. So the total tangential component on the boundary must be equal to
0, which means that at X ray=0 and we also know that for the phase factors,
Z at any point of Z we should have the same condition, that of course will
give you the Snails law and other things. What this essentially implies is that
the reflected EOR amplitude should be = -EOI, okay. Because we said this
one equal to 0 and ask this equation to be equal to 0 for all values of X and
for all values of Z, we will essentially get that EOR = -EOY.  With that the total
electric field in region one, I can rewrite it as EOI is a common, I'll pull this
out, and then you have E Par –J K, so let me call this K1 cost theta as KX and
K1  sin  theta  as  KZ,  okay  these  are  two  auxiliary  variables  that  I  have
introduced, which are related to the original K vector as well as the angle of
incidence theta 1, okay. So we can write this as e Par JKX X, E Par – JKZ Z –
EOI, right, E to the power +JKX X, please note that along X now K is –X kind



of a thing and then for Z, it will be E Par – JKZ Z, okay.  And instead of writing
KZ, we will go back to our original notation for propagation constant along Z
and we will call this as beta, okay. So you have EOI, which is the amplitude –
E Par – JKX X – E par + JKX X * E Par –J beta Z, which would essentially be
present  all  the  time.  So  this  is  clearly  showing  you  that  there  is  some
function  of  X  that  is  getting  multiplied  with  E  Par  –J  beta  Z,  which  will
describe the total electric field in the region away from that plate and that
looks… starts to look very similarly to what we had done for the slab wave
guides,  except  that  there  are  no  waves  outside  this  perfect  electric
conductor, because the… there is no evanescent wave, at least not what we
are considering, we are assuming perfect electric conductor, so there are no
evanescent waves outside, or we will  assume that the evanescent waves,
even if they are present, they have died on so rapidly that you don’t even
have to go beyond a few nanometers or few angstroms above this perfect
electric conductor region, that you will actually see anything of that decaying
sort of a thing. So it's a perfect electric conductor, light is instant at an angle,
it gets reflected, instead of light I am talking about electromagnetic wave,
which are essentially same, gets reflected, and when you move away from
the interface, at some point when you look at the total electric field, the total
electric field will be something like F of X, but it would be propagating, right,
along the Z direction, right.
(Refer Slide Time: 23:42)



What is this F of X, let us look at it. See you have E Par –JKX X – E Par + JKX
X. So if you use the trigonometric identities, you are going to get this as -2 J
EOI sin KX X, right and then you have E Par –J beta Z. So this is the total
electric field in region one and if you now plot this total electric field in region
one, okay, the magnitude of this one, what you will actually see is that here
we had this plate, correct? And this plate was kept at X=A and obviously at
X=0, sorry we kept this one at X=A, right sorry, hold on.  We will keep this
plate at X=0 initially, sorry… sorry about saying that. So I will keep the plate
at X=0, the rest of the equations won't change, I mean there is nothing that
has changed at this point, but we will just take this X=0 to begin with. So
yeah, in that sense, I am not really creating a symmetry, but the equations
won't  change,  nothing  has  changed  so  far,  only…  even  the  boundary
conditions hasn't change, right. In fact we used X=0 as a boundary condition,
but I forgot to tell you that, okay. So nothing has changed.  You simply have
the plate coordinate moved at X=0 and now when you plot the magnitude of
this electric field, what you would find is very interesting.  At some Z, you
have to take of course, because it keeps changing along the Z, but at some
Z, this term will be equal to 1, the magnitude if you take and what you get is
the magnitude of sin KX X. Now let's catch that at X=0, sin will be 0 and then
it will reach a maximum at some point and then it will again reach a maxima



and then it would actually go back in this particular manner.  You can clearly
see that  this  is  beginning  to  look  like  a  reflection  from a  short  circuited
transmission line, if you think of the transmission line as still.  Of course, you
don’t have to think in that way if it is just a plate that has been kept, then
you simply have the waves, which are moving in this direction.  And at the
points where you see the total electric field going to 0, it's because of the
destructive interference between the forward going wave EOI E Par –J K1.R
and the  reflected wave,  which  is  EOR E  Par  –J  K2.R,  right.  Of  course  K2
magnitude = K1 magnitude in this particular case.  Now let's do a clever
thing.  I have this plate already, what if I go and insert another plate at this
point, where the field is actually going to 0.  Where does the field go to 0,
well it is a sin point, where it is going to 0, right. So where does sin KX of X
go to 0? It will go to 0 at all those planes, which would actually satisfy this
condition, that is at all planes of X, such that KX times X=N Pi, where N is a
number, it's an integer for us, then this field will go to 0.  So the first time
that it goes to 0 at this point is X=0 and where does it go to 0 again? It would
go to 0 again at say X equals, let's take N=1, because if I take N=0, I don't
have any solution here. So with N=1 as the first solution that is possible,
next point where it goes to 0 is when X=Pi by KX, but what is Pi? What is KX?
KX is basically Pi divided by K1 cos theta, right, which actually means, we call
this entire thing Pi/K1 cos theta, and sorry, it is cos theta 1 as A, okay. So I
will  call  this  one  as  X=A,  where  A  is  of  course  given  by  this  particular
expression, okay. So whatever, that X value, which satisfies this equation for
a given value of theta 1 and for a given value of K1, we will call it as N, and
we have put in a second plate at X=A or maybe we can put the plate at X=-A
because  you  know,  I  took  this  as  a  positive  X  direction,  but  it's  really
immaterial, whether you put it a +A or –A, you just have to change N from
being positive one to minus one, it doesn’t really matter at all,  okay. The
condition that is necessary is that KX times X should essentially give rise to N
Pi total face shift, where N could be any integer, but the first such instant
that we would have would be when N=1 and this is the equation that you
get, okay. Let's simplify this equation slightly in terms of theta 1. Suppose in
practice what happens is, I will be given some X=0 and X=A and then asked
to find those values of theta where the electric field can actually go to 0,
right. So I will rearrange the equation to make it cos theta 1 = Pi/K1 times A
and K1 being the wave vector, I can rewrite this as 2Pi by Lambda times A
and  then  I  can  cancel  Lambda… Pi  from both  sides  and  then  you  have
Lambda/2A, right. So all… so the first time when you are going to get the
angle of incidence theta 1 for a fixed value of Lambda and for a fixed value
of A is that. So if you send in light at that particular instant, the light that
gets reflected causes the overall electric field in region, right, below the first
plate to actually have this periodically going to 0 and this particular insertion
of a second plate at X=A, does not really change anything in terms of the
field. The field is automatically satisfying the boundary conditions here. So
the field is  automatically  satisfying boundary condition and therefore this
structure can actually be considered as a wave guide. Of course you can put



more such plates, but then things can, you know, you don’t want to put more
plate, because there is no reason to put more plates, right. And the moment
you put plates, there won't be any waves in this region as well, because this
is also assumed to be a conductor.
(Refer Slide Time: 29:32)

So  you  have  automatically  satisfied  Maxwell's  equations  by  putting  two
plates  at  X=0 and X=A and the  wave can now begin  to  move in  the  Z
direction just as it would have done in the case of a dielectric planar slab
waveguide,  with  the  additional  advantage  that  there  are  no  evanescent
fields  at  least  when  your  conductivity  is  very-very  high,  there  are  no
evanescent fields outside this particular slab, okay. This is the, and again in a
same way that you have a dielectric wave guide, you will have TE modes, TM
modes. The value of N will tell you how many such half cycles you are going
to have inside the slab so that can be N=1, N=2, N=3, and so on. Of course
N=0 is no point. So you can, you know skip that particular value of N in this
one and then you have this cos F of X. So the point here is that you can think
of waves propagating inside this metallic or parallel plate waveguide in terms
of  obliquely  incident  and  reflected  waves,  meeting  with  respect  to  each
other. So a picture that is very similar to dielectric slab waveguides, but this
is… this picture would work in the range of say about 3 to some 100 GHz, not



really in the tera Hz regions,  and these are called as parallel  plate wave
guide.  They  are  extensively  used  in,  a  variation  of  these  are  used  in
microwave wave guides. Thank you.


