
Hello and welcome to NPTEL mooc on electromagnetic waves in guided and
wireless media and in this module we study very simplified element of many
integrated  optical  circuits  called  a  slab  waveguide.   We  have  already
introduced the idea behind a wave guide in the previous module, where we
imagined that we take a glass slab, okay, and then somehow couple light
into this slab.  We also saw hot to couple light into that.  And then if you
think  of  this  light  propagating  inside,  light  of  course  being  an
electromagnetic wave, if it is propagating inside this slab, provided that the
slab refractive index, which we will take it to be N1 is actually greater than
the refractive index outside, which we will take it as N2, which is less than
N1, then this rays will undergo total internal reflection and as they bounce
back and forth between these walls, right, we see that effectively information
or energy or the wave is actually propagating along the length of the slab, so
along the slab, which we will take that axis to be Z axis.  So this wave would
be propagating in this direction.  However, we also saw that the ray picture
that we have seen does not really tell us more information, especially no
information is given or obtained in terms of what the electric field component
would look like and what the magnetic field components or the magnetic
field would look like corresponding to these rays.  So if you want to obtain
this  information,  you  need  to  use  Maxwell's  equation.   Moreover  the
geometric  optics  approach  that  we  looked  at  internal  rotation  previous
module  does  not  tell  us  even  the  existence  of  what  is  called  as  the
evanescent wave, which we saw that will actually result when you go and
approach this  problem in the electromagnetic  terms,  right,  that is  to say
apply Maxwell's equations and you get a fuller picture than what is possible
with the geometric optics.  Sure in some cases geometric optics approach,
such as the one that we discussed is actually quite you know, simplified and
it is easy to use that picture to… or qualitatively understand what is going
on, but if you need quantitative answers, you have to you know, like usually
use electromagnetic equations that is Maxwell's equations and that is what
we are going to do.  Now before we study the propagation in this slab wave
guide, let me point out that this slab, which we have taken is usually made
out of, in the case of an integrated optical circuit, it is usually made out of
substrates, which are silica or other type of substrate, for example it could be
a lithium niobate and you don’t actually get only a slab, you get multi layer
structure, but probation usually happens in only one layer, okay so the other
layers for many different reasons, but propagation layer will actually happen
in, typically in one of the ones.  I mean you try to make light confined into
one particular channel or one particular waveguide layer itself.  Okay, so I am
simplifying the problem.  I don’t want to deal with many layers, rather than
that we will simplify the problem to a single layer structure, in which we have
channel  formed by a  material,  whose refractive  index  is  higher  than the
material refractive index outside.  Now in practice, it is quite difficult to, you
know, or it's not that difficult, but it's… in practice you won't normally see
such  a  symmetric  slabs,  especially  in  the  integrated  circuits,  optical
integrated circuits.  What you actually see is another substrate or another



material with a refractive index N3, which again is less than N1, but N3 can
be greater than n2 or it can be less than N2, okay.  So depending on this, the
mode structures will vary slightly, but again this will introduce an additional
layer of pro… you know, complication to our understanding of simple wave
guides.  So I am going to give you only the principle behind the simplest of
these wave guides called as the symmetric slab wave guides, okay.  So in…
in our module, we will assume that outside medium is characterized by N2
itself and you can think of a slab surrounded by these two, by a medium, or
this slab actually being carved out of in a medium, whose refractive index is
N2 and N2 is less than N1.  Now with Maxwell's equations, we need to first
determine what kind of coordinate systems are we going to deal with.  So we
are going to use rectangular coordinate system, that seems very natural in
this case.  So in that case we take this, anyway we have already taken this to
be the Z axis.  What we will assume is that this axis over which these two,
you know the slab boundaries are defined are taken to be at X= +A and at
X= -A.  So we center the coordinate system at this point, clearly Y will also be
the coordinate, but that Y will be coming out of this particular board, so you
have X Y and said as the coordinate system.  Now immediately we will have
to deal  with two things,  right.   It  is  clear that even if  you go to the ray
picture,  it  is  clear  that  what  we are dealing with is  an obliquely  incident
wave, right.  So if we are dealing with obliquely incident, we have choices for
transverse electric polarization or transverse magnetic polarization, meaning
that  light  of  course  can  be  polarized  in  anyway,  but  you  can  split  that
polarization into transverse electric and transverse magnetic, analyze them
separately  and  then  put  the  results  back  together.   So  this  polarization
decoupling can be done because of the properties that any general polarized
light can be split into two orthogonal polarizations of which TE and TM are
and then analyze them individually and then put the results back together.
So  we  are  going  to  make  a  choice  between  TE  or  TM  and  to  keep  the
mathematic  simple,  but  still  essential  in  showing you all  the steps,  I  will
assume that I am dealing with TE polarization, okay.  Note that at this time
we have not said anything more about what would be the electric field and
what would be the magnetic field for these polarized light and how would
they behave in this region, the slab region or the region outside and for later
consistency with the fiber, we will call this region as core and we will call this
as cladding, okay.  Although this is not really core and cladding in the fiber
sense, but because our next model is going to deal with fiber propagation
that is propagation of light in fibers, we will keep the terms similar to that
and we call that densely, dense refractive index region as core and the light
refractive index region as the cladding, which surrounds the core, okay.  So
accordingly the core width in our case is 2 times A where A is the half core
width, okay.  So to summarize we are going to deal with transverse electric
polarized light.  So far we have not said anything about the electric field and
the magnetic field form or the solutions of the electric and magnetic fields in
this scenario and we have assumed a symmetric slab wave guide.  Now for
transverse electric polarization, if you take this as a the K vector that I have



already drawn,  then the magnetic  field should be present,  right.   So the
magnetic field if I take to be going along this particular direction, don’t worry
what the actual form of magnetic field is, we are going to derive this as the
module progresses.  However, for this case the electric field has to lie in, you
know, it is to come out of this page, right it has to lie along Y.  So electric
field  is  polarized  along  Y  and  then  the  magnetic  field  will  have  two
components,  one is  HX and the  other  one  is  HZ.   So  if  you  look  at  HZ
component, that HZ component would go something like this, it would be
along the Z component and then HX component would be in this manner,
right.  Clearly on to this interface that we have consider, X=A and X= -A, at
these two boundaries HZ will be tangential to the boundary or tangential to
the interface at X=A or X= -A, whereas HX will be the normal component.
And electric field because it is already in the Y direction and Y direction is
parallel to this X=A plane or X= -A plane, it is already tangential in this case.
So when you apply boundary conditions at the interface X=+A and at X=-A,
you are going to apply boundary conditions on the tangential components,
namely you are going to apply boundary conditions on EY and HZ, okay so
we are going to see that one later on, but we will start with a simplest case.
We will  still  assume uniform plane waves, because well  you know, in this
case we can still  assume it  to be uniform plane waves or  rather we will
assume it to be plane waves, they are not really uniform in this coordinate
system, because there is a phase E par – JK X, which would be different, right
Anyway, so disregarding that short remark, let us write down what is the
wave equation and we already know the wave equation for plane waves,
right, and that would be del square + K0 square N square E=0.  Clearly I am
dealing with only a single polarized case that is E is basically EY along the Y
direction, therefore I can drop this vector and then make this into a scalar
equation, okay.  So I am going to get a scalar equation with EY.  Of course
you  will  recognize  this  as  Helmholtz  equation,  okay,  which  was  actually
possible, I mean for us it was possible to write this equation, because we
assumed waves to be plan wave kind of a thing, right.  So with the wave
vector K given by K0 x10.  N is of course refractive index.  Now here we have
to think a little bit.  Does this N refer to N1 or N2, in fact you have to have
two such equations, one for core and the other one for cladding, okay so you
will have another equation for the cladding.  So you will have K0 square N2
square EY, okay.  And this equation has to be solved separately and this
equation has to be solved separately and you meet both equations or match
both  equations  at  the  boundary  by  applying  appropriate  boundary
conditions, okay.
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What would be the solution for the equation in N1, sorry in the core region.
Well first look at del square in rectangular coordinate system is del square by
del X square + del square by del Y square + del square by del Z square.
Now we are dealing with plane waves.  We want the waves to propagate
along Z direction.  So I will assume that whether I am dealing with core or
cladding, it does not matter, the electric and magnetic fields will always have
an E to the Par – J beta Z type of a propagation, right.  So we have all, you
know, we are propagating along the +Z direction and we know this very well
from our earlier discussion that a plane wave propagating along Z will  be
described in this manner E Par – J beta Z type of a solution.  What it means is
that this del square by del Z square can be replaced by – beta square, okay.
Because our structure actually is, you know, taken to be kind of infinite in the
X and Y plane and none of the components are actually dependent on Y,
where you can make this Del square by Del Y square term go to 0, okay so I
am going to make this Del square by Del Y square term go to 0 and what I
am now left with this Del square operator is Del square by Del X square –
beta square, okay.  I can put this operator on to EY, so what do I get, and
because now EY is going to be functioned only of X, okay of course it will also
be function of Z, but that Z function is already taken to be in the form of E
Par – J beta Z, okay.  So I can replace all these partial derivatives with the



knowledge that along Z is this behavior, however, along X we still don’t know
what is the behavior, so we are going to find that out, right.  So I can write
down the equation which says D square EY/DX square + K0 square.  For the
moment I am going to consider the solutions in core region, so I can write
this as K0 square N1 square – beta square EY = 0, okay.  This is your ordinary
second order differential equation, nothing fancy about this, the solutions of
course can be in the form of an exponential signals, right, or exponential
functions.  So if you go back to your high school, or rather your differential
equations' course, you will see this that you can write this as –S square EY or
you can, you can write this is as – S square EY, where S square = K0 square
and 1 square – beta square, okay.  And the solutions for this one will be E to
the power + or – JSX, right or you have solutions in the form of cos SX or sin
SX,  right.   If  S  square were to be negative,  that  is  when beta square is
actually  greater  than K0 square N1 square than this  would be a positive
quantity, which we will call as some gamma square, okay, and the solutions
would have been E to the power + or – gamma x, okay.  The nature of these
two solutions are very clear, one of them is an oscillatory solution.  So a
cosin X would go in this manner, a sin X would go in this manner, a sin SX,
where as E Par + or – gamma X one would be decaying, the other one would
be increasing, right.  Of course we don’t have any gain, so normally we can
rule these out in our, you know, solution set, but these three seem to be the
solutions that we are looking for, but exactly which solution needs to be used
depends on the sin of this term S, okay.  In the core region, we don’t want
any decay along X, meaning that we want in the core a solution to be in the
form of cosin or a sin wave.  That actually means that K0 square N1 square
must be greater than beta square and instead of calling this S square as K0
square  N1 square  –  beta  square,  we  will  go  with  the  more  conventional
notation that is used in the optics, we will call this as kappa F square or we
will call this simply as kappa square.  So we will call this as kappa square and
we demand that  this  kappa square be actually  a positive quantity,  okay,
which means that the solutions for EY in the core will be of the form A cosin
kappa X + B sin Kappa X, we don’t know what the A and B constants are, we
can find this out or we are going to make one more simplification, we will
assume arbitrarily that B = 0.  I am ruling out this solution because only A
cos kappa X is also a solution of this equation, okay, with an unknown value
of A.  And if we retain only the cosin type of solutions with respect to EY as a
function of X, these are called as E1 mode solutions, obviously because cosin
is an even function and because I have ruled out this sin function, they are
called as odd mode solutions.  However, I can, I mean, I can obtain odd mode
solutions by ruling out the even mode solution arbitrarily, okay.  In practice
you can have both modes and the overall structure can be of a combination
of  these  two,  but  we  will  soon  see  that  these  two  modes  don’t  exactly
propagate  at  the  same  propagation  constant  and  therefore  they  can  be
discriminated against, okay.  I am taking the even mode only for simplicity
and I will leave this as an exercise for you to repeat the entire calculation
assuming that we are dealing with a odd mode functions or an odd function,



okay.  So yes we have now shown that the solution in the core would be of
this form.
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What would be the solution for cladding, what would be the solution that you
would expect for cladding?  Well I know that if at all this is in the form of a
sinusoidal function or a cosin function, right, then outside we must have an
evanescent  wave,  which  of  course  decays  as  you  move  away  from the
interface,  right  so  that  is  what  we  have  already  seen.   And  the  same
behavior  should  be  expected in  the  down,  you  know,  in  this  side  of  the
cladding as well.  So what we hope for the solutions in the cladding would be
of the forms C E Par – gamma X –A, I will tell you what gamma is in a minute,
and then you have D E Par – gamma, E Par gamma + X + A.  The reason why
we have taken X – A is just to simply the exponential function, cos at X=A
this  will  be just  C and at  X=-A this  will  be equal  to  D.   Of  course from
symmetric conditions, you would expect C to be = D and that is actually
true, okay.  So the solution will DK exponentially on both sides with the same
DK coefficient and with the same starting points at the boundary.  Now what
is gamma.  Remember the solutions in the cladding are actually the solutions
of  Helmholtz  coil  equation  Dr.  square  EY/DX  square  +  K0  square  and  2
square – beta square, okay.  If you ask or if you demand that beta is greater



than K0 square and 2 square, okay, then you see that, sorry, beta is greater
than K0 N2 not N2 square.  When beta is greater than K0 N2, clearly that you
are going to, it is clear that you are going to get a decaying solutions for DY,
which  is  what  you  have  actually  gotten  here,  okay.   I  have  shifted  the
coordinate system on the exponential by making sort of E Par – gamma X, I
have made it into E Par – gamma X – A.  If I don’t shift the solution then that
extra term will also be present in the solution, but that would be a constant,
okay.  So it doesn’t matter if you just take E Par - gamma X, but to simplify
the boundary conditions, I have just moved the coordinate system for the
exponential to be along or to be starting at H=+A or at –A.  Now we have the
full set of solution.  We can now go to the next step.  What is my next step?
Next step, graphically I have already shown.  Basically what you are trying to
do is to find out what would be the values of A and C for a given kappa and
gamma or you are even adjusting kappa and gamma in such a way that the
solution smoothly changes over from this cosin wave in the core on to an
exponentially  decaying  wave  in  the  cladding,  okay.   So  that  is  what
graphically we are doing, but mathematically what that would mean is at
X=A boundary, you have A cos kappa A, which would be equal to C, which is
obtained by making X= taking X=A in this equations.  So what you have is A
cos kappa A=C.  At this point I don’t know what A and C are, but that is fine,
we will leave this expression here.  Now I won't get much by applying the
boundary condition at X=-A instead what I want is a boundary condition on
HZ, right or I need form for Hz.  But how do I find HZ?  Well I know Maxwell's
equation,  it  tells  me that  Del  cross  E=-J  omega Mu knot  times  Hospital,
correct.  And I know E is along EY, expanding this Del cross E and equating
the terms on the left hand and the right hand side, which again I will leave as
an exercise, because we don’t have much of a time, you can show that HZ
will be equal to -1/J omega Mu know, DEY/DX, okay.  So you can show that
this is what you are going to get.  And once you know what is, I mean, once
you know the expression for HZ, and you know the expression for EY in the
core and cladding separately, so you can differentiate it.  So for the magnetic
field  component  HZ,  you will  get  a  solution,  which  would  be  kappa by J
omega Mu know A sin Kappa X and on the cladding side you get gamma C by
J omega Mu knot time E to the power – gamma X-E, okay.  So these are the
solutions.  Here I will leave it as an exercise for you to show that the solution
will be –gamma C by J omega Mu knot E to the power gamma X+A.  Please
note that this region is basically X greater than –A, okay.  And this region is
basically X greater than A and of course this region is where –A is less than X
less than A.  Now you can apply boundary condition at X=A for the tangential
magnetic  field,  that  is  HZ component  and  once  you  apply  the  boundary
condition for HZ component what you get is kappa A sin kappa A from this
expression, should be equal to gamma times C, okay.  Because at X=A this
exponential will be 1 and J omega Mu knot on both sides will actually cancer
off, so you will get this kappa A sin kappa A = gamma C.  We already know
that C is given by cos kappa A, so I can replace in this expression C/A, so I
have gamma A cos kappa A, indeed arranging the terms you get tan kappa A



to be = to, so A will cancel on both sides, sin by cosin is tan kappa A, you get
gamma by kappa, okay.  So this is an interesting expression, unfortunately it
does not have straight forward solutions.
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The solutions that you are going to get are all what is called as numerical
solutions, because you have a function of the form tan X=X and this solution
is  rather  you  know  easily  found  using  graphical  methods  or  numerical
methods.   Graphically  what  this  is  telling  you is  that  you have X in  this
manner and then you have say tan kappa X, so you have this expression and
then again this one, these are the solutions that you are going to get for tan,
right.  So if you plot this as a function of X, these are the solutions and all the
intersections that you are going to get will be the solutions.  And of course
what you have observed is that there are multiple solutions for this tan X = X
kind of a solution, right.  In our case what we have is tan kappa A = gamma
by kappa, okay.  If I multiply on both sides by A and then define kappa A as
equal to U and gamma A as W okay then I can even rewrite this equation as
tan U=W/U, okay.  And what is U?  U is basically kappa times A and what is
kappa is square root of K0 square N1 square – beta square, okay x1.  And
now W of course is given by square root of  beta square – K0 square N2
square XA.  And what you observe here is that this equation that we have



written tan U=W/U implicitly contains beta.  So the solution method that we
normally adopt is to express this W in terms of U and you can actually do
that by writing U square + W square as what is called as V square.  What is
this U square + W square, that is basically K0 square N1 square – N2 square
times A square, which we will define as parameter V and V is an important
parameter  that  is  determined  only  by  the  wave  guide  geometry  and
materials.  In this case it is only determined by the wave guide, material
property, and the operation wave length lambda, right.  Wave guide has a
radius A, which is known lambda is the operating wave length, which is also
N1 and N2 of the wave guide are also known or usually can be designed
knowing certain other properties of this V.  But the important point is that the
solution that you obtain will be of two steps, okay.  After you express W as V
square – U square underfoot.  So on the left hand side you have a function of
U, right hand side also you have a function only of U, and you can plot the
solution as a function of U, or rather plot the left hand side and the right
hand side as a function of U, okay.  So on the left hand side it's just a tan
function, it will have different values in this manner, so this will be 0, this will
be say, so this is a pi by 2, this is at pi and so on it is a periodic solution,
right.  And on the left hand side what will happen at, when VU… U is very
small, when U goes to 0, this numerator is finite, denominator is infinite, so
you will start somewhere of the infinity value and as you start to increase, it
will go to 0 at U=V.  So if you know what is the value of V, as determined by
let's say your properties of the material or properties of the wave guide, you
would actually get a value of V here, which is determined only by the wave
guide and now your solution has to be until this point, right.  So you start off
with infinity and then you go to the solution until at this point, where it kind
of decays off.  How many intersections do you see, you see two intersections
one intersection here that corresponds to the fundamental mode that would
be propagating and this next one is called as the higher order mode that
would  be  propagating.   So  in  fact  you  get  multiple  modes  which  are
propagating.  The first intersection of this one will  be denoted as TE one
more, the next one will be denoted as TE 2 mode and so and these are all
the even modes that we have considered, okay.  In the odd mode scenario
things are slightly different, there the relation on the right hand side or the
left  hand side actually  changes slightly  and without  going too much into
details,  you  can  plot  the  odd  mode  cases,  and  what  you  observe  is  an
intersection, which would be present in this manner as well until this value of
V here and what you notice is that you will first get an even mode, then you
will  get an odd mode, then you will  get an even mode.  Odd modes are
basically sin functions, okay and the higher order modes, that cosin functions
are the even order functions.
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So if  you were to look at the fundamental mode assuming that this your
boundary for the core end cladding, the odd mode would look, sorry even
mode would look something like this.   This  is  a cosin wave and then it's
exponentially  decaying  everywhere,  and  the  even  mode  would  look
something like  this,  okay.   So these are the,  even I  have not  drawn the
pictures nicely, but this is how the even and odd modes would look like and
these are the fundamental  modes.   The higher order modes will  be,  you
know  will  have  more  maxima  in  between.   So  this  completes  our  basic
understanding of wave guide mode.  So to… take… the take away message
from this module is that mode is essentially solution of wave equation or
equivalently  Maxwell's  equation,  meaning..  solution meaning the E and H
patterns that I am actually interested in or the E and H solution that I am
interested in and this should not only be the solution of Maxwell's equations,
but they should also satisfy boundary conditions, okay.  In the free space
case, these modes were essentially plane waves, they were actually in the
form of E Par – J beta Z for a Z propagating wave or E Par plus J beta Z for a Z
propagating wave or E par + J beta Z for a Z propagating waves, okay.  There
were no boundaries.  However, the modes you can think of, the free space
modes were the plane waves, okay.  There were no boundaries, however, the
modes you can think of, the free space modes were the plane waves.
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However, the mode structure in the case of a guided thing is actually very
different.   So  in  the  guided  media,  the  mode  structure  depends  on  the
geometry.  For the case of a planar wave guide that we have considered or
what is called as slab wave guide, the mode structure is either cosin or sin
with many-many periods within the core and decaying exponentially in the
cladding, of course propagating along the wave guide itself, right.  So what
you have to understand is that this wave guide mode or mode in general is a
property  of  geometry.   When  there  is  no  geometer,  when  there  is  no
constraints, we get a plane wave, but when we start putting constraints, the
solution changes over, and depending on the type of the constraint that you
put in, that is, if… if you send in parallel plates, the solutions inside will be
given by sinusoidal functions, it will be cosin or sinusoidal.  However, if you
instead of shrinking this, I mean, putting this one in this manner, if you make
cylinders,  the  functions  will  still  look  like  sin  and cosin,  but  they  will  be
mathematically  actually  bethel  functions,  okay.   So the type of  geometry
determines the form of the function or form of the electric and magnetic
fields that can propagate within the given wave guide and the solution of
Maxwell's equation, which also satisfies boundary conditions is called as a



mode and we have just successfully solves for modes of a symmetric slab
wave guide.  Thank you very much.


