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Hello and welcome to NPTEL MOOC on Electromagnetic Waves in Guided and Wireless
Media. 

This is Module 19 and in this module we are going to consider a different type of incidence,
which is called as oblique incidence. Okay. This case is important because in many scenarios,
especially, when we talk of waves in guided media, we can think of the waves or the modes
propagating  in  that  guided  media  as  being  composed  of  successively  reflected  obliquely
incident waves. Okay. So whatever we are going to learn here, we can apply it to the study of
waves in the guided media, which we are going to do in the next, I mean, not next, but some
other modules after we finish this properties of plane waves, right?

So with that, let's actually look at what the physical situation is. The physical situation for the
problem is kind of the same. So you have this plane of interface wherein you have a medium
one and a medium two. Previously, we considered angle of incidence in such a way that the
propagation vector was coinciding with the normal to the interface plane. So the normal to
the interface plane was the Z axis, and then the angle of incidence was coinciding, sorry, the
propagation vector of incident reflected and transmitted media were coinciding with exactly
the same Z direction normal to the interface. Okay. 

Now instead  of  this  propagation  vector  coinciding,  what  happens  when  the  propagation
vector is at an angle theta, we will call as θ1 because we want to distinguish two angles, what
happens  when  the  incident  wave  arrives  at  this  plane  of  interface  with  an  angle  θ1 as
measured  from the  normal?  So this  is  a  normal.  Move θ1 here  and this  is  the  angle  of
incidence now. So what happens? 

We know from Snell's  law, two things  are  going to  happen.  One is  that  there  will  be a
transmission into the second media whose angle of refraction θ2 can be related to θ1 by the
following Snell's law. So you have n1 Sin θ1 equals n2 Sin θ2 where n1 and n2 are the refractive



index of the media, indices of medium one and medium two. Okay. So this is a law which
allows you to determine what is θ2 given n2, θ1 and n1.
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There is another law which states that angle of reflection, which we will call as θ reflection
would be exactly equal to the angle of incidence, right? So what it means is that if I consider
again this obliquely incident wave, this wave as it approaches, okay, part of that one will be
reflected onto this side, right? So part of the wave is actually reflected onto this side and
some  portion  of  the  wave  is  transmitted  into  the  second  medium  with  an  angle  that  is
different from the angle of incidence. 

Now nowhere with the Snell's law you actually are specifying or you are actually able to
determine how much of the power that has been incident is actually being reflected and how
much of the power is being transmitted, right? So to obtain that important information, we
have to go back to the electromagnetic perspective of this problem. Moreover, it is not just,
you know, the amplitudes that are or rather the power relationship that are imported, but also
something interesting happens with the amplitudes as well. Okay. Moreover, this Snell's law,
the so-called Snell's law actually fails for certain scenarios, which will be very important
when you consider what is called as optical waveguides. Okay. 

So for all these reasons, we need to go back to the electromagnetic perspective, okay, starting
with electromagnetic waves and then apply boundary conditions to really understand how
much power is being reflected and what exactly happens if the medium of first, if the first
medium has  a  refractive  index or  equivalently  the  permittivity  greater  than  the  medium,
second  medium’s  refractive  index.  So  all  those  things  can  be  answered  by  looking  at
Maxwell's equations or wave behaviour at the boundaries. 

Now before we go further, we actually have to have two kinds of waves that we can think of.
Okay. So let’s return back to our picture. This is my interface plane and I have this angle of



incidence. I mean, I have this incident, this one. This is the propagation vector. The black one
is the propagation vector. Please imagine that this is at an angle. Okay.

Now I can have two cases. I can have electric field in this plane, okay, which would be if you
look at it in this manner, so it should be perpendicular. So it should be like this let us say. So
this electric field lies in the same plane of interface. Okay. Or I can have the other way round.
I can actually have the magnetic field in that plane, okay, may be in that slightly different,
this one. 

We define the incident plane as the one that would be concerned with this particular plane,
right? The one that would involve that normal and one of the tangential components. So if we
take the tangential component to be along the X, then any, the electric field can lie along in
the XZ plane, okay, or the magnetic field line can lie in the XZ plane. Okay. 

Depending on these two choices,  you have what is called as transverse electric  polarised
waves. Okay. In this case, you have the magnetic field in the same plane as the interface
plane, which we have, I mean, as the plane of incidence, which is X and Z. Okay. Or you can
have transverse magnetic wave which is written as TM when it is the electric field, which lies
in the plane of incidence, which we take as X and Z.
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So as you have seen here, in this diagram, I am assuming that the electric field lies in this
plane  of  incidence  and  therefore  I  am describing  what  is  called  as  transverse  magnetic
because the magnetic field will be perpendicular to these two lines, right? So the magnetic
field will  be perpendicular  and that is  why it  is  the magnetic,  sorry, transverse magnetic
waves that we are considering. Okay. 

So the rest of the ideas are quite simple. All you have to do is to find out appropriately the
boundary conditions. There are four boundary conditions. Et1 will be equal to Et2, no doubt.



Ht1 will be equal to Ht2, no currents. This medium has refractive index or equivalently the
permittivity εr1. This medium has a permittivity εr2. And this time I have switched x and z
axes. I have taken the z-axis downwards and x-axis along the horizontal thing, and the waves
are given by these green lines and the electric field components are shown. 

(Refer Slide Time 07:00)

By the way, I  have taken the electric  field component  for E2 to  be completely  arbitrary.
Equations will tell us whether the direction is this one or the direction of electric field E2

should be reversed. Okay. So don’t worry about that. This is the incident wave. This is the
reflected wave and this is the transmitted wave. Okay. So you have these three waves and you
have these two boundary conditions. You can also have, of course, the other body condition,
which is Bn1 equals Bn2 and finally, ε0 En1 or rather εr1 En1 to be equal to εr2 En2 coming from the
D field normal relationship. 
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So these are the four boundary conditions that you have and you have to use these boundary
conditions to tell us or to find out what would happen to the reflection, reflected power and
transmitted power. Okay.

So let us go with this. So I have this k vector here, which is k1. This k vector is also k1

whereas this k vector is k3. k2 is equal to k1 because or rather I’ll write it as k2 = k1 because
these two actually in magnitude they are in the same medium, right? Okay. And this is k3.
Okay. 

(Refer Slide Time 08:10)

We will  now look at  the tangential  component  for the electric  fields in medium one and
tangential component of electric field in medium two and equate the two, right? So I have



blown up this portion of the picture here, okay, because I want to talk about the electric field
angles. So you can see that if this is the x-axis, this is the z-axis, this is the plane of interface,
okay, I have this electric field E1 itself having two components, which is Et1 and En1. Okay. 

The tangential component, of course, is given by E1 Cos θ1 that is the amplitude, but there is a
also a phase. Now what is the phase here? In so far what we have considered, our direction of
k was exactly equal to, you know, it was actually equal to one of the normal or one of the unit
vectors. It could be z, x or y. We have taken it to be z. So our k vector could be written as
whatever  the magnitude of the k vector, so medium one times z,  right?  So I  could have
written this k1 in a vector form as k1, which is the magnitude times the angle which is z. 

In this case, that is not true. In this case, I have the k vector itself at an angle. Okay. So the k
vector should actually be written kt1 along say x plus kn1 along z, right, because you can take
this line and then, you know, decompose this into two lines of this particular nature. One will
be along x. One will be along z. And what is the value of k t1? kt1 will be, so this k vector can
be written in terms of the, so along z it would be k1 Cos θ1 z plus k1 Sin θ1 x. So this would be
the k vector, k1 vector. Okay. 

(Refer Slide Time 10:04) 

What about this e-jk1z that we were writing earlier? We were writing earlier, you know, as, you
know, very simple as k1z because you could take this k1 vector and the position vector r. In
the previous case, the position vector r was simply z z-hat because z was the only direction in
which the wave was propagating. So when you take the dot product of k1 and r, this phase
factor was simply equal to e-jk1z, but in this case the position vector can be in the X and Z
planes. So at any point that you can consider, okay, which would be described by X and Z, so
that point can be described by both X and Z values, the actual, the phase factor that should be
written will be e-jk1.r where r is given by x x-hat + z z-hat, okay, meaning that if you now
combine everything, so what we have here is the position vector r given by x x-hat + z z-hat. 
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Now  I  will  erase  here  itself  so  that  these  can  be  written  correctly.  The  phase  factor
corresponding to the incident wave, okay, would actually be given by e-jk1 Sin θ1x + k1 Cos θ1z. Okay.
So this would be the phase that should be appended to the amplitude. So this e-jk1 Sin θ1x + k1 Cos θ1z

should be accompanying the tangential component that we have for electric field E1. Okay. 

(Refer Slide Time 11:50)

See the electric field E1 would have the tangential component, which is given by this Et1. So
this is Et1, which is of course making an angle of θ1 with respect to the electric field in the
medium one, sorry, with respect to this axis. So you write down this in terms of tangential as
well as a normal combine.



Normally, you are not worried at this point. Tangential component has an angle of θ1 with
respect to this axis. So you simply have E1 Cos θ1, E1 being the magnitude of the incident
electric field; Cos θ1 giving you this one. Okay. Now k3 which is in the same direction as k1

will also be given by the same expression except replacing θ1 by θ3. Okay. 
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So  the  tangential  component  in  second  medium,  okay,  the  tangential  component  of  the
electric field in the second medium, of course, has the same angle also. So if you look at this
electric field, you see that this electric field will be in the same angle. Everything is same
except θ1 will become θ3. So I can write down Et3 as E3 Cos θ1 e-j(k3Sinθ3x + k3Cosθ3z). Okay. So that
is for the transmitted electric field. 
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How about the electric field E2? Now E2 is slightly different because k2 vector itself will be
given by k2 magnitude, which, of course, actually is equal to kl because magnitude wise they
should be the same. They are in the same medium, right? So you will have kl itself. 

Now look at this. The direction along z will be opposite to the incident wave. That is how, of
course, the wave is propagating along -z direction. Therefore, you can write this as kl Sin θ1x.
Why θ1? Because θ or rather we will write it as k2x at this point. Okay. So kl Sin θ2x, sorry,
this would be x-hat, that is the vector along the x direction, plus or rather minus because now
k2 vector is -k1 Cos, so I have this k2 Cos here, sorry, along x.
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Hold on. I've made a small mistake here. It should have been k1 Cos everywhere. We put in
Sin instead of Cos. So this actually should be Cos, right?

(Refer Slide Time 14:17) 

Let me write down this correctly. So this is your k l at an angle θ1. So along the x-axis will be
kl Cos θ1, kl Sin θ1. Okay. This is fine. I mean, whatever we wrote earlier was actually fine. So
we'll go back and write it. kl Cos θ1 along z,  k3 Sin θ3 along x and k3 Cos θ3 z.
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So this is all right. I mean, I thought Cos and Sin should be inverted, but no. It is actually
correct. So kl Cos θ1 will be along z, kl Sin θ1 will be along x, but for the reflected wave
which is making an angle θ2 here, you have k1 or -kl Cos θ2 because this is along the -z



direction, right? So this would be along the -z direction and along x direction it would be
positive. I mean, it would be along the same +x direction as k l. Okay. So the reflected wave
vector k2 can be written as k1 Sin θ2 x - k1 Cos θ2 z. Okay. 

(Refer Slide Time 15:27)

So I can write down Et2, which is the tangential electric field, what is the amplitude of a
tangential electric field? Well, you have to again rewrite this picture and then determine what
is the responding amplitude there? So let's put down the amplitude here. The picture that I am
now looking at is when electric field is making this angle E2. This angle is θ2. So, clearly,
onto this one, this line makes an angle of θ2. Between this line that is electric field E2 and this
normal will be 90 - θ2. Correct? Because this E2 is perpendicular to k2, so this angle will be 90
- θ2. 
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However,  these  two  lines,  which  is  the  perpendicular  line  and  the  horizontal  line,  they
themselves are 90° apart. Therefore, this angle is basically θ2. Okay. So you can write this as
E2 Cos θ2 along x direction, that would be along the -x direction, and E2 Sin θ2, that could be
along the z direction, and it would be along -z direction. 

However, we are interested in the tangential component. Therefore, I can write this as E2 Cos
θ2, but this is along the -x direction because of the way that we have taken the electric field to
be. So this would be - E2 Cos θ2 multiplied by this k2 phase factor, right, multiplied by this
phase factor, which is given by -jk2 and k2 Cos will be along z, k2 Sin will be along x. So we
have already written that one. So -k2 Sin θ2 x - k2 Sin or rather Cos θ2 times z. 
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So we have the three individual components. It took us a little bit of effort to find out the
correct  amplitudes  and  other  things.  That  is  because  we  are  dealing  now  with  oblique
incidence. Normal incidence would be very simple.

You also have seen that there is a small change in our electric field coordinates because for
the normal incidence θ1 will be equal to zero, okay. We assume that θ3 is also zero and θ2 is
also zero. Why? We will see it shortly, but if you assume all these thetas to be zero, then you
will clearly see that all the x dependent phase factors will go away as it should because there
was no e-jk something times x in the normal incidence case. All the waves were propagating
either along plus z direction or along -z direction. All Cos θ factors will become one. E t1 will
be along the +x direction. Et3 will be also along the +x direction. Okay.

(Refer Slide Time 18:09)

However, Et2 has now become along the -x direction.  Okay. If  you did not  want  this  -x
direction, all you could do is to simply switch this direction of the electric field, so instead of
considering the electric field in this manner, you can select the electric field to be in the same
direction as E1 and then adjust this minus sign in the H case. Okay.
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So when you do that you can remove the minus sign and make this one plus without changing
any of the other arguments. Okay. This is just kind of consistency between this module and
the previous module. If you wish that, you could do this. Okay. If not, you can continue with
the original assigned directions and work throughout. The questions will anyway tell you that
you will have a minus sign or a plus sign. Okay. 

Now all I am doing here is to try and make everything to be consistent with the previous
module. Therefore, even though I start off with an electric field in the direction that I showed
in the green line, I have now switched it over to the orange line simply because I want to be
consistent with the previous one. 

However, our original expressions that we started out in this module are also valid. I would
encourage you to take this as an exercise and continue that next part of the development with
the original diagram as well. Okay. For now I'm simply assuming that electric field is going
to be in this direction just to be consistent with the fact that when θ1, θ3, and θ2 are all zero,
we land up back into the normal incidence case. Okay.

Anyway, so this is k2 we have written. Everything we have now written. So we have a set of
equations which are valid for electric field. Okay. Now what should we do? Well, we know
that Et1 + Et2 should be equal to Et3. That is total tangential electric field medium one should
be equal to medium three, right? And where should this equality be present? This equality
should be present at z = 0 plane, but unlike the previous case because the phase factors will
be dependent on x now, this should be valid for all x. Okay.
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This expression that the tangential electric field should be valid for all x, what it means is that
if I consider the electric field to be landing at this point and then calculate the tangential
electric field, it doesn’t matter where the tangential electric field lies on the x-axis, right? At
every point on the x or rather every point on the x should satisfy this equation. Okay. So that
is the critical part of it.

And now when you impose the condition that at z equal to 0 and for all x, the sum E t1 + Et2

should be equal to Et3. You can write this as, okay, with z equal to 0, all these terms will go to
0. You don't have to worry about it. So the expression will actually become even E1 Cos θ1 e-

jk1Sin θ1x + E2 Cos θ2. Okay. Please note that I have switched the convention here. It doesn't
matter, and then I have e-jk2 Sin θ2 x. That should be equal to E3 Cos θ3 e-jk3Sin θ3 x. Okay. And
because these equations have to be valid for all x, the only way this can happen is that these
individual phase factors are all equal to each other. Okay.
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So these individual phase factors being equal to each other means that I have k1 Sin θ1  x
should be equal to k2 Sin θ2 x, which should be equal to k3 Sin θ3 times x. Now, obviously, in
this  expression,  k2 is  given by ω √μ0  εr1,  which is  actually  equal  to k1 magnitude.  Why?
Because  both  incident  and  reflected  waves  are  in  medium  one  and  medium  one  is
characterised by permittivity εr1. Okay, and that immediately implies that Sin θ1 must be equal
to Sin θ2. 
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And what is the limits on θ1 that we can have? Well, this θ1 can be zero which corresponds to
normal incidence and all the way to θ1 equals pi by 2 in which case the wave will be riding
along the plane of interface. It would be riding along the plane of interface with the electric
feel appropriately directed. Okay.



So this kind of a wave, right, where the electric field is along the ground kind of a thing and
this  is  riding  along  the  parallel,  you  know,  interface  plane  is  called  as  grazing  angle
incidence, okay, whereas this wave was called as normal incidence; this is oblique incidence;
this is called as grazing incidence. The wave is kind of gliding or grazing the surface and
electric field line actually lies in that particular plane. Okay. Electric field is parallel to this
ground. Okay. 

The other way would, of course, be that electric field is perpendicular. The magnetic field
would be gliding along this surface, right? So that would correspond to transverse electric or
vertical polarisation. This would correspond to parallel polarisation. Okay. 

So with that in mind, if you look at the equations, sorry, θ1 can go from 0 to 90°. So if you
sketch Sin θ1, it would look something like this up to 90°. So this is 90° done. So if you have
two Sin functions equal to each other over 0 to 90° interval, the only way that can happen is
when θ2 is equal to θ1. Okay. This is, in fact, so called Snell’s Law of reflection.

(Refer Slide Time 23:42)

In  fact,  what  we  have  seen  is  there  is  nothing  like  a  law.  It  is  a  simple,  you  known,
consequence of boundary conditions, right? So all these laws that we have learnt so far are
nothing but consequences of boundary conditions. Okay. So that is the boundary condition. 

The second equation that you have k1 Sin θ1  = k3 Sin θ3, right, is also Snell's law, but this
equation tells you that for the same frequency ω, this would be √εr1 Sin θ1 = √εr2 Sin θ3. Okay.
But because εr1, εr2 square roots are nothing but refractive index, this is n1 Sin θ1 = n2 Sin θ3.
Okay. So this is another of Snell's Law. This is called as Snell's law of refraction.
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Okay. So we have recovered the Snell's law as a consequence of boundary conditions, but we
are not done yet, right? What we have done so far is to simply equate the tangential electric
field and get an equation in this particular manner. So we will recollect, write the equation for
our use now. So we have E1 Cos θ1 + E2 Cos θ2 where θ2 and θ1 are actually equal to each
other is actually given by E3 Cos θ3, right? So this is one equation that you need to keep in
mind. 
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Now we need to supplement this equation with the magnetic field equation. How would the
magnetic field equation be? 
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Well, you go back to this picture here. You assume that this is H1 magnetic field, and this
would be say H2 magnetic field, and then you will have H3 magnetic field. In all these cases,
the magnetic fields are in the perpendicular direction except that for the reflected field, we
will make the magnetic field go in the opposite direction so that E x H would be propagating
along -z direction.

E x H, if you take H to be upwards in this manner, E x H would be propagating in this
direction. E x H in the second medium would also be propagating in the given k3 direction. If
you reverse the direction of H2 to downwards, E x H would actually  propagate in the k2

direction. Okay. 

So  with  that,  I  can  write  down the  expression  for  H as  since  H  is  transverse  or  rather
tangential everywhere, it is actually along the plane of interface, I will have H1 - H2 = H3.
Okay. So I will have this particular equation, but H1 is basically E1 by η1. This would be E2 by
η2. This would be E3 by η3. 
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And I need to, you know, group the terms together, solve again for E3/E1, which we will call
as the reflection coefficient. Okay, and then you will have E3/E1 is called as the transmission
coefficient because this tells you the ratio of the electric field that has been transmitted to the
electric field that has been incident. E2/E1 we will call as reflection coefficient, and we will get
the expressions for these two. Okay. 

(Refer Slide Time 26:59)

Since I'm running out of time, I will stop here, and we will, you known, start from these
expressions,  derive  the  transmission  and  electric,  transmission  coefficient  and  reflection
coefficient and also tell you about that peculiar scenario where this Snell's law actually fails.
Okay. Thank you very much.


