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Dr. K. Pradeep Kumar: Hello and welcome to NPTEL MOOC on 
electromagnetic waves in guided and wireless medium. This is module 16 of 
the course, and in this module we continue our discussion of uniform plain 
waves.



As we’ve seen earlier for a sinusoidal propagation or  sinusoidal waves, we 
can specify the electric field for assuming that z is direction of the 
propagation, +z is the direction of propagation, then you can specify the x 
component of the waves, being a function of z right in phaser domain as the 
amplitude that you had Ex0 e-jk0z or sometimes written as e-jβz, okay, and we 
have already related this β or k0 to the frequency as well as the permittivity 
of the medium. So I will not go further beyond this one. In the vector domain,
of course, I can write this E as xx indicating he orientation of the electric field 
and writing this as Ex0 e-jk0z for a forward or a z propagating wave. If you wish 
to talk about a -z propagating wave, then you replace the minus sign with 
the plus sign, so that this would correspond to a -z traveling wave, but please
note that if I specify the polarization or the unique vector of the electric field 
component as x, then it would actually mean that the wave is still polarizing 
on the x direction, right.

You can also find the corresponding y component and you can also put that y
component in terms of a vector, so that you get the H vector, which is given 
by ŷ Hy and this expression for Hy is very similar to the expression for x, so 
you can write it as, say, Exo/η where η is the wave impedance that we’ve 
seen and it is also assumed to be propagating along the z direction. So this 
completes our plain wave description when the medium is linear, isotropic, 
homogenous and lossless as well as non-magnetic. So this is the medium 
that we have considered and we have this one.



Now in the last module, at the conclusion of the last module, we raised an 
important question. Now on a transmission line when I have the V+ as well 
I+ phasers or the voltage and current phasers, they do carry power, and in 
fact, they are known to deliver power to the load that you would connect at 
the end of the transmission line. Now I do not have a load as such in the 
traditional description of this one, but I do want the electromagnetic field, 
the electromagnetic waves to carry energy.

Well, why do we want that one? Suppose I actually have an antenna which 
would produce this electric and magnetic fields or the electromagnetic 
waves, say, Ex and Hy and then I have a receiving antenna somewhere here 
or receiver somewhere at this point. Only when waves carry energy and, in 
fact, deliver that energy to the receiving antenna, then the rest of the 
receiving antenna can actually work. So that is you will have some electronic 
circuits let’s say, which would use this energy, and then if the energy is also 
modulated in order to carry information, then you can retrieve information, 
okay. So you are going to pump in some energy while generating the 
electromagnetic waves if the medium is lossless, then this entire energy will 
be carried by the electric and magnetic fields or the waves, electromagnetic 
waves, and then that would be delivered to the receiving antenna, okay. So 
for this to happen, you need to have the electromagnetic waves carrying 
energy or power, okay.

We define what is called as a Poynting vector, which we will denote it as S, 
some people also denote this as P, so I am going to denote this one as S, 
okay, and this S is defined as E x H, okay. Now we have to be little careful 
here. So we had assumed all phasers, okay, so all the equations that we 
wrote above are all corresponding to the phasers. However, this definition of 
S has actually given in terms of the full electric field. That is real z and time 
dependent electric field as well as z and time dependent magnetic field, 
okay. So that is the pointing vector that we have and it is important to note 
that this is a vector, okay.

It is also energy density. The vector S is also some sort of energy density. 
Why? Because I know energy density or power density. Why? Because I know
that the units of E is kind of volt per meter, the units of H are ampere per 
meter. So then you take the cross product, okay, and we will soon simplify 
this one for the uniform plain wave. What you will find is that dimensions of 
this S or the units of S would actually turn out to be volt times ampere by 
meter square. Now volt times ampere is basically power and power we 
measure in watts. So this is basically watt per meter square. So since this is 
energy per cubic area kind of a thing, this is an energy density. So this is 
called as Poynting vector, because the nature of this one is a vector, and it is
also sometimes called as Poynting power density, okay. So that is because it 
actually carries power or rather it is actually a quantity that represents the 
power density, okay.



To obtain the total power, you need to know the direction of this S vector. 
Suppose this is the direction of the S vector and this is the patch of the 
surface area that I am considering, then the total power being passing 
through this patched area, whose surface area is given by S is basically S.ds, 
okay. You can, of course, go to other patches and then essentially cover up 
the entire open surface. So this is actually the contour corresponding to the 
-- contour C corresponding to this open surface, and when you integrate over
all these different patchy combinations, then you are going to get the total 
power, okay.

The other important thing to note here -- and this power, of course, is 
actually scaler, right. So this ds is the surfaced area which we will have units 
of meter square and that will cancel out the meter square, this one of the 
watts. So what you will essentially end up with is a scaler quantity which is 
basically the power.

However, the power that we have obtained or the Poynting vector that we 
have written here are all what is called is Instantaneous Poynting Vector, 
okay. I probably did not get that spelling correct for the instantaneous, but if I
have got it fine. So this is basically instantaneous Poynting vector. This is 
very similar to considering, so let’s say, I consider voltage V to be some V0 
cosωt flowing across the resister of this voltage, and the corresponding 
current written as, say, V0/R assuming that the resister has the resistance of 
R given by V0/R cosωt. So then I multiply this V and I, I am going to get V0

2/R. 
I am assuming V0 to be a positive quantity. Similarly, R is positive quantity 
that I have assumed. So you have cos2ωt. So clearly this is something that is 
varying with respect to time and this is an instantaneous Poynting vector.



What we are interested is not in the instantaneous Poynting vector, because 
many things are actually dependent on the average power that is dissipated 
in the resister. So how do I calculate the average power? I can look for the 
instantaneous power and then average it over a certain time. So I am going 
to assume that the time is arbitrarily chosen to be off with t starting at t=0 
and going all the way up to T. This is a good expression especially when 
instantaneous power is periodic, okay, as it would happen when both 
voltages and currents are periodic. Otherwise, you can just take this as one 
snapshot of P(t), average it. Technically, you would also let this also go to 
infinity, okay, to obtain the better estimates. We will not worry about all 
those things.

In this case, of course, when voltages and currents are both sinusoidal 
voltages of frequency ω and current of same frequency ω, then integrating 
out what you will see is that the expression basically becomes V0

2/2R. So this 
would be the average power that is dissipated across a resister when there is
a voltage V0 cosωt and the current which is V0/R cosωt, okay. We have used 
V0 and denoted this as a peak value, sorry this is peak value, but if you were 
to denote or if you were to use the rms value and then write V as, say, Vrms 
cosωt, then you know that Vrms is given by V0/√2. So in terms of that, this 
would simply be Vrms

2/R, okay. This also agrees well with whatever we have 
studied earlier.

Now a very similar thing is happening over here. This S is basically 
instantaneous vector, right, and then this ds integrating it is going to give 
you an instantaneous vector, but only when you integrate that power, which 



would be instantaneous power over whatever that time period that we 
consider, then we are going to get an average power, okay.

Now there is a slight easier way of arriving at this average power without 
carrying all those integrations. The idea is if I use this V and then replace 
that V with its corresponding phaser, right, the corresponding phaser in this 
case will be simply V0, the corresponding phaser for this one is V0/R, and then
I form this quantity, which is ½ real part of V phaser, which is actually -- I’ll 
write this as (Vphaser Iphaser) conjugate. This I will claim to be actually equal to 
the average power. Is it equal to average power? Yes, in this case it is exactly
equal to the average power, because ½ real part of Vphaser corresponding to 
that V0 cosω0t is basically V0. The current is real in this particular case, so 
the current phaser is basically given by V0/R. We also know that R is real in 
our case so this is actually going to be equal to ½ V0

2/R, which is exactly the 
same expression as we have obtained earlier, okay.

There are some situations where the voltage phasers and current phasers 
are not going to be in phase. For example, when you have -- instead of just a 
resister, you add just a little bit of a reactance, maybe some amount of 
inductance. In that case, there will be phase difference between the two and 
what you would actually obtain would be something like ½ V0

2/R cosφ or 
maybe cos2φ I think and that particular φ or cosφ, sometimes called as power
factor, okay. This power factor can go from 0 to 90, so in that case the power 
can actually go completely 0 to completely equal to maximum power that 
you can get. It will be equal to 0 when you have a pure reactance and it will 
be equal to maximum value when there is a pure resistive load, okay.

These basic ideas that one can define the average power as ½ real part of 
voltage phaser and current phaser conjugate. I need to have this conjugate, 
because otherwise this expression won’t turn out to be correct as you can 
see in the assignment, okay. It can be extended for the electromagnetic 
waves as well, okay.



We will consider the case of Ex and Hy with the expressions that they have 
already written, and I am specializing this to this particular case, because the
general expression is also very similar to this, okay. So if you understand the 
idea of average power calculation here, then you would have understood 
everything else. So now I have Ex phaser and Hy phaser, we already have 
written the expressions for Ex phaser, which is basically Ex0 e-jk0z, okay, with xx,
so this is a vector phaser, okay, and Hy is basically ŷ Ex0/η e-jk0z, okay. The 
instantaneous Poynting vector, of course, will be given by E x H, in this case 
it would be (xx x ŷ) and then you have Ex0

2/η e-j2k0z, which is okay, we don’t 
worry about that one, and then what you get (xx x ŷ) will actually be pointing 
along z with this additional expression for Ex0

2/η e-j2k0z. So if you fix z as a 
constant, that is you’re evaluating this Poynting vector at a particular z, then 
you can still see that the Poynting vector would actually perpendicular to 
that z equal to plain constant, okay.

It also makes a lot of sense to us, right. We had considered a uniform plain 
wave propagating along the z direction and we are happy that the energy is 
also being carried along the z direction and not being carried by any other 
direction, okay. So this fact, you sometimes used to say that energy direction
or the energy transport is at the same direction as the Poynting factor. There 
are few situations when you have an isotropic materials where this 
statement is not true. That is the Poynting vector as well as the direction of 
the energy will be different, but we will not study that one right away, we will
postpone that study later on, okay.



So this is the instantaneous Poynting vector. This is also a phaser quantity, 
but to obtain the average power or the average Poynting vector, I will write 
this as S average, I will write this tilde to denote that this is an average, but 
this is also a vector that I am denoting, is given by (xx x ŷ) ½ real part of Ex 
Hy, okay. We could not write the (xx x ŷ) right away. We could simply write this
as ½ real part of E phaser x H phaser conjugate, okay. So you can expand by 
putting in the known electric field component and the known magnetic field 
component expressions into it, and you will get ½ real part of Ex0

2/η and 
please note that because I am taking the conjugate here, this e-jk0z coming 
from the electric field will cancer out this e-jk0z coming from the magnetic 
field. So I will have (Ex0/η) (xx x ŷ), right. Now (xx x ŷ) is basically z-hat, so 
indicating that the average power is also in the same direction as the z axis 
times ½ Ex0

2, which I have assumed to be real, divided by η. So this is the 
average power density.

Now to obtain the total power or the average power, what you have to do is 
take this average power and then integrate it over the corresponding open 
surface that you’re considering, and then you will obtain the total power, so 
total average power. And this total average power will actually be equal to -- 
maximum value will be equal to ½ Ex0

2/η when you consider the plain to be 
some z equal to constant plan, okay, because in that z equal to constant 
plain, the unit surface area ds is given by dxdy pointing along z axis, okay, 
because this S average is also pointing along the same axis. dot product will 
be maximum in this case, and you will get this expression, okay. Please note 
that this actually independent of the plain area that you take, okay.

This is the importance of a plain wave, okay. Plain wave actually has electric 
field component not varying with respect to x or y, similarly, magnetic field 
component not varying with respect to x and y. And moreover, the average 
power density will also be independent of x and y. Therefore, when you orient
your plain at some z equal to constant plain, then the Poynting vector will be 
pointing in the direction of increasing x, let us say, because that is what the 
direction of waves we have considered. Then if you integrate it over a unit 
area, right, and then see what is the power that is being carried by that 
wave, that would be the same if you double the area size, okay. So that is 
completely independent, because what you’re actually seeing is that the 
average power density is independent of that area.

So if you simply take this one over -- I probably missed that one. So this is 
the average power that I have and then multiplying it by ds will actually give 
me the total power that is coming out as sorry area A. I am sorry what I 
meant to say is that when I increase the plain area, then the average power 
will also kind of increase, okay. So that is what we have written. This is Ex0

2/η,
and then when I consider the area A of this integration, then I am going ½ Ex 
and Hy are independent of x and y; however, the total power is simply 
proportional to the area. So you can actually get a lot of power by simply 



increasing the area. Technically, you can get an infinite amount of power 
when you take this area to the infinity. So unfortunately, that is not practical 
and moreover, plain waves also are not realizable in practice. They an only 
be approximated in some sense, and in many cases, you will not be able to 
find -- actually in real life scenario you won’t find waves which actually are 
independent of x and y directions, or x and y coordinates, okay.

So this uniform plain wave is a mathematical idealization, which is very good 
approximation for many real waves. However, you have to also keep in mind 
that they carry a finite power and finite average power, which of course also 
while it is showing that it is proportional to A, there’s a limit to this particular 
equation, okay.

So I hope I have confused you enough about the average power. So to recap 
little bit, to summarize, this is the instantaneous power density, which is E x 
H. The average power density which you are mostly interested can be 
obtained by going into the phaser domain, so ½ real part of E phaser x H 
phaser, okay, and this would be the power densities, okay. To obtain the total
power, you have to take this average power and integrate over appropriate 
surface area that you consider and that will give you the average power that 
is being carried by this electromagnetic wave.

Now this is also the reason why we paired last time Ey with -Hx. Why did we 
pair these two component? The reason is very simple. If you consider the 
electric field to be oriented along the y direction, and then I don’t know the 
direction of the magnetic field. However, this is given that the wave is 



propagating along the z direction and it is a uniform plain wave, and you 
expect the power also to be carried along the z direction, okay.

So then you expect the power also to be carried the z direction, then what 
component I should take the cross product of y in the order. Remember, the 
order is E x H when you shift the order of H and E, because cross product is 
actually anti commutative. When you switch this and make H x E, then that 
would be a different result, okay. So we are not looking at that result. So it is 
important to note that the direction is actually fixed by E x H, okay.

So in terms of that to what components should I take the cross product of y 
such that the result will be along z. If I take y x y, that would be 0, if I take y 
x x that would be -z. So the option to me is to actually take y cross -xx, okay. 
So this is the reason why I took the electric field to be around the y direction 
and the magnetic field to be along the -x direction, okay. So this is the 
uniform plain wave, which is propagating in a lossless material and oriented 
along either x direction or in the y direction.

Now you can immediately ask the following question. Maxwell’s equations 
are all linear, okay. I have an x polarized wave, I have a y polarized wave. Is 
it possible that I actually have a combination of these two waves? It is 
possible to have a combination of these two wave, because as I told you, 
Maxwell’s equations are linear, the wave equation is linear, and inf act, if you
take the x component electric field, okay, or the phaser corresponding to 
that, and add that to the y component phaser Ey, this will define a new 
electric field phaser, which we will call, say, some El, okay. I am just using 
some arbitrary dummy variable here, and I can actually have this particular 
case, okay.

There’s also another thing that I can do, right. I wrote the expression for Ex 
phaser as, say, xx Ex0 e-jk0z, okay. You could also add a phase φx corresponding 
to this expression without changing anything. All this is saying is that your 
phase reference or the field Ex that you’ve considered has some phase shirt 
φx, a constant phase shift φx perhaps, or even the phase shift that can vary 
with respect to z, but we’re not going to talk about that one. This constant 
phase φx can be added without changing the solution. Of course, when you 
add this phase φx to x component, you will have to add the same phase to 
the y component of the magnetic as well, because Ex and Hy are the pair, 
okay.

You can similarly Ey phaser given by ŷ Ey0 e-jk0z, please note that both have 
the same frequency ω and are propagating along z direction, then you can 
add some phase φy without changing the solution, right. What it means is 
that x and y pair, that is Ex and Hy pair, or the x polarized electromagnetic 
wave, can propagate along z direction at this particular frequency, as can the
y polarized wave propagate, and there can be a phase shift between these 



two or phase difference between these two, which will show up in some 
sense to define what would be the polarization of the new electric field 
component that is obtained by adding the x and y phaser, okay. So direction 
of this El is actually dependent on how these two are added with what phase 
that you need to add, okay.

To illustrate this, I will consider a simple example. I will assume that φx equals
0 and φy both are equal to 0, okay, and then I can put that expression into 
this and calculate what would be El. El phaser will be now (xx Ex0 + ŷ Ey0), 
okay, e-jak0z is common so I am not going to worry about that one. I’ll put this 
out, okay. Now I can also take any z equal to constant plain. I choose z=0 
constant plain, okay. In that plain El will simply be equal to this expression, 
okay. Please note that this expression that I have written is actually at z=0 
plain, okay.

In this plain, I have (xx Ex0 + ŷ Ey0) and clearly this x0 and y0 would actually 
correspond to, if this is my y axis and this is my x axis. There’s a reason why 
I am writing this in this manner. The idea here is this. When you look down 
form the top, right, when you look down the direction that you are seeing will
be along -z, okay, in that direction x will be in the direction hat I have written
and y will be in the direction that I have shown, okay. So the z axis would 
actually be coming out in this manner. You’re looking directly into the z axis. 
So you take x x y, that would actually come out along the z direction and 
you’re actually looking directly onto that axis and you get this x and y axis, 
okay.

Now you have Ex0 and you have Ey0, let’s assume that Ex0 has this length, 
okay, and Ey0 length is this much, okay. So on this z=0 plain what would be 
the direction of this El phaser? This is two vectors being added, okay. So 
when you add these two vectors, the resultant vector will be pointing at an 
angle with respect to x axis. What is that angle θ? That angle θ with which 
this El phaser makes is given by tan inverse of (Ey0/Ex0). This angle θ as 
measured from x axis is given by tan inverse of (Ey0/Ex0). When Ey0 amplitude 
equals Ex0 amplitude, in that case the angle will be 45 degrees, okay. So this 
is the direction of El, which is now 45 degrees, making an angle θ with 
respect to x axis, and that is direction of the new wave that you have or the 
new super position of he two polarization components that you have, and 
because you’ve added these two component linearly and the resultant 
vector, phaser El, will also be in this particular plain along the line, this is 
called as linear polarized wave or sometimes called as linearly polarized 
wave. So this is very important for you to note down. So the linearly 
polarized wave will have its polarization direction along the particular line.



Well, not completely yet, we are not done with that one yet. I know the El 
phaser, let me convert that El phaser into a real -- and by the way, this real 
phaser is at z=0, okay. So I’ll convert this real phaser into an expression 
which would also be a function of time, that is real expression. So I have to 
do that one by multiplying by e-jωt and then taking the real part of the entire 
expression.; when you do that, you’re going to get two vectors, which are 
both varying with respect to time. So you have xx, Ex0 cosωt + ŷ Ey0 cosωt. I’ll 
leave this as an exercise for you to show that what we’ve written is 
correction, and once you have convinced yourself that this is correct, now 
let’s go back to the axis, this is my x axis, this is my y axis. Please remember
the z axis is coming in the right hand side rule according to this.

So now, let’s see what would be the direction of this El vector, now this is a 
vector, the direction of this El vector at different times. This is all being done 
at a z=0 convenient plain for us. So at different times, what would be the 
direction. Now at time t=0 or ωt=0, cos function will be maximum, right, it 
will be equal to 1, and then the direction will actually be at an angle, which is
given by θ and that angle is basically given by tan inverse of Ey0/Ex0 as we 
have already seen, okay.

Now take ωt = π/2, what happens now? When I take ωt = π/2, I know that cos
will be 0, cos(π/2) will be 0. So the direction is now right at the origin, okay. 
So somewhere between ωt = 0 to π/2, say, perhaps for example, at ωt = π/4,
you would have had the vector to actually have this length, right. So this was
when ωt=0, this is when ωt equal to, say, π/4, and this is when ωt = 0, okay. 
Now you reverse it. Suppose I take ωt = π, in that case cosine will be -1, 



cosine of π will be -1 and the direction actually shifts onto this axis, right. It 
would still lie on this same line. In fact, what it will do is that it will actually 
move between these two points, okay. So it will actually move along this 
particular line, which is making an angle of θ with respect to the x axis, and 
because it is moving along a particular line, we call this as linear polarization 
or we call the waves to be linearly polarized, okay.

As a different example, now you imagine taking this El phaser to be xx Ex0, 
and plus ŷ Ey0 e-jπ/2. This is the φy that we have considered, and this is also at 
z=0, so this is also at z=0. What I would like you to do before I give you the 
answer or in the next module is that you should find out what would be this 
El, okay. The real version of this one that can be obtained by taking the 
phaser and then multiplying it be e-jωt and then drawing a diagram that looks 
similar to this one that I have drawn, and then tell me what is the 
polarization. Is it still going to be linearly polarized? If it is linearly polarized, 
what would be the angle of polarization? You can even assume in this case 
that Ey0 amplitude is exactly equal to Ex0 amplitude, which is equal to A.

So try this exercise before you see the answer in the next module, and what 
we have now done is to complete our study of uniform plain wave 
propagation in lossless, homogenous, isotropic and linear non-magnetic 
material. We will relax some of these considerations starting in the next 
module. Thank you very much.

[Music]


