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Hello  everyone.  Welcome  to  NPTEL MOOC on  Fiber  Optic  Communication.  I  am

Ashitosh and today I am going to speak about the topic Modes of Optical  fiber. So,

before we begin with the modes, let  us discuss about optical fibers, and what do we

know about them. So, what is an optical fiber, it is a made of silica glass and with a cross

section of core and cladding with a dimensions in micrometers. And the optical fiber

works under the principle of total internal reflection you know.

So, hence, in order to satisfy the condition of total internal reflection, the refractive index

of the core must be greater than refractive index of the cladding. This is what we know

about optical fibers. So, and there is one more property of the optical fiber which is very

important, which is called the V-number, which is given by the equation 1 in here, which

is 2 pi by lambda r core into square root of n core square minus n clad square. Here

lambda is the operating wavelength, r core is the radius of the core, n core and n clad are

the refractive indices of core and cladding respectively.



And these optical fibers are classified into two types; single mode fibers and multimode

fibers. If the V-number of the fiber is less than 2.405, it is called single mode fiber. If it is

greater than 2.405, it is called a multimode fiber. But, what exactly are these modes are,

how do they look like.  In order to solve for this, there are an analytical  approaches,

where we need to solve the equations and apply the appropriate boundary condition. But,

today  here  we  are  going  to  see  a  numerical  approach  by  using  a  software  called

COMSOL.  And see  how these  modes  actually  look like,  and what  are  the  different

properties of this modes under different conditions.

(Refer Slide Time: 02:04)

So, for that purpose, initially we need to set up the problem in COMSOL. For that, we

need to design a geometry. As we have seen earlier, cross section of a fiber consists of a

core and a cladding, which has been defined here in the figure. And the properties of this

core  and  cladding  that  is  the  dimensions  and  the  refractive  index  of  this  core  and

cladding are given here. Now, let us just take a moment and with whatever information

we have given in this slide calculate the V-number. So, it would be appreciated, if you

pause the video for couple of minutes, and look at these parameters and calculate the V-

number. And then based on the value that you get comment if this fiber is a single mode

or a multimode fiber.

Now, we are hoping that you have calculated  the V-number, let  us see what  are  the

results that we are getting. Now, the V number for this fiber is approximately equal to 7,



which is definitely greater than the value 2.405 that we have discussed in earlier slides.

Hence, by seeing this, we can comment that this is a multimode fiber. So, now we have

defined the geometry and also defined the properties of the geometry. Now, we have to

set up the problem in COMSOL. For that, we need to say, what is that we are going to

solve.

(Refer Slide Time: 03:18)

We are  going  to  solve  the  wave  equation.  The  wave  equation  is  given  here  in  the

equation 2 and apply a boundary condition of a perfectly electric conductor. But, the

question is what is that we are going to solve for, we are going to solve for modes. But,

what is the property of the mode that we should have going to solve for, which is the

effective index of the mode. Here if you see the screenshot that is given here, this is a

here we are setting the simulation parameters in COMSOL, we are asking COMSOL to

calculate the effective mode index and at an operating wavelength of 1.064 micrometer.

And then we are giving a mode search manually, where we ask COMSOL to search for

around 20 modes around the value 1.523. This value of 1.523 is approximately equal to

the refractive index of the core. Now, we have designed a geometry assign its properties.

We know what is the equation that we are solving and we also know what for we are

solving. Now, let us see what are the results that we get.



(Refer Slide Time: 04:16)

So, this is one of the mode that we see here. As you can see, we are plotting the norm of

the electric field here. And this is how one of the mode looks like. This is probably LP 03

mode, and we can also see the effective index value on the top of it.  Is this the only

solution that we get? No, because we have discussed that this is a multimode fiber, and

there are many modes that are supporting.

(Refer Slide Time: 04:37)

If you go for the next one, this is LP 31 mode, and it has a separate effective index value.

One more  point  we can  notice,  almost  do not  have  a  equal  same effective  index,  it



changes based on the mode that we have. Is this is the second mode LP 02 mode, which

again has a different effective index, which is probably this is we are going in the higher

order of effective index value. And this is a LP 21.

(Refer Slide Time: 05:03)

This is LP 3 1 mode.

(Refer Slide Time: 05:07)

And finally, we reach the fundamental mode LP 01 mode. This LP 01 mode is the initial

mode that gets excited in the optical fiber, and has a higher effective index. As you can

see with this effective index is larger, when compared with the other modes that we have



seen in the previous slides. And this is approximately equal to the refractive index of the

core.

If we observe all the results that we got here, the effective index value is purely real and

the mode is  clearly  confined to the core.  Why, because this  is  like a  ideal  situation,

where, we are not acting any external, there is no change in external environment such as

temperature, or we are not adding an external pressure, or we are not even bending the

fiber.

So, in all these cases, when there is no external pressure on the fiber, mode is confined,

the effective index is the mode is confined to the core and effective index is purely real.

Now, let us just take one of the scenario, one kind of scenario that we have discussed that

is  the bending of the fiber, and observe how this  mode pattern looks like,  and what

happens to the effective index of these modes.

(Refer Slide Time: 06:12)

So, before that, let us discuss what is bending and where this bending happens. In a

FTTH networks that is Fiber To The Home networks, these optical fibers are installed in

into our homes,  offices,  and institutes  in  the form of  optical  fiber  cables.  And these

cables are bent at the tight corners of the wall, as you can see in the figure here. So, what

is the range of this bending, which is around 3 to 10 mm of bend radius. What happens

when these fibers are bent, as you can see in the second picture here, when a fiber is bent

or twisted, there is a severe power loss happening and the light is radiating away, which



is a problem in a transmission networks. So, we need to see how what is the amount of

light that is getting radiated away.

And these  bendings  are  broadly  classified  into  two types,  macro  bending and micro

bending. As the name suggests, if the bending radius is greater than the fiber dimensions

is much greater than the fiber dimensions, it comes under the macro bending category.

And, if the bend radius is approximately equal to the fiber dimensions, it comes under

the category of micro bending. And we have seen in the point number four here that the

bending rate range for FTTH applications is 3 to 10 mm bend radius. So, clearly this mm

is much value of mm is much greater than the fiber dimensions, which are in microns.

So, these FTTH bendings comes under the category of macro bending. Now, we know

this is an this comes under macro bending case. Now, let us see how are we going to

solve this problem, or how are we going to approach this problem.

(Refer Slide Time: 07:46)

In a figure a that is here, we have a bent waveguide in an x y co-ordinate system or

equivalently a Z-plane, where the fiber is bent, and it has the certain refractive index let

us  say  n.  Now, we  are  going  to  map  this  optical  fiber  into  an  equivalent  straight

waveguide  in  a  new co-ordinate  system u,  v  co-ordinate  system.  In  this  co-ordinate

system,  we  have  an  equivalent  straight  waveguide.  And  we are  going  to  obtain  the

refractive index of this equivalent state waveguide by following a technical conformal

mapping. When we do that, we obtain the modified refractive index is given by equation



3, which is n into 1 plus X by R; n is the refractive index of the bent waveguide that is in

a figure a, and R is the bend radius, X is corresponds to a co-ordinate system in the Z-

plane.

Now, how does this refractive index looks like? If we consider a normal step index fiber,

that we have seen in a earlier case as well. This is the refractive index profile that we see

in an unbend case. When we apply conformal mapping technique, so we basically are

adding a slope on to these refractive index profile. Now, we input this data, the slope the

tilted refractive index profile into COMSOL, and see how actually our mode looks like.

So, as we have seen earlier as well. Before going to the solution, we need to setup the

problem.

(Refer Slide Time: 09:13)

We are now defining  a  similar  geometry, but  with the core radius  much smaller  4.1

micrometer,  cladding  radius  is  the  same  62.5  micrometer,  and  wavelength  is  1.55

micrometer. Yes, in the same we are considering a step index fiber with core refractive

index of 1.45, and cladding refractive index as 1.444.

Now, if we calculate, if we consider these parameters, and calculate the V-number for

this fiber, we are getting a value of 2.19, which is less than 2.405, hence this fiber is a

single mode fiber, we only we will have a fundamental mode, not any other higher mode.

Higher order modes that we have seen earlier. So and we are applying a bend radius of 5

mm, r is equal to 5 mm in this case. Now, we have a fiber geometry, its properties, and



also its dimension. And we have seen how do we solve the problem, we solve the wave

equation, and we follow the same process. And let us see what are the results that we get.

(Refer Slide Time: 10:14)

In the figure a, as we have seen in the earlier case as well, we have a more confined in

the core for a straight fiber, where the effective index is purely real,  and there is no

radiation that is happening outside the core. But, when we apply the conformal mapping

technique that we have discussed, and do the similar procedure for a bend radius of 5

mm, one we observe there is a shift in the mode towards the cladding that is the mode is

radiating away from the core to the cladding. Because of which we have a imaginary part

to the effective index, which from this, we can say if there is any radiation in the mode,

we have a imaginary part in the effective index.

This imaginary part can be used as shown in the equation 4 to calculate the loss induced

in the optical fiber. So, here D is the bend diameter, lambda is operating wavelength, and

Im indicates the imaginary part of the effective index. Now, and one more important

point that we need to see here is if we observe there is a third layer here, which is a PML,

which is a short form of Perfectly Matched Layer. Why do we use this layer, is this really

important? So, is this really important?

As we have seen here in the slide, there are some radiation that is happening from the

core and this radiation will pass from core to the cladding. As let us see, if we consider

this is the geometry, where we have core and we have some radiation that is coming out,



this radiation will travel in this direction and hit the cladding boundary. And as we all we

know, there is the radiation does not completely get transmitted, so there is some amount

of radiation that is coming in a backward direction as well. When these radiation the

backward coming radiation, there is a chance that may mix up with the mode that is

confined in the core and distorting our results.

In order to avoid this circumstance, we add a third layer, which is called a PML layer.

What  this  layer  does is  all  the radiation  that  is  coming from the core,  it  is  will  get

absorbed in the PML layer, and there is  no radiation that  is coming out. So,  we are

basically  removing  unwanted  radiation  to  reflect  back,  which  will  distort  our  final

output, and we are protecting basically we are like protecting our results.

So, we also now the results that we have obtained here the imaginary part, you have after

applying the PML layer, whose thickness  which is  generally  5 lambda to 7 lambda,

where lambda is the operating wavelength, where lambda is the operating wavelength.

Now, we have seen how the bending effects the mode pattern and the effective index, and

we have also calculated the loss from that one.

(Refer Slide Time: 13:20)

Summarizing  what  we  have  seen  till  now,  initially  we  went  through  a  COMSOL

simulation for multimode fiber, and we have seen how the mode pattern looks like for

different modes look like, and also made a comment on the their affective indices value.

Then we have seen different the bending scenarios, one of the bending scenario is FTTH



application. And we have seen the bending, what happens, when this is when it when the

fiber is bent, and also we have also seen the classification of bending.

Then we went on to how are we going to solve this  problem, how are we going to

analyze the bent fiber, where we applied conformal mapping technique,  and obtain a

modified refractive index, conformal mapping to get n mod. We applied this n mod into

COMSOL, and perform the simulation for a bend fiber. And have seen how the mode

really looks like in a when a fiber is bent, and compared it with the initial results of a

straight fiber.

(Refer Slide Time: 14:24)

Now, what is that we are going to we have drawn from this one. As suggested earlier,

there are we can fall an analytical approach as well to solve this problem of modes, but

this can be applied in a case of simpler refractive index that is a case of standard one of

the case is standard step index profile that we have considered here. But, in practical

scenarios if we see, this type index profile is not much of a use, and there are many

different  profiles  that  are  used in  the optical  fibers.  And solving for those refractive

indices  let  us  say  a  parabolic  index  or  a  trench  index,  which  is  basically  a  bend

insensitive fiber. Solving for these kind of refractive indices is very complex using the

analytical approach.

So, what do we do, in those scenarios a software like COMSOL, which numerically

solves  the  problem of  modes  might  come in  very  handy  and solves  our  solves  our



problem of very complex equations and equations and very tedious calculations. So, for

the cases of bend very complex or refractive index profile,  these numerical  methods

might come in very handy giving us accurate results in comparison with the analytical

approach. Thank you.

Hello all. I am Shubham Mirg; I am the teaching assistant for the MOOC course Fiber

Optic Communication Systems and Techniques. In the upcoming slides, we will see what

are the dispersive effects on a pulse propagating in optical fibers.

(Refer Slide Time: 15:51)

So,  to  start  with,  we  will  try  to  model  the  pulse  propagating  by  using  the  pulse

propagation  equation.  A large number of  dispersive effects  can be explained using a

simplified form of the pulse propagation equation given us this equation. So, what a is

the time bearing and as well as distance bearing pulse envelope, while the next term is

the fiber attenuation factor, and the third term, we take care of the dispersion factor. So,

the attenuation as well as the dispersion factor gets modeled into the pulse propagation

equation.



(Refer Slide Time: 16:30)

For the convenience, it is better to define a length over which dispersion effects become

important for pulse evolution. This dispersion length is given by the pulse width (Refer

Time:  16:40) beta  2.  With  this  T naught  is  the pulse width,  and beta  2 is  the GVD

parameter. GVD stands for Group Velocity Dispersion parameter.

(Refer Slide Time: 16:50)

The next slide is dispersion induced pulse broadening. So, once we define a normalized

amplitude which takes care of the attenuation, the u z, t is given by a z, t over square root

of P naught exponential e to the power minus alpha z by 2. P naught is the peak power,



so we get a more simplified pulse propagation equation, which is given by this equation.

So, now to solve this equation, we will take the Fourier transform. Once we have the

Fourier transform, we have an equation like this.

Now, we can see what U z, omega, which is the Fourier transform of u z, t would be. So,

this equation is indeed very important, because we see that over a distance, when the

pulse has propagated  over  a  distance z,  the pulse equation that  we see from here is

nothing but the incident pulse, which is U 0, omega multiplied by a dispersion factor,

which is exponential minus j beta 2 by 2 omega square z. And to get back this equation

in the time domain, we will take the inverse Fourier transform, which shows that the

equation becomes, which is just the inverse Fourier transform of the above equation.

(Refer Slide Time: 18:10)

So, how do we go about solving this equation. So when we take complex pulse functions

into account, the pulse propagation equation cannot be solved analytically, we actually

need to have some numerical approaches. Pulse propagation method approach that we

will see in the upcoming slides. What we do is we split the fiber into smaller sections,

and it will be a recursive two step process, where dispersion would act alone in each

step. The advantage of using this approach is that we get good computational speed.



(Refer Slide Time: 18:42)

So, we have prepared a flow chart. First process, we will focus on this figure. So, we

actually this is this is an optical fiber, and the pulse is propagating inside an optical fiber.

And we split the optical fiber into separate sections of each length h. So, what we do is

coming to the flow chart, we have an initial condition, where z is equal to 0, which is the

start of the optical fiber, and then we have step size equal to h, and the net fiber length

over which the pulse will propagate is given by L.

So, the next step (Refer Time: 19:17) taking the Fourier transform and multiplying it by

the dispersion factor, which was given by in the previous slide as we pointed out by this

factor. We will multiply by this factor for the section z for the section h, and here z is

equal to h here. So, once we have that we will take the inverse Fourier transform, and we

will ask if we have reached the end of the fiber by adding h. And, if the answer is no, we

will go back to the frequency domain,  we will again take the Fourier transform, and

again the inverse Fourier transform and as and we will reach the end of the fiber.



(Refer Slide Time: 19:57)

So, we have some examples in the upcoming slides. So, the one of the most used pulses

are the Gaussian pulses, whose incident equation is given by this equation, which is u 0, t

e to the power minus T square by 2 T naught square e minus j C t square by 2 T naught

square, where T naught is the pulse width, and C is the chirp parameter. We will see what

chip  parameter  is.  In  this  scenario,  because we know what  is  the  Fourier  transform,

Gaussian  pulses  we  can  actually  solve  it  analytically,  and  also  by  the  numerical

approaches we mentioned previously.

This figure shows for C is equal to this figure is for C is equal to 0. This is for initially

unchirped Gaussian pulses, what happened, so the incident pulse looks like this. Now, as

we move along twice the dispersion length factor, L D is the dispersion length. So, once

we have moved two dispersion lengths, we see that the significant broadening of the

pulse. And in fact, if we moving in further, we will see the pulse broadens even more. So,

this is the effect that dispersion has one pulses.

So, if the pulse is initially unchirped, the dispersion induced chirp is linear. If this term is

one, we can see the instantaneous frequency would come out to be linear over the time

scale. However, if we have some chirping, then the things gets interesting, because then

we will have to see what beta 2 C is (Refer Time: 21:25) greater than 0 or beta 2 C is less

than 0.



Because, if beta 2 C is greater than 0, then we will still have a monotonically increasing

chirp parameter, and that would signify that the pulse will still broaden. But however, if

beta 2 C is less than 0, then the dispersion induced chirp and the initial chirping that we

are providing the pulse will kind of counteract. And so, we will initially see some sort of

compression, and then the net chirp becomes 0, and then again it starts monotonically

increasing. So, for this case, for the initially chirped pulse counteracting with the beta 2

leads  to  compression  to  a  certain  distance,  and  then  it  starts  again  monotonically

increase.

(Refer Slide Time: 22:09)

Now, we will come to more complex pulses, for example the hyperbolic secant pulses,

whose equation is given by this u 0, t is equal to sech, T naught is the pulse width, and

then there is this chirp factor. We plotted it for initially unchirped, again this C is equal to

0, and this is the initially incident pulse. And as we see as we move along two dispersion

lengths and 4 dispersion lengths, there is a lot of dispersion induced broadening. And

another see so, the pulse the secant pulses are narrower than the Gaussian pulses. So, the

instantaneous frequencies are much more, and hence we see some sort of distortion at the

ends of it, because that the instantaneous frequencies in this scenario are higher than the

frequencies in the Gaussian case.



(Refer Slide Time: 23:04)

Now, in fact, to even make them more steeper, we will take the case of dispersion super

Gaussian pulses, whose incident equation is given by this factor. We see is again the

chirp parameter  T naught is  the pulse width.  And it  is similar  to the Gaussian pulse

equation, but we have another factor m here. So, the pulse looks like this, this is the case

for m is equal to 3, and again initially unchirped super Gaussian pulses. As you can see,

it is even much more steeper than secant or the Gaussian pulses that we saw before.

And the  instantaneous  frequencies  get  really  high,  because  it  is  an  it  is  there  is  an

instantaneous jump at the edges, so there is much more distortion here. As you can see at

the trailing edges and the leading edges, this the pulse as it propagates into the fiber. The

trailing edges and a leading edges start distorting, and the pulse starts losing its shape.

So, in a communication system, this would be very problematic for us. So, it is really

important for us to study these effects, and to probably find techniques to mitigate these

effects.



(Refer Slide Time: 24:09)

The other factor  is  the third order dispersion.  Now, usually  beta  2,  the second order

dispersion dominates in most of the practical cases of interest. However, if our operating

wavelength is really close to the 0 dispersion wavelength, we have beta 2 goes to around

0, then beta 3 actually comes into play and we study the effects of beta 3 on the pulse

propagating in the optical fiber.

Also another case would be, when we have very narrow pulses, then again also beta 3

effects come into picture. Otherwise, in most of the practical cases, we do not usually

consider third order dispersion. However, if above you any of the above following cases,

we  do have  to  consider  beta  3.  Then  the  pulse  propagation  equation  that  we  study

previously becomes this way. We (Refer Time: 24:59) another term, which is the beta 3

by 6, so beta 3 partial cube u partial t cube. And again for convenience, we will define

the third order dispersion length, which is given by pulse width cube by beta 3, which is

the third order dispersion parameter.



(Refer Slide Time: 25:19)

The third order dispersion in Gaussian pulses. So, previously we saw the equation for the

Gaussian pulses was this. Again, we will  take the chirped parameter to be 0. So, the

incident Gaussian pulse looks like this. And for the case, when we say that the second

order dispersion is equal to 0, we see that the pulse not only loses its shape, it becomes

asymmetric as it propagates, it also starts oscillating at the edges. And when we take both

the effects and both beta 2 and beta 3 and make them comparable,  for where (Refer

Time: 25:51) the dispersion second order dispersion length is equal to the third order

dispersion length.

Then we will see that the pulse broadens a lot, because of the beta two parameter as we

saw previously as well as the pulse becomes asymmetric and distorts because of the third

order dispersion parameter. And this was for the case of z is equal to 5 L D dash, so they

we are propagating it to five-third order dispersion lengths. So, 5 L D dash means (Refer

Time: 26:17) 5, so this is L D dash. So, the net length of the fiber is 5 times this. So, as

you  can  see,  it  significantly  distorts  as  well  as  makes  the  pulse  asymmetric  as  we

propagate along the fiber.



(Refer Slide Time: 26:35)

The other case is the third order dispersion in super Gaussian pulses. We will keep the

super Gaussian pulses unchirped as well as the m, m would be equal to 3 and so and beta

2 is again kept to be 0, and beta 3 is greater than 0. So, as we see as we move along the

distance, so this is the distance measured by L D dash. So, this is 0.5 L D dash, so 1 L D

dash and 1.5 L D dash and move so all.

So, as we see as we are moving along the fiber, so we see that the pulse is initially not

distorting, as we move even at 0.5 L D dash, which is half the third order dispersion

wavelength, we see significant distortion in the trailing edges of the pulse. And as we

move ahead, we see that the pulse starts even get distorted more and more, and we also

see some pulse broadening happening. As we move along the dispersion lengths, and

there is no much more distortion. Due to the fact, that it should be super Gaussian pulses

are much more steeper than normal Gaussian pulses.

So, we see significant  amount  of larger distortion as compared to  the previous case,

where this case. As you can see this case, and the last case here, this case has much more

significant, much more distortion as compared to the previous case, and this the we see a

lot of oscillatory behavior at the trailing edge of the pulse. So, this another thing that beta

3, the sign of beta 3 if we are operating in the region, where beta 3 is less than 0, then the

effects on the trailing edge would reflect on the leading edge of the pulses. So, if we are



having a facing distortion here in case of beta 3 less than 0, we will see distortion in in

this sides.

And similarly, in the previous cases, when beta 2 is greater than 0 or beta 2 is less than 0,

we do not the pulse will  always broaden in the case of a unchirped, it  the does not

depend on the whether we are operating in the normal dispersion regime, which is beta 2

greater than 0, or the anomalous dispersion regime, which is beta 2 less than 0. However,

if we induce some sort of chirping, then the sign of beta 2 becomes important as seen

here.

So, to summarize, what we did here was we started, we had a pulse that was about to

propagate in an optical fiber. The first step was the model, how it will propagate, we

actually added the effects of second order dispersion by the pulse propagation equation.

And then we saw that  there  is  a  possible  analytical  solution,  but  it  would  be  really

difficult, if we are not able to calculate the Fourier transform of an incident pulses.

So, for something like Gaussian, where we can actually calculate the Fourier transform,

we do get an analytical solution, and however as we move to much more complex pulses.

This we cannot really have a very straightforward analytic solution to it. So, we put in

the numerical approaches, which are much more easier to compute.

And as we see Gaussian pulses have a significant amount of gardening. And these as we

much more narrow pulses in hyperbolic secant pulses, there is also as with broadening,

there is some distortion as well at the leading as well as the trailing edges of the pulses.

And pulses maintain their  symmetry here in the cases of beta 2, where beta 3 is not

affecting the pulses, and beta 2 is dominant factor here.

As  we  moved  along  into  the  super  Gaussian  pulses,  we  see  much  more  significant

amount of oscillatory behavior at the trailing and the lead leading edges of the pulse, as

the pulses moved along the fiber. And then we saw the effects of third order dispersion,

we saw the cases we have third order dispersion can come into play such as very narrow

pulses, and operating wavelength to be near to be the 0 dispersion wavelength. And we

associated a length with the third order dispersion as well.

And then we saw what third order dispersion does in the absence of in the case, where

beta 2 is equal to 0. And we also saw, when beta 2 and beta 3 both come into play and



they are comparable, then what happens, which is a significant above broadening as well

as  the  pulse  becomes  asymmetric.  And  it  also  has  some  oscillatory  behavior  at  the

leading or the trailing edge depending on the sign of beta 3.

And the  last  case,  we studied  was dispersion in  super  Gaussian  pulses.  We saw the

evolution  of  the  pulses  in  this  3D figure  as  it  moved  along  the  fiber.  And  we  saw

significant  amount  of  distortion,  and  oscillatory  behavior,  and  pulse  becoming

asymmetric, as it moved along the fiber as compared to the simple Gaussian case. And

the next step in the future lectures, we will also see what non-linearity parameter does to

the pulse propagation equation.

Thank you.


